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Sven Bambach

ANALYZING HANDS WITH FIRST-PERSON COMPUTER VISION

Egocentric cameras aim to approximate a person’s field of view, which provides insight

into how people interact with the world. Consequently, many cognitive researchers are

interested in using wearable camera systems as tools to study attention, perception, and

learning. These systems typically capture vast amounts of image data, so to fully harness

the potential of this novel observational paradigm, sophisticated techniques to automatically

annotate and understand the data are needed. However, analyzing first-person imagery

introduces many unique challenges, as it is usually recorded passively without artistic intent

and therefore lacks many of the clean characteristics of traditional photography.

This thesis presents novel computer vision approaches to automatically analyze first-

person imaging data. The focus of these approaches lies in extracting and understanding

hands in the egocentric field of view. Hands are almost omnipresent and constitute our

primary channel of interaction with the physical world. To that end, we argue that analyz-

ing hands is an important factor towards the goal of automatically understanding human

behavior from egocentric images and videos. We propose three different approaches that

aim to extract meaningful and useful information about hands in the context of social

interactions. First, we consider laboratory videos of joint toy play between infants and par-

ents, and develop a method to track and, importantly, distinguish hands based on spatial

constraints imposed by the egocentric paradigm. This method allows us to collect fine-

grained hand appearance statistics that contribute new evidence towards how infants and

their parents coordinate attention through eye-hand coordination. Next, we build upon

this approach to develop a general, probabilistic framework that jointly models temporal

and spatial biases of hand locations. We demonstrate that this approach achieves notable
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results in disambiguating hands even when combined with noisy initial detections that may

occur in naturalistic videos. Finally, we ask to what extent we can identify hand types and

poses directly based on visual appearances. We collect a large-scale egocentric video dataset

with pixel-level hand annotations to permit the training of data-driven recognition models

like convolutional neural networks. Results indicate that not only can we distinguish hands,

but also infer activities from hand poses.

David J. Crandall, Ph.D.

Chen Yu, Ph.D.

Michael S. Ryoo, Ph.D.

Linda B. Smith, Ph.D.
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CHAPTER 1

INTRODUCTION

1.1 THESIS OVERVIEW

Wearable technology is becoming part of everyday life, from smart watches to activity

trackers and even head-mounted displays. These devices are often equipped with advanced

sensors that gather data about the wearer and the environment in the context of everyday

life, which make them interesting to researchers across many domains [74, 109, 116]. A key

part of this wearable technology trend is first-person (egocentric) camera technology that

aims to approximate a person’s field of view (see Figure 1.1 for examples), and thereby

provides dynamic insight into how people visually perceive the world while naturally in-

teracting with it. The embodied nature of this paradigm is of special interest to a rising

number of cognitive researchers who use wearable camera systems as tools to study human

attention [61], perception [39,101], and learning [121].

Typically these systems capture vast amounts of image or video data, so in order to

fully harness the potential of this novel data collection paradigm, sophisticated techniques

to automatically annotate, segment, and generally understand the data are needed. How-

ever, analyzing first-person imagery is often complicated by many unique challenges from a

computer vision perspective. Egocentric data is usually recorded passively or unintention-

ally (i.e. without artistic intent) and therefore lacks many of the clean characteristics of

traditional photography. Recently, the computer vision community has started to acknowl-
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edge these new, domain-specific challenges with many workshops at top tier conferences

encouraging research in this new domain of “egocentric vision.”

This dissertation presents multiple approaches to automatically analyze imaging data

recorded with first-person camera devices. While these approaches constitute novel con-

tributions in the area of computer vision and are thus interesting in their own right, they

are particularly motivated by the desire to enable and enhance cognitive research in areas

like visual attention and perception. The distinct focus of the presented research lies in

extracting and understanding hands in the field of view. Hands are almost omnipresent

in our view and we use our hands as our primary channel of interaction with the physical

world, for manipulating objects, sensing the environment, and expressing ourselves to other

people. Hands may even play a special role in our cognitive development. Some studies

indicate that the visual information that toddlers perceive primarily depends on their own

manual actions, and propose the idea of “visual attention through the hands” [123, 124].

Thus, from a cognitive perspective, we argue that focusing efforts on the analysis of hands

in first-person image and video data is a worthwhile endeavor as it could benefit many

studies that aim to collect data with head-mounted camera systems.

A large amount of well-known work within the egocentric computer vision community

recognizes the importance of hands by explicitly modeling them to help with various goals

such as first-person activity recognition [30, 33, 67] or gaze prediction [66]. Yet, somewhat

surprisingly, relatively little attention has been paid to developing methods that can robustly

extract hands in the context of first-person video. Even the small corpus of existing work

that directly addresses hand detection does so only in relatively constrained, static scenarios

[64,65], most notably lacking the presence of any other people in view. In contrast, the work

presented here considers analyzing hands in the context of social interactions, where the

egocentric observer actively interacts with a partner. We argue that collecting naturalistic

2



Figure 1.1: Examples of different first-person camera devices. From left to right: smart-
glasses (e.g. Google Glass), compact outdoor cameras (e.g. GoPro), life-logging cameras
(e.g. Narrative Clip), video glasses (e.g. iVUE ), head-mounted eye tracking systems (e.g.
Positive Science), and police body cameras (e.g. PatrolEyes).

and dynamic data is crucial to foster the development of computer vision methods that work

well in many diverse scenarios. Moreover, extracting hands in general may not be sufficient

for many applications, and we are the first to address the novel problem of distinguishing

hands on a semantic level, i.e. telling apart the observer’s left and right hands from the

partner’s left and right hands.

In the remainder of the introductory chapter, we further motivate the importance of

analyzing hands from a cognitive perspective by reviewing the role of hands in guiding

attention and modulating perception, both in humans’ early cognitive development and as

adults. We then review related computer vision work in the domains of first-person vision

and hand analysis. Importantly, we highlight key differences between the vast amount of

literature on three-dimensional hand pose estimation and our hand analysis in the novel

context of egocentric cameras. Next, we provide a brief overview of some of the computer

vision models that we build upon later in the thesis, namely probabilistic graphical models

(PGMs) and convolutional neural networks (CNNs). Finally, we summarize the motiva-

tion and main contributions of the thesis before outlining each of the following chapters

individually.
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1.2 MOTIVATION FROM A COGNITIVE PERSPECTIVE

Hands are almost omnipresent in our field of view. As they are also our primary tool of

physical interaction with the world around us, many interesting actions and object manip-

ulations that are captured by egocentric cameras will prominently include hands. Thus,

focusing computer vision efforts on analyzing hands in first-person video could be seen as a

purely pragmatic or practical decision. However, a more thorough look at hands and how

they relate to human cognition reveals that there is even more virtue to analyzing hands

than one might assume. As we will discuss in this section, hands play a special role in

early cognitive development by both leading and stabilizing our visual attention [18, 19].

Even as adults, our own hands affect our attention and perception in many interesting ways

(e.g., [22, 24]). We argue that considering wearable camera systems as tools that approxi-

mate human vision and attention also provides a unique embodied perspective of one’s own

hands and how they are perceived.

1.2.1 THE ROLE OF HANDS IN EARLY DEVELOPMENT

The human body is a complex system with many degrees of freedom. As infants discover new

motor skills within this system, stability and coordination pose profound problems [111].

In early motor development, infants partly solve this problem by using their hands to hold

objects near their body’s midline, thereby stabilizing trunk and head, and limiting degrees

of freedom [8]. For example, Claxton et al. [19] found that infants who were just beginning

to sit exhibited less postural sway when holding a toy compared to infants that did not

hold a toy. Similarly, when just beginning to stand, infants show a lower magnitude of

postural sway and more complex sway patterns when holding a toy, suggesting that they

adapt postural sway in a manner that facilitates stabilizing and visually fixating on the toy

in their hand [18].

4



Seminal studies that have actually used head-mounted cameras to study visual attention

in toddlers (e.g. Smith et al. [101], Yu et al. [124]) show that the way toddlers perceive

objects during free toy play with their parents differs significantly from the parents’ per-

ception. While adults tend to have a broad and stable view of multiple objects at the same

time, toddlers are more likely to bring single objects very close to their eyes such that they

visually dominate the field of view. Thus, much of the visual information that toddlers

perceive primarily depends on, and is structured by, their own manual actions. Toddlers

use their hands to actively select objects of interest and filter out others, which might be

foundational with respect to their visual learning process. A follow-up study by Yu and

Smith [122] investigates the role of hands with respect to establishing joint attention be-

tween one-year-old infants and their parents. One commonly accepted pathway towards

the coordination of looking behavior between social partners is gaze following [37], where

one partner follows the other’s eye gaze onto the same, joint target. However, the data

derived from Yu and Smith’s head-mounted eye tracking experiments provide evidence for

an alternative pathway, through the coordination of hands and eyes. During joint toy play,

infants rarely look to the parent’s face and eyes. Instead, infants and parents seem to coor-

dinate looking behavior by following hands to attend to objects held by oneself or the social

partner.

Much of the motivation for the work presented in this thesis is based on this series of

experiments. Given egocentric videos of toddlers along with eye gaze data (i.e. an estimate

of which region of the field of view was overtly attended), locating and identifying the

toddler hands and the parent hands in the video could yield fine-grained information on

how these joint attention pathways unfold. We address this idea in Chapter 2.
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1.2.2 HOW HANDS AFFECT OUR COGNITION

There is a growing body of research that suggests that people’s perception of the world

depends on their own interactions with it. This means the world within our reach may

critically differ from the world beyond our reach [14]. Here, we briefly review some of the

work that has investigated the effects of our own hands on visual attention and perception.

Attention

The presence of hands in peripheral vision seems to affect people’s attentional prioritization

of the space around hands [87]. There are various studies based on static eye tracking

with stimuli presented on a computer monitor that show that participants are faster to

fixate on target objects when such objects appear near their hand (e.g. Reed et al. [86]).

Moreover, hands may also shield attention from visual interference. A recent study by

Davoli and Brockmole [24] had subjects identify a target letter surrounded by distractor

letters, and found that subjects did so more quickly if they flanked the target with their

hands (although distractors were still in clear view). Perhaps most interestingly, the special

role of hands in guiding attention seems to extend to more dynamic real-world behavior.

For example, Li et al. [66] used a head-mounted eye tracking system to collect egocentric

video data from subjects preparing various meals in a kitchen environment. They built a

computational model to predict each subject’s gaze location over time based on the video

stream, and found that various hand-related features (such as hand motion vectors or hand

manipulation points) served as very reliable cues for gaze prediction.

Perception

One’s own body in general, and hands in particular, may also play an important scaling

role with respect to size perception of nearby objects. Linkenauger et al. [69] had subjects
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wear size-manipulating goggles while estimating the size of different objects, and found

that estimates were more accurate when subjects placed their own hands in their view.

Interestingly, this effect did not hold when placing another person’s hand in the subject’s

view instead. Vishton et al. [114] found that the effect of the Ebbinghaus illusion (objects

appearing bigger/smaller when surrounded by smaller/bigger objects) decreased when sub-

jects were instructed to judge the size of an object before reaching for it. However, observed

perceptual changes are not only related to size. For example, Cosman and Vecera [22] found

that subjects were more likely to assign regions of an abstract binary visual stimulus as fore-

ground when they placed their hands near them. Such findings are commonly interpreted as

evidence that hands may cause a shift from the perception-oriented magnocellular pathway

of the visual system to the more action-oriented parvocellular pathway [41,42].

1.3 RELATED COMPUTER VISION WORK

With the exception of a few pioneering papers from the wearable or ubiquitous comput-

ing community [17, 73, 103], the idea of analyzing visual data from first-person cameras is

fairly young and arguably closely tied to the recent commercial success of wearable camera

devices. The first major attempt within the computer vision community to acknowledge

and consolidate efforts in this domain was made at IEEE Conference on Computer Vision

and Pattern Recognition 2009, which hosted the first workshop on egocentric (first-person)

vision, establishing the term in the process. Since then, other workshops followed and

multiple papers related to egocentric vision appeared in the main proceedings of major

computer vision conferences. We review some of the most relevant work in Section 1.3.1.

For a near complete survey (until 2014) on first-person vision, including more general work

that combines cameras with other body-worn sensors, we refer the interested reader to [11].

Analyzing hands, on the contrary, has a longer computer vision research history. Early

7



efforts in this domain were driven by the desire to understand hand gestures in the context

of human computer interaction (HCI) [28], and the recent abundance of consumer depth

cameras (e.g. Kinect) has sparked various interesting advances in depth-based hand pose

estimation [107]. As hands are among the most common objects in a person’s field of view,

researchers are now also turning towards analyzing hands in egocentric images and videos.

We put our contributions into perspective by reviewing and contrasting some of this work

in Section 1.3.2.

1.3.1 FIRST-PERSON (EGOCENTRIC) VISION

From a computer vision perspective, first-person data has many unique qualities that can

be viewed as both challenges and advantages. For example, by approximating the cam-

era wearer’s field of view, first-person cameras often implicitly capture the most relevant

objects in a scene. At the same time, the lack of artistic control innate to this form of

passive (or unintentional) photography often results in low-quality images that suffer from

poor illumination and heavy occlusions. Another example is camera motion; in traditional

photography and videography, special effort is typically put into minimizing or constraining

the motion of the camera. In contrast, body-worn cameras are prone to experience more

drastic motion changes, undermining the assumptions of many existing methods of analysis.

However, camera motion is directly tied to the body motion of the observer, which in itself

could be a useful signal for many objectives.

The objectives that researchers commonly explore in the egocentric domain aim to

either take advantage of the domain-specific benefits, or to overcome the domain-specific

challenges. Here, we broadly divide these objectives into four categories: object recognition,

activity recognition, lifelogging analysis, and other.
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Object Recognition

Motivated by the idea that recognizing handled objects can provide essential information

about the observer’s activity, Ren et al. [89,90] were the first to explicitly explore the topic of

object recognition for egocentric video and provide a benchmark dataset. In particular, they

propose a figure-ground segmentation method based on optical flow that isolates the handled

object from background clutter [89] and subsequently improves recognition performance.

Fathi et al. [33] expand this idea by exploring egocentric activities that prominently involve

multiple objects (such as making a peanut butter and jelly sandwich). Using multiple

instance learning, they take advantage of the frequent co-occurrence of objects in specific

activities, and learn how to recognize those objects based on weakly supervised training

data that lacks annotations of individual objects.

Activity Recognition

Indeed, one major approach for egocentric activity recognition is object-based recognition,

which assumes that the activity of the observer can be characterized by the (handled) objects

in view. Consequently, this approach is often explored for common indoor or household

activities, or “activities of daily living” [80]. Prominent examples include the work of

Pirsiavash and Ramanan [80], who collect a large dataset of 18 daily indoor activities (e.g.

washing dishes, watching television), in which 42 different object classes were labeled with

bounding boxes, and activities were recognized based on object detection scores. Another

line of work is that of Fathi et al. [30, 32], who, as mentioned before, consider more fine-

grained activities (e.g. preparing a sandwich) that involve multiple objects and can be

further divided into a set of labeled actions (e.g. cutting bread). They explore the semantic

relationship between objects, activities, and actions to improve recognition among any of

these dimensions. Li et al. [67] continue work on this dataset and predict actions based on

9



a set of “egocentric features,” including hand locations and head motion.

Analyzing head or body motion of the observer is another major approach for egocentric

activity recognition, typically applied when activities or actions are characterized by motion

rather than objects (e.g. walking or jumping). Motion features are typically based on the

optical flow [45] between adjacent video frames. For example, Kitani et al. [54] propose an

unsupervised method to segment first-person sport videos (e.g. biking, skiing) into different

actions (e.g. hop down, turn left) based on optical flow histograms. Poleg et al. [81] use

motion cues to segment videos into more general, predefined activities like walking, standing

or driving. Ryoo and Matthies [96] explore interaction-level activities from a first-person

view, in which other humans directly interact with the egocentric observer. Interactions

varied from friendly (e.g. shaking hands) to hostile (e.g. punching or throwing objects),

and were classified based on the ego-motion of the observer.

Life Logging Analysis

Egocentric cameras do not necessarily record video. So-called “life logging” cameras are

worn by the observer throughout the whole day, but only capture pictures once every few

seconds. The purpose of these systems is to record a visual diary that can, for example, serve

as a retrospective memory aid for people with memory loss problems [44]. Consequently, the

objective of most computer vision work in this domain is either to summarize the captured

data in a semantically meaningful way, to retrieve important events, or to detect novelties.

Doherty et al. [26] were the first to investigate the problem of keyframe selection of life

logging data, where they segment one day’s worth of images (around 1,900) into events

based on different similarity measures, and investigate various quality measures to extract

the best keyframe for each event. Lee et al. [63] try to go beyond traditional keyframe

selection techniques, and summarize videos by regressing importance scores for different
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objects and people that the observer interacts with. Lu and Grauman [72] extend this work

by developing a story-driven (rather than just object-driven) approach to summarize life

logging images, where object scores are combined with temporal coherence scores. Finally,

Aghazadeh et al. [1] devise a method to detect novelties (e.g. running into a friend) within

the context of life logging data captured over multiple weeks that presents some degree of

repeating patterns (e.g. a daily commute to work).

Other

There are other egocentric vision objectives that researchers have delved into. For example,

Templeman et al. [110] address privacy concerns innate to the passive data capturing nature

of first-person cameras by automatically detecting blacklisted spaces (e.g. bathrooms, bed-

rooms) in the captured images, and preventing them from further propagation. Yonetani et

al. [120] imagine a world where many people passively capture each other with first-person

cameras, and develop a method to “ego-surf” such videos, i.e. to automatically find yourself

in the videos of others.

Another popular research area is time-lapse videos, which pose a problem for first-person

videos, particularly sports videos, as the erratic camera motion gets amplified by the speed-

up. Kopf et al. [58] overcome this problem by reconstructing the 3D path of the camera,

and then rendering a smoother virtual path by blending selected source frames. Poleg et

al. [82] propose a method which preferably samples frames that are oriented towards the

direction of the camera wearer’s movement.

Finally, researchers have investigated the problem of localization. For instance, Bet-

tadapura et al. [12] registers images (or videos) from a first-person camera to Google Street

View data, while Wang et al. [115] help orient people in large shopping malls by registering

first-person photos to the mall’s floor plan.
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1.3.2 ANALYZING HANDS

There is a rich and diverse history of computer vision research dedicated to the analysis of

hands. Much of this research has been driven by the desire to use hand gestures as a means

of human computer interaction [28]. For example, rather than using hands and fingers to

operate a mouse, a computer could receive its command input by visually interpreting the

movement and pose of hands and fingers directly. As human hands are quite dexterous,

hand gestures could indeed be a rich means of communication. However, fully capturing

this richness requires visually extracting a very fine-grained, probably 3-dimensional repre-

sentation of the hand. In contrast, one can imagine simpler applications (like recognizing

a waving gesture) that might only require a bounding box detection of the whole hand, or

intermediate applications like recognizing the number of raised fingers (to indicate a count),

that might require a pixel-wise segmentation of the hand, but not necessarily a 3D repre-

sentation. These different levels of abstraction have led to a very diverse set of existing

literature.

In this section, we briefly survey this literature, starting with seminal research on

vision-based hand pose estimation, going over the significant advances in gesture recog-

nition sparked by the emergence of commodity depth sensors, and finally moving towards

hand analysis in the egocentric domain. It is worth noting that, despite the large amount

of literature, the vast majority of work is still motivated by the human computer interac-

tion paradigm, meaning that many approaches assume a setup where the camera’s (or the

depth sensor’s) sole purpose is to capture a hand. Considering wearable, egocentric cameras

instead is therefore not just a minor deviation from existing work, but rather a novel and

original perspective on the problem.
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Vision-Based Hand Pose Estimation

One can think of hand pose estimation as either a discriminative or generative modeling

problem. While discriminative approaches try to classify or regress the observed hand into

a finite set of predefined hand pose configurations, generative approaches have an explicit

model of a hand (usually with restricted degrees of freedom for each joint) that they try

to match to the observation. Many early approaches were discriminative and dealt with

the problem of generating enough labeled training exemplars for different hand poses. For

example, Athitsos and Sclaroff [5] extract edge features from an input hand image and use

Chamfer distance matching to retrieve the closest match from a database of synthetic hand

pose images. Wu and Huang [117] use a variation of expectation maximization to train a

classifier from a large dataset of 14 different hand poses, of which only a small portion is

labeled. Kölsch and Turk [57] experiment with hand detection and hand pose classification

by adapting the integral-image based object detector of Viola and Jones [50] to six different

hand poses. Some seminal generative modeling approaches include the work of Stenger et

al. [104], as well as Wu et al. [118], but are restricted to modeling hands from one canonical

viewpoint [118] or in front of a clean and dark background [104,118].

Depth-Based Hand Pose Estimation

The availability of commodity depth camera systems (e.g. the Kinect) has spurred many

advancements in the area of hand pose estimation. In addition to the 2D image signal, such

systems provide a depth map, i.e. a per-pixel estimate of the distance between object point

and camera. This is usually achieved by projecting and analyzing an infrared laser grid onto

the scene. Considering the per-pixel depth when analyzing images naturally adds robustness

with respect to illumination changes for the task of object-background segmentation, and

also provides valuable information to fit more fine-grained three-dimensional hand models to
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the observed data. Consequently, there is a vast and diverse amount of literature on depth-

based hand pose estimation, the taxonomy of which we aim to outline here by selecting some

of the most influential recent approaches. We refer to [107] for a more complete survey.

Various data-driven, model-driven (generative), and mixed approaches have been ex-

plored for depth-based hand pose estimation. Model-driven approaches are usually applied

in the tracking domain, as tracking allows for an initialization pose that helps to constrain

the large, non-convex search space of hand joint configurations. For example, Qian et al. [84]

derive a fast method for detecting fingertips based on local minima in the depth map, and

use it to (re-)initialize an iterated closest point optimization method [9] that iteratively

updates a joint-based hand model for each subsequent frame.

In contrast, methods that aim at single-image hand pose estimation do not necessarily

require real-time performance and can prefer accuracy over processing time. In this con-

text, Oberwerger et al. [77] recently proposed a deep learning-based feedback loop system

to predict joint-based hand poses from a single depth image. A first neural network is

trained to regress hand poses from the input image, while a second network is trained to

synthesize the depth image based on the regressed pose. The feedback loop is completed by

a third network that compares the input and synthesized image, and produces an updated,

refined pose estimate for the synthesizer network. Many approaches for single-image pre-

dictions use random decision forests (RDF), which can produce good results at a relatively

small computational cost. For example, Keskin et al. [53] propose a multi-layer RDF frame-

work to classify single depth images of hands into the American sign language alphabet.

Their approach assigns each input depth pixel to hand shape classes, and directs them to

corresponding hand pose estimators trained specifically for that hand shape.

Finally, current state-of-the-art real-time hand tracking systems, such as Sharp et al. [97],

use RDF-based methods to provide (re-)initialization poses for subsequent tracking efforts.
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In particular, they aim to propose a set of plausible hand poses with possibly different global

hand orientations to allow accurate pose tracking even for camera setups where the global

orientation between hand and camera is unconstrained.

Egocentric Approaches

Hands are almost omnipresent in a person’s field of view and the first-person perspective

creates a very functional and embodied perspective of one’s own hands. It is therefore

perhaps somewhat surprising that there has been relatively little work on analyzing hands

in this domain. One possible reason is that most prevalent first-person camera devices do

not include depth sensors and thus implicitly exclude many of the approaches mentioned in

the previous section. A notable exception is the work of Rogez et al. [92], who recently were

the first to transfer the problem of depth-based hand pose estimation to egocentric data, and

observe that it is aggravated significantly by the moving depth sensors and self-occlusion of

hands and fingers. Consequently, the bulk of existing work and the work presented in this

thesis tries to extract hand information directly and only based on 2D image data.

In this context, Ren and Gu [89] and Fathi et al. [33] were the first to implicitly con-

sider hands in their attempts to recognize objects held by the egocentric observer. Ren and

Gu [89] pose this as a figure-ground segmentation problem, analyzing dense optical flow to

partition frames into hands (or held objects) with irregular flow patterns and background

with coherent flow. Fathi et al. [33] additionally segment between hand and object areas

based on superpixels and color-histogram features. Like much pioneering work in a new

domain, these approaches make several assumptions to simplify the problem. For instance,

both consider video data that includes only one person who carefully manipulates objects

in front of a static and rigid scene. Further, as the hand segmentation problem is consid-

ered more as a means to an end, the proposed methods make no explicit effort towards
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generalizability to different people or scenes.

Li and Kitani [64,65] were the first to explicitly consider egocentric hand segmentation

as a main objective. In particular, they identify drastic changes in scene illumination as the

main challenge to overcome. For wearable cameras, such changes are likely to occur while

the camera wearer moves between different locations. Li and Kitani propose different mod-

els based on a combination of color, texture and gradient features [65], as well as a model

recommendation approach [64] that tries to infer the scene illumination and choose the best

model accordingly. Some follow-up work aims to make the problem of hand segmentation

more suitable for possible consumer applications. Kumar et al. [60] learn a color model for

each person on-the-fly using a calibration gesture, and focus subsequent action recognition

efforts on small image regions around hands to reduce computational costs. Betancourt et

al. [10] emphasize the difference between hand detection (in the sense of a binary classifi-

cation for the presence or absence of hands in view) and hand segmentation (in the sense

of pixel-level classification), and propose a sequential classifier that only applies computa-

tionally expensive segmentation for frames in which hands are assumed to be present in

view.

Relationship between this Thesis and Existing Work

The computer vision problems studied in this thesis are novel and distinct from the surveyed

work in several important aspects. The main corpus of existing work related to analyzing

hands is motivated by the fine-grained, three-dimensional hand pose analysis required for

sophisticated human computer interaction. Thus, this work often assumes that locating or

identifying hands is trivial due to the hand being the main object in the camera’s view, or

the depth sensor significantly simplifying the segmentation problem.

In contrast, most wearable cameras are not primarily set up for such fine-grained hand
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analysis. However, the egocentric perspective implicitly renders hands as important objects

to analyze, as hands are much more likely to be prominently captured by a first-person

camera than by other fixed camera setups. The existing work on egocentric hand anal-

ysis [64, 65] is primarily concerned with pixel-level segmentation of hands in the face of

unconstrained and visually noisy first-person video. While this is an important problem

which we also address, the work presented here goes further and aims at a semantic under-

standing of hands in the egocentric context. For example, as we consider video data that

captures interactions with other people, we introduce the problem of hand type classifica-

tion, where hands must be semantically distinguished not only between left and right, but

also between the observer’s hands and any other hands in view. Lastly, while we do not

perform three-dimensional pose analysis, we do investigate how segmented hand poses in

the first-person view relate to the higher-level activity of the first-person observer.

1.4 RELEVANT COMPUTER VISION MODELS

Some of the computer vision models proposed in this thesis are based on more general

learning frameworks, such as probabilistic graphical models in Chapter 3, or convolutional

neural networks in Chapters 4 and 5. This section aims to briefly introduce the main ideas

behind these frameworks.

1.4.1 PROBABILISTIC GRAPHICAL MODELS

Probabilistic graphical models (PGMs) offer convenient frameworks to deal with the inher-

ent uncertainties of noisy observations and have thus been used quite extensively in the

field of computer vision. Some of the traditionally most popular examples include stereo

vision [35,56], image restoration [35], image segmentation [34], and activity recognition [78].

This section provides a very brief overview about the idea behind graphical models, and
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then shows how they can practically be applied to some example vision problems.

Background on Probabilistic Graphical Models

The general idea behind PGMs is to probabilistically model complex systems with many

dependent state variables, only some of which may be observable or partly observable. This

is achieved by expressing these states as a set of random variables X , where each variable

X ∈ X is expressed as a node in a graph. Edges between nodes model dependencies

between variables such that the whole graph expresses a joint distribution over the space

of possible values of all variables in X . If edges are directed and acyclic, such graphs are

called Bayesian or belief networks. If edges are undirected (and possibly cyclic), such graphs

are referred to as Markov random fields. The goal in either case is usually to ask for the

posterior probability distribution of an unobserved variable Xj , given the observation that

a set of other variables Xi takes on values xi. A simple example of a Bayesian network is

given in Figure 1.2. In this case, a doctor might be interested how likely a patient is to

have the flu, given that it is spring and he/she has a sinus congestion, but no muscle pain,

i.e. P (Flu = true|Season = spring, Congestion = true,Muscle pain = false). Notice

that the graph breaks up the joint distribution into smaller factors with a smaller space of

possibilities by implicitly encoding independencies between variables (e.g. having a sinus

congestion is independent from the season given flu and hay fever). This quality allows to

answer queries such as P (Flu = true|Xi) using inference algorithms that work directly on

the graph structure and are generally much faster and more practical than manipulating

the joint distribution explicitly.

Model Inference

Exact inference on a graphical model (e.g. the MAP estimate for Flu from above) can

in principle be done using the variable elimination algorithm. However, in general this
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Figure 1.2: A simple Bayesian belief network to model a medical diagnosis setting, showing
the dependencies between different variables. The example is borrowed from [55].

algorithm requires exponential time, with the exception of some special cases (e.g. the

graph has a polytree structure, meaning there are no loops if we assume all edges are

undirected, or the graph is rather small and has a low tree-width). Unfortunately, for many

practical cases in computer vision, most graphs have structures that allow only approximate

inference. There are a variety of approximate inference algorithms, often customized to be

more efficient (or more exact) for certain types of graph structures. One class of algorithms

is based on sum-product message passing (also called belief propagation), where the basic

idea is that neighboring nodes in the graph iteratively pass messages to each other about

their most likely marginal distributions. Another broad class of approximate inference

algorithms is based on Monte Carlo methods. Such methods aim to approximate marginal

or joint distributions of variables by repeated sampling, which can often be efficient as

samples are only required from a small subset of the graph (called the Markov blanket).

Applications in Computer Vision

A very common graph structure for many computer vision problems is a grid, where each

pixel of an image is modeled as a node in a grid that connects neighboring pixels. Such a

structure could, for instance, enforce that neighboring pixels should likely have a similar

depth (e.g. for stereo vision) or belong to the same object class (e.g. for object segmenta-

tion). Graphical models are also used in part-based object detection models, where objects
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are modeled as a set of parts whose spatial arrangement can vary according to the model.

Finally, PGMs can model temporal relationships in order to predict activities shown in

a video by enforcing that a certain action a is more likely to be followed or preceded by

another action b.

1.4.2 CONVOLUTIONAL NEURAL NETWORKS

In recent years, deep learning, and particularly convolutional neural networks (CNNs), have

received great attention and popularity within the computer vision research community.

One can find state-of-the-art solutions that rely on such CNNs for almost every interesting

vision problem, such as general object recognition [59] and detection [40, 85], semantic

segmentation [70], edge or contour detection [119], activity recognition in video [52, 100],

optical flow [27], image colorization [16], image captioning [51], etc. Even the famous

AlphaGo team that recently developed the first AI to beat a professional human player at

the game of Go uses CNNs to analyze the status of the game [99]. In this section we give

a brief overview of the background, design, and practical qualities of CNNs.

Background on Neural Networks

CNNs are special types of multi-layer, feed-forward neural networks. Feed-forward neural

networks are in essence mathematical models that try to learn a function that maps real-

valued n-dimensional input x to a k-dimensional output y. Input and output are represented

as layers of n+1 and k neurons respectively, where the additional input neuron can represent

a bias term. Inbetween input and output layers can be any number of hidden layers. Every

neuron i ∈ {0, . . . ,M} in layer l is connected to every neuron j in layer l+1 with a weighted

connection w
(l)
ij . The activation at neuron (l + 1)j is determined by the sum of its input

and a non-linear activation function σ(.), i.e. a(l+1)j = σ(
∑M

i=0w
(l)
ij ali).

Figure 1.3 shows a simple example of a neural network with one hidden layer, z, that
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Figure 1.3: A hidden-layer neural network for the XOR function. In this case, the activation
function for the z neurons is σ(x) = {1 if x ≥ 1, 0 otherwise}. The biases are 0 and
therefore not shown.

implements the XOR function (see truth table). In this case, the activation function is

σ(x) = {1 if x ≥ 1, 0 otherwise}. For example, if x1 = 1 and x2 = 1, then y = σ1(1 + 0)−

2σ2(0.5 + 0.5) + σ3(1 + 0) = 1− 2 + 1 = 0.

It has been shown that, given a sufficient number of hidden neurons and under mild

assumptions on the activation function, feed-forward neural networks with only one hid-

den layer can be universal function approximators [46]. Given this intriguing quality, the

question becomes how to define the network parameters (i.e. the weighted connections w)

such that the network best approximates the desired function. This is commonly done via

the backpropagation method [95]. The core idea is to define a loss function that expresses

the error between the current network output and the desired network output, calculate

the loss function’s gradient with respect to all network weights, and finally update weights

in an attempt to minimize the loss. In practice, weights are initialized randomly and then

training exemplars are iteratively pushed (forward) through the network. The error of each

exemplar is propagated backwards through the network (thus the name backpropagation),

gradients are computed at each layer using the chain rule, and weights are updated using

gradient descent. This process is repeated until the network’s performance is satisfactory.
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Convolutional Network Architecture

While a standard network with one hidden layer has the theoretical properties to approx-

imate any function, in practice different network architectures have proven favorable for

specific problems. The key idea is to explicitly encode properties of the input data into the

structure of the network. For images, we know that nearby pixels are more strongly corre-

lated with each other than more distance ones, and thus we would like to extract features

that only rely on small subregions of the image. At the same time, the network should be

invariant under small translations of the image content. Both of these qualities are modeled

in convolutional neural networks (CNNs). If each pixel in the input image corresponds to

one input neuron, rather than fully-connecting each of those neurons to every neuron in the

next layer, convolutional networks only connect pixels in a local neighborhood, say 10× 10

pixels, to the next layer neuron. The weights of those local connections are shared across

the whole image, effectively implementing a convolution for which the filter weights can be

learned. Such convolutional layers are usually repeated multiple times, and often combined

with sampling/pooling layers to further increase translation invariance.

The idea behind CNNs can be traced back to the late 1980s, when such networks were

successfully used for handwritten zip code recognition [62]. However, due to the need for

extensive training data and powerful computational infrastructure to train larger networks,

it was not until very recently that CNNs found mainstream success. Figure 1.4 shows the

well-known network architecture proposed by Krizhevsky et al. [59] that in 2012 famously

won the ImageNet [25] challenge for large-scale visual image classification. In this case, the

input image is resized to a fixed size of 224× 224 pixels (× 3 color channels), and then 48

different kernels of size 11× 11× 3 filter the image to create a block of 48 filter responses.

Those responses are then subjected to another set of filters, and so on, for a total of five

convolutional layers. Intuitively, these layers learn a diverse set of image filters, from low-
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Figure 1.4: A convolutional neural network with the (slightly modified for ease of visual-
ization) architecture of Krizhevskyet al. [59].

level edge filters in early layers to high-level semantic filters in later, deeper layers. The

convolutional layers are followed by two fully-connected layers that act as a classifier. Here,

they map the filter responses of the last convolutional layer to the 1000 visual object classes

(e.g. leopard, mushroom, cherry) of the ImageNet [25] challenge.

There are a few other important design decisions that were crucial for the success of

this network. For instance, the activation function for the network’s neurons is a rectified

linear unit (ReLU), i.e. σ(x) = max(0, x), which propagates the gradient more directly than

other more traditional functions (e.g. tanh(x)). Also, as indicated in Figure 1.4, three of the

convolutional filters were followed by a max-pooling operation. Max-pooling summarizes

the output of neighboring neurons by propagating only the maximum activation within the

neighborhood to the next layer, thus further increasing translational invariance.

Since many deep learning software packages (e.g. the Caffe framework [49]) implement

each operation as “layers,” one often finds CNNs architectures in the literature described

in terms of a series of convolutional, ReLU, and pooling layers of certain sizes.

Properties of Deep Networks

For a computer vision researcher, deep neural networks and CNNs in particular have in-

teresting qualities from both a theoretical and practical point of view. From a theoretical
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perspective, visual classification problems have traditionally been approached as a two-step

process. The first step is to carefully handcraft a visual feature that captures the desired

concept (e.g. SIFT [71]), and the second step is to use a machine learning classifier (e.g.

support vector machines [21]) within the feature space to distinguish among concepts. In

contrast, a CNN such as that shown in Figure 1.4 is trained end-to-end in order to learn

the best visual features for the required classification task automatically. It is worth noting,

however, that in practice sometimes better classification results are achieved by cutting off

the network (after training) before the fully connected layers, and using the network output

at the cut as “deep features” in combination with other classifiers [40].

Another interesting practical aspect is the idea of transfer learning. Large networks

require large amounts of training data that may not always be available for some specific

tasks. However, many low-level filters in coarse network layers are arguably useful for many

different high-level tasks, and do not need to be re-learned from scratch each time. Thus,

when training a network for a specific task (e.g. classifying between left and right hands), it

is common practice to initialize the network with pre-trained (rather than random) weights.

Those pre-trained weights are usually the result of longer training on a larger dataset, even

if that dataset was collected for a different objective (e.g. ImageNet [25]).

1.5 SUMMARY AND THESIS OUTLINE

Thus far, we introduced the idea that first-person cameras can provide insight into how

people visually perceive the world in dynamic, everyday contexts, and that a growing num-

ber of cognitive researchers use wearable camera systems as tools to study visual attention,

perception, and object learning. Those systems often capture vast amounts of image or

video data, such that sophisticated automated techniques are needed to help with data

analysis. In this dissertation, we present different computer vision approaches that aim to
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analyze hands in the context of first-person cameras. Hands are among the most frequent

objects in our field of view, and we argue that the first-person perspective creates a very

functional and embodied perspective of one’s own hands. Investigating hands in our vi-

sual field is particularly interesting from a cognitive perspective, as hands help guide visual

attention and modulate visual perception, both in humans’ early cognitive development

and as adults. In the context of computer vision research, most work on hand analysis is

aimed at three-dimensional pose reconstruction with depth cameras, motivated by human

computer interaction applications. We argue that considering wearable cameras is not just

a minor deviation from existing this work, but rather a novel and original perspective on

the problem that sprouts new and different research questions. For example, how can we

distinguish our left hand from our right hand? In a social context, can we distinguish our

own hands from the hands of partners that interact with us? Are visual features sufficient

to distinguish hands or are there other helpful biases? Can hands be detected robustly in

naturalistic, unconstrained video? Can we infer what the observer is doing based on the

position and pose of hands in the field of view?

To answer these kinds of questions, we propose and investigate three different approaches

that all aim to extract information about hands in the context of dynamic social interactions.

We demonstrate that this information is meaningful by directly using hand annotations to

answer cognitively motivated research questions (Chapter 2) and by showing that hand

poses can be used as features to infer high level information about the egocentric observer

(Chapter 5). The remainder of this thesis is structured as follows:

– In Chapter 2 we consider laboratory video data of joint toy play between toddlers and

parents, and design a method to track and distinguish hands in the toddler view based

on simple spatial constraints imposed by the egocentric paradigm. Using this method,

we collect fine-grained hand statistics that contribute new evidence on how infants and
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their parents coordinate visual attention towards objects through eye-hand coordination.

– In Chapter 3 we build upon the ideas of our initial approach to develop a more gen-

eral, probabilistic graphical model framework that combines temporal and spatial biases

of hand locations, as well as head motion of the first-person observer. We demonstrate

that this approach can achieve notable results in distinguishing hand types even in sit-

uations where initial hand detections are extremely noisy, as often occurs in videos of

unconstrained, natural environments.

– Chapter 4 asks to what extent we can identify different hand types and hand poses

directly based on their visual appearance. We collect a novel, large-scale dataset with

pixel-level annotations of hand poses in first-person video, and use it to train data-

driven, state-of-the-art visual recognition models such as convolutional neural networks

(CNNs). We show that CNNs are able to robustly identify hand types based on visual

information alone, while we can still use spatial biases of hand locations in first-person

video to efficiently locate hands. Moreover, we demonstrate that we can utilize our robust

detections to segment hands with state-of-the-art accuracy.

– In Chapter 5 we begin with the extracted hand poses from the previous chapter, and ex-

plore the extent to which poses and locations of hands in the first-person view can inform

recognizing the high-level interaction of the video (e.g. playing chess). We demonstrate

that CNNs can recognize interactions with accuracy far above baseline based on hand

poses extracted from a single frame, and can further improve by combining evidence

across time or across the different viewpoints of partners.

– Finally, Chapter 6 summarizes our contributions and provides an outlook into possible

future work.
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CHAPTER 2

ANALYZING HANDS IN INFANTS’ EGOCENTRIC VIEWS

2.1 INTRODUCTION: VISUAL ATTENTION THROUGH HANDS

The visual world is inherently cluttered and dynamically changes over time. To efficiently

process such a complex visual world, our perceptual and cognitive systems must selectively

attend to a subset of this information. Humans have the greatest visual acuity around the

center of their eye fixation (foveal vision), with acuity roughly declining inversely-linearly

towards the edges of their field of view (peripheral vision) [105]. Thus, visual attention is

often viewed as a spatial spotlight [83] around the center of a fixation. Although adults can

attend to locations outside the area targeted by eye gaze [98], in many situations attention

is tied to the body and sensory-motor behaviors, such that adults typically orient gaze

direction to coincide with the focus of the attentional spotlight. For example, studies that

investigate the coordination of eye, head, and hands of adults engaged in complex sensory-

motor tasks (e.g. preparing sandwiches or copying LEGO block patterns) suggest that

the momentary disposition of the body in space serves as a deictic (pointing) reference for

binding sensory objects to internal computations [6, 43].

Visual attention and information selection are also critical factors during early cognitive

development since an aptitude for early sustained attention [75] can be predictive of later

developmental outcomes [94]. Many traditional studies of the development of attention

employ highly-controlled experimental tasks in the laboratory, using remote eye tracking
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systems to measure looking behaviors when toddlers passively examine visual stimuli dis-

played on a computer screen. While these paradigms can be very powerful, we also know

that they are very different from young children’s everyday learning experiences: active

toddlers do not just passively perceive visual information but instead generate manual ac-

tions to objects, thereby creating self-selection of object views [124]. Compared with adults,

young children’s attentional systems may be even more tied to bodily actions. Thus, more

recent studies started using head-mounted eye tracking systems to study visual attention

in freely-moving toddlers when they are engaged in everyday tasks [39]. Though complex,

these are arguably the contexts in which real-world learning for our visual system occurs.

The overarching goal of the study in this chapter is to understand how sensory-motor

behavior supports effective visual attention in toddlers. Towards this goal, we developed an

experimental paradigm in which a child and parent wear head-mounted eye trackers while

freely engaging with a set of toys. Each eye tracking system captures egocentric video as

well as the gaze direction within the captured first-person view. In this way, we precisely

measure the visual attention of both the parent and child.

Recent findings using the same paradigm show that in toy play, both children and parents

follow hands to visually attend not only the objects held by oneself but also the objects held

by the social partner [122, 124]; in doing so, they create and maintain coordinated visual

attention by looking at the same object at the same time. Similarly, other work has shown

that by holding objects, parents increase the likelihood that infants will look at parents’

hands [39]. These results suggest the important role of hands and hand activities (of both

children and parents) in toddlers’ visual attention.

Given these findings, the work presented in this chapter focuses on providing new ev-

idence towards how eye and hand actions interact to support effective visual attention to

objects in toddlers. We first describe a new method to automatically detect and distinguish
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hands in our video data, allowing us to locate (at a pixel level) both the camera wearer’s

own hands and the social partner’s hands in the first person view. Then, we report a series

of results that link hands and hand actions with visual attention, to show how the child’s

and parent’s hands contribute to visual information selection in the child’s view.

2.2 RECORDING FREE-FLOWING CHILD-PARENT TOY PLAY

In order to study visual attention in toddlers, we developed a multi-model sensing system

that allows free-flowing toy play between a child-parent dyad, while passively recording each

participant’s view and gaze, as well as other sensory modalities.

2.2.1 MULTI-MODAL SENSING SYSTEM

Our multi-modal sensing environment allows us to monitor parents and children as they

engage in free-playing interaction with toy objects, as shown in Figure 2.1. A child and

parent sit at a table in a white laboratory environment and face one another. Each wears

a lightweight, head-mounted eye tracking system (Positive Science LLC ) consisting of two

cameras: a wide-angle outward-facing camera (100◦ diagonal angle of view) capturing the

egocentric field of view of the participant, and an inward-facing infrared camera pointed

at the participant’s left eye, which tracks the pupil in order to measure eye gaze position

(shown by green cross-hairs in Figure 2.1). While we know that the human visual field is

much broader (around 190◦ for adults), previous studies (e.g. Franchak et al. [39]) have

demonstrated that well-calibrated first-person video and eye movement data are still reliable

approximations of people’s (and toddlers’) visual fields and overt attention. The interaction

environment in our lab setting is arguably less cluttered than the real world since we cover

the background with white curtains (see Figure 2.1). We do this to occlude task-irrelevant

distractors so that participants focus on free-play, attending solely to the toys and or each
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from head 
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from head 
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Figure 2.1: Experimental setup of our multi-modal sensing system. We use 4 cameras to
record joint play between a child and parent. The head-mounted eye tracking systems (worn
by both) each consist of a head camera to capture its wearer’s egocentric view and an eye
camera that tracks the eye’s pupil. All cameras work with a temporal resolution of 30Hz
and a spatial resolution of 480×720px.

other. Importantly, the setup allows free-flowing interaction with active exploring of toys,

resulting in natural unfolding of visual attention.

In addition to the eye tracking camera systems, the setup also includes two scene cam-

eras, two microphones, as well as head- and wrist-mounted motion sensors in order to

support analysis on multiple modalities. As the purpose of this study is to investigate

the role of hands in the toddler’s view, the focus of analysis will be solely on the child’s

egocentric video and eye gaze data.

2.2.2 SUBJECTS, PROCEDURE, AND DATA COLLECTION

We considered six child-parent dyads for this study. The infants’ mean age was 19 months

(SD = 2.56 months). A team of two experimenters placed the eye tracking system on the

infant and performed a calibration procedure (see [122] for details). Parents were told to

engage their child with toys (three possible toys were on the table) and otherwise interact

as naturally as possible, leading to a free-flowing interaction with no constraints on where
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parents or children looked or what they should do or say. Each experiment consisted of four

trials and each trial lasted about 1.5 minutes. In between trials, the toy sets were replaced

to keep the children interested, and, if necessary, the eye tracking system was re-calibrated.

We collected a total around 68,000 frames (or 38 minutes) of video data from the six

children. Of those frames, 54,367 contained valid gaze data (i.e. gaze located within the

camera’s field of view) in the form of an xy-coordinate, indicating the gaze center.

2.3 DETECTING AND LABELING HANDS

As this chapter is driven by the goal of detecting hands to provide empirical data for the

exploration of visual attention, we employ a hand detection method that is tuned for high

accuracy in the context of the multi-model sensing system and our experimental setup (see

Figure 2.1). Thus, this section does not follow traditional computer vision (or general

machine learning) paradigms, such as a clear distinction between training or testing data.

Nonetheless, as we will see later, some key ideas of the method presented here will also be

incorporated in the more general vision frameworks proposed in Chapters 3 and 4.

We take advantage of the constraints of our lab environment in the following ways:

We know there are at most two people in each frame, that the child’s hands are closer to

the head-mounted camera than the adult’s hands, that children and parents are facing one

another, and that the participants’ clothing is white. Our goal is to identify which of the

four hands (child’s hands and parent’s hands) are visible in each frame, and then to identify

the position of the visible ones. We achieve this goal in four major steps: (1) identifying

potential skin pixels based on color; (2) clustering these pixels into candidate hand and face

regions; (3) tracking these regions over time; and (4) labeling each region with its body

type (child’s left or right hand, parent’s left or right hand, parent’s face). Each of these

steps are described in more detail in the following sections and summarized in Figure 2.2.
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2.3.1 STEP 1: SKIN DETECTION

To look for faces and hands, we first identify pixels that have skin-like colors. Although

human skin colors are surprisingly consistent across people when represented in an appropri-

ate color space (we use YUV here), pixel-level skin classification is still a difficult problem

because illumination can dramatically alter skin appearance and because many common

objects and surfaces often have skin tones. We thus tuned our skin classifier for each indi-

vidual subject pair, by sampling 20 frames at random and having a human label the skin

regions in each frame. We then used these labeled pixels as training exemplars to learn a

simple Gaussian classifier, in which each pixel is encoded as a 2D feature vector consisting

of the two color dimensions (U and V). To detect skin in unlabeled frames, we evaluate the

likelihood of each pixel under this model, threshold to find candidate skin pixels, and use

an erosion filter to eliminate isolated pixels.

2.3.2 STEP 2: SKIN CLUSTERING

Given the detected skin pixels from Step 1, we apply mean shift clustering [20] to each

frame to group skin pixels into candidate skin regions. Mean shift places a kernel (in our

implementation we use a circular disk with a fixed radius) at a random location of the

image, calculates the mean position of all skin pixels that it covers, and then shifts the

kernel such that it is centered around the mean. This procedure is iteratively repeated

until the kernel converges on a cluster center. Then, a new disk is added and the whole

procedure is repeated until all skin pixels are covered. Mean shift does not require knowing

the number of clusters ahead of time (as k-means does), which is beneficial as we do not

know the total number of hands in each frame. The only free parameter is the size of the

radius of the disk, for which we chose 75 pixels, which roughly corresponds to the expected

size of a hand in our data.
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Step 1: Skin Detection
Step 2: Skin Clustering

Step 3: Tracking

Step 4a: Detecting Face 

Tracks
Step 4b: Labeling Hands

Input

Results

time

Figure 2.2: Summary of our hand detection method for the egocentric toddler data. The
approach consists of four major steps: (1) identifying potential skin pixels based on color;
(2) clustering these pixels into candidate hand and face regions; (3) tracking these regions
over time; and (4) labeling each region with its body type (face, child’s left or right hand,
parent’s left or right hand).

2.3.3 STEP 3: TRACKING

Next, we attempt to find correspondences between skin clusters across temporally-adjacent

frames, in order to create tracks of skin regions over time. To do this, we scan the frames of

a video in sequence. For each frame i, we assign each skin region to the same track as the

closest region in frame i− 1 as long as the Euclidean distance between the region centroids

is below a threshold (we use 50 pixels), and otherwise we start a new track. Each track thus

consists of a starting frame number indicating when the region appears, an ending frame

number indicating when it disappears, and an (x, y) position of the region (together with

all pixels belonging to the cluster) within each intervening frame.

2.3.4 STEP 4: LABELING SKIN REGIONS

Finally, we need to label each of the tracks from Step 3 with one of five possible body parts

(i.e. child’s left or right hand, parent’s left or right hand, parent’s face). We experimented

33



with various strategies and settled on a relatively simple approach that uses the relative

spatial location of tracks within the video (and in particular the observation that the parent’s

head is usually above and between the parent’s hands, which are in turn above the child’s

hands). We thus first try to find tracks corresponding to the parent’s face, and then check

the relative position of other tracks to find and label the hands.

Detecting Face Tracks

We tried off-the-shelf face detectors (such as [50]), but found them unreliable in our context

because the parent’s face is often not fully visible (e.g. in the input frame of Figure 2.2).

Instead we built a very simple face detector that uses the fact that the parents in our

experiments wear a black head-mounted camera. Thus, regions with the parent face should

have a higher portion of dark pixels (due to the camera) in comparison to other hand

regions. We trained a linear support vector machine classifier [21] on manually-labeled face

regions (using the same 20 per-subject frames that we used to learn skin color, with the

remaining skin regions serving as negative exemplars), where the features consist of a 256-

bin grayscale histogram over the pixels in the skin region. We then identify faces by finding

tracks for which the trained SVM classifies over half of the regions in the track as faces.

Labeling Hands

Once face tracks have been found, we mark potential hand tracks based on their relative

position with respect to the face. Besides taking advantage of the special constraints of

our setup, anchoring the expected spatial locations of hands to the parent’s head also helps

to compensate for view changes due to the child’s head motion. In particular, we create a

configuration of four points (“hotspots”) that roughly correspond to the expected (mean)

position of the four hands relative to the face, illustrated as red circles in Figure 2.2 (Step

4b). For each non-face candidate track generated by Step 3, we compute the centroid of its
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location across the frames in which it is visible, find the hotspot closest to the centroid, and

assign the track to the corresponding hand. When no face is detected, the hotspots take a

default position that assumes the face is in the center-top region of the frame.

2.3.5 EVALUATION

We manually tested the accuracy of our hand tracking algorithm on 600 randomly-selected

frames (100 frames for each of 6 subjects), and counted the proportion of correctly-labeled

regions. We found that the overall accuracy was 71%, ranging from 67% to 75% across the

subjects. In comparison, a baseline method that randomly assigns labels to skin regions

(and assuming that the skin segmentation and clustering perform correctly) achieves 20%

accuracy. Labeling errors are caused by a variety of factors, but the two most common are:

(1) When hands are close together and the clustering algorithm incorrectly combines them

into a single body part, and (2) when hands spend a significant amount of time away from

their expected location relative to the head.

2.4 RESULTS: HOW INFANTS PERCEIVE HANDS

The proposed hand detection scheme provides frame-by-frame data about the position, size,

shape, and label of each hand in the child’s field of view. This data allows a fine-grained

analysis of hand appearances both in terms of frequency (How often are hands in the

toddler’s view?) and spatial distribution (Where in the view are hands?). In combination

with the recorded eye gaze, the collected data additionally allows investigation of where

and when each hand was the target of the child’s overt visual attention.
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Figure 2.3: Frequencies of hands in view and of hands targeted by gaze. (a) Bar graphs
showing the proportions of frames in which each class of hands was detected (error bars
show 1 SE). For comparison, the value for the parent’s face is also shown. (b) Bar graphs
showing the proportions of frames in which each class of hands was looked at (based on a
10◦ gaze hot spot). Left: Fractions based on all frames with valid eye gaze (N = 54, 367).
Right: Fractions based on all frames where the corresponding hand was in the field of view.

2.4.1 HANDS IN THE INFANT’S FIELD OF VIEW

To determine how often children had the opportunity to view their own hands and their

parents’ hands, we first calculated how often hands are present in the field of view.

Frequency of Hands in View

Figure 2.3a shows the proportion of frames in which each hand class was detected. As the

hand tracking algorithm needs to distinguish hands from faces and thus implicitly tracks

the parent’s face as well, we include results for the face for reference. Overall, hands were

frequently in view, although the child’s own hands (right hand = 38% and left hand = 40%)

are in view less frequently than the parent’s hands (right hand = 57% and left hand = 66%).

A 2 (agent: child, parent) × 2 (hand: left, right) repeated-measures ANOVA confirmed a

main effect of agent, F (1, 5) = 21.74, p = .006. The main effect of agent × hand interaction

did not reach significance.
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Figure 2.4: Spatial distributions of hands and eye gaze. The top row (left) shows the spatial
distributions of the children’s own hands (based on hand centroids) within their field of view.
Similarly, the right side of the top row shows the distributions of the parents’ hands in the
children’s field of view. The bottom row shows the spatial distributions of the children’s eye
gaze while looking at their own hands (left) or their parents’ hands (right). Also shown are
robust (60% trimmed) estimates of mean (µ) and standard deviation (σ) of the distributions
as well as the number of data points (N). Heat maps are 480×720px and a small Gaussian
blur (σG = 10px) was applied for better visualization.

Spatial Distribution of Hands in View

Spatial asymmetries might account for the different frequencies with which children’s and

parents’ hands were visible. Next, we present spatial distributions of hands in the children’s

field of view in the form of heat maps. The top row of Figure 2.4 shows the distributions

of the child’s left hand, the child’s right hand, the parent’s right hand and the parent’s left

hand, respectively. Each data point in the heat map corresponds to the centroid (mean

of the hand area) of the detected hand. The distributions are accumulated across all six

subjects where N depicts the total number of frames with the hand in view. To allow

quantitative comparison, we calculated robust (60% trimmed) statistics in the form of

horizontal and vertical mean (µ) as well as horizontal and vertical standard deviation (σ)

of the distributions (off-diagonal co-variances are not shown).

Children’s left and right hands had very similar distributions in terms of variance with

distributions that expanded more horizontally than vertically: σx was roughly twice as much
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as σy for each hand. Parents’ left and right hands also have similar distributions in terms

of variance. A 2 (agent: child, parent) × 2 (hand: left, right) × 2 (direction: horizontal,

vertical) ANOVA confirmed the main effect of direction, F (1, 5) = 36.4, p = .002. However,

a significant agent × direction interaction, F (1, 5) = 10.5, p = .023 and follow-up pairwise

comparisons show that parents’ hands occupy a larger vertical space (right hand σy = 59,

left hand σy = 60) compared to children’s hands (right hand σy = 37, left hand σy = 43,

p = .009). Horizontal variance terms did not differ between the hands of children and

parents, and no other effects approached significance.

Children’s and parents’ hands were spatially segregated in visual space. Overall, chil-

dren’s hands were lower in the visual field compared to parents’ hands and were often seen

towards the lower boundary of the field of view (µy = −172 for the left hand and µy = −178

for the right hand). A 2 (agent: child, parent) × 2 (hand: left, right) ANOVA on µy re-

vealed that parents’ hands were significantly higher than children’s hands (main effect of

agent, F (1, 5) = 184.6, p < .001). In the horizontal dimension, the child’s right hand and

parents’ left hand tended to reside in the right half of the visual field, while the child’s left

hand and parents’ right hand tended to reside in the left half of the visual field. A 2 (agent:

child, parent) × 2 (hand: left, right) ANOVA on µx confirmed a significant agent × hand

interaction, F (1, 5) = 1377.7, p < .001.

Since our automatic hand labeling is not perfect and makes spatial assumptions, these

results could potentially be biased by our algorithm. Thus, we manually labeled the location

of hands in a random subset of the data (2,800 frames) and repeated our analyses. A 2

(agent: child, parent) × 2 (hand: left, right) ANOVA on the µy’s of manually labeled frames

confirmed that parents’ hands were located higher than those of children (main effect of

agent, F (1, 5) = 111.1, p < .001). In addition, a 2 (agent: child, parent) × 2 (hand:

left, right) ANOVA on the µx’s in hand labeled frames showed a significant agent × hand
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interaction as in frames labeled by our algorithm, F (1, 5) = 529.4, p < .001). We conclude

that our results on spatial locations of hands in the field of view are likely not an artifact

of the algorithm.

Different spatial distributions of hands may account for different frequencies of hands

being visible. Most likely, children’s hands were not as frequent as parents’ hands because

they occupied locations towards the lower boundary of the field of view. If children moved

their hands down or tilted their heads up, their own hands would leave the field of view.

2.4.2 HANDS AS TARGETS OF THE INFANT’S OVERT ATTEN-

TION

Next we examined how often and where hands were targeted by children’s gaze. We counted

a gaze fixation on the hand whenever a 10◦ hot spot (corresponding to a circle with radius

of 32 pixels) around the gaze center overlapped with the area of a detected hand.

Frequency of Hands Being Targeted by Gaze

Figure 2.3b (left) shows mean values for the overall proportion of frames in which children’s

gaze overlapped with each hand. Children spent about twice as long looking at parent’s

hands (about 9.5% for the right hand and 7.8% for the left hand) than they did looking

at their own hands (3.0% right hand and 5.3% left hand). A 2 (agent: child, parent) × 2

(hand: left, right) on proportion of frames targeting hands confirmed a main effect of agent,

F (1, 5) = 8.52, p = .03, and found no other significant effects.

Higher rates of looking to parents’ hands may be the result of parents’ hands being in

view more often. Thus, we recalculated the proportion of looking to hands based on the

number of frames where each hand was present in the field of view (right side of Figure 2.3b).

This normalization increased the proportion of looking for both the child’s own hands and

the parent’s hands. Furthermore, the difference between the time spent looking at parent’s
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hands and looking at their own hands is no longer significant when taking the availability

of hands into account (no effects found in a 2 (agent: child, parent) × 2 (hand: left, right)

on normalized proportions of frames targeting hands).

Spatial Distribution of Gaze when Targeting Hands

Prior work has shown that gaze allocation in natural environments tends to be biased

towards the center of the field of view [38]. The overall gaze distribution across all six

toddlers in our experiment confirms this bias with a mean near the center (µxy = (10,−22))

and similar variances in horizontal and vertical direction (σxy = 79, 82)). In the bottom

row of Figure 2.4, we present the spatial distributions of children’s eye gaze when viewing

hands. The gaze heat maps are composed similarly to the hand heat maps (top row of

Figure 2.4), except that each data point now corresponds to the eye gaze center as opposed

to a hand centroid. Across children’s and parents’ hands, we observed that distributions

of gaze targeting hands were more centrally located compared to the overall distributions

of hands in the field of view (FOV). To verify this statistically, we calculated the distances

from the FOV center to the per-subject means of the distributions of the hands, and to the

means of all gaze locations when hands were fixated. A 2 (agent: child, parent) × 2 (hand:

left, right) × 2 (distribution: hands overall, gaze-targeted) revealed a main effect of agent,

F (1, 5) = 66.1, p < .001, distribution, F (1, 5) = 13.7, p = .014, and a significant 3-way

interaction, F (1, 5) = 17.7, p = .008. Overall, parents’ hands (M = 131.4 pixels) were

closer to the center of the field of view compared to children’s hands (M = 195.5 pixels).

Follow-up tests on the 3-way interaction showed that child’s left hand, child’s right hand,

and parent’s left hand were more centrally located when targeted by gaze compared to their

overall distributions (p < .05), while the parent’s right hand location did not change when

targeted by gaze (p = .48).
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2.4.3 DISCUSSION

Hands are an important visual stimulus. One’s own hands are relevant for guiding reaching

actions and manipulating objects [39,43], while the hands of others can convey information

about the attention and goals of social partners [79, 113]. But for toddlers to learn from

hands, they must be able to see them. Here, we demonstrate that for toddlers playing with

adults, hands are frequently in view. However, what infants see depends on where they

actively point their heads: the resulting spatial constraints (e.g. child’s hands being low in

the field of view) mean that children’s own hands are in view less often than their parents’

hands. Consequently, children overtly attend to parents’ hands more often than their own

hands. Moreover, we show that when children fixate on hands, they do so more often when

hands are centrally located in their fields of view, suggesting that children move their heads

to bring visual targets into the center of their visual fields. Most likely, children coordinate

their eyes and heads to focus on areas relevant to the task at hand, looking down towards

their own hands when reaching and looking up towards their parent’s hands when parents

present objects [122].
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CHAPTER 3

A PROBABILISTIC FRAMEWORK TO LOCATE AND

DISTINGUISH HANDS

3.1 INTRODUCTION: SPATIAL BIASES OF HANDS

The work discussed in the previous chapter demonstrated that it is possible to locate differ-

ent hand types in dynamic egocentric interactions, such as joint child-parent toy play, with

sufficient quality to generate useful hand annotations. While the presented approach took

advantage of some of the clean characteristics of the laboratory video data (e.g. exploit-

ing the white background by using a simple color-based skin detector), it also proposed an

idea that is arguably true for characterizing first-person interactions more generally: spatial

biases of hands in the first-person view.

In this chapter, we build upon such biases to overcome some of the challenges inherent

to the dynamics of the first-person view. Continuing with the egocentric toddler data as a

motivating example, Figure 3.1b shows a set of random example frames to illustrate these

challenges. Parent and child play together and constantly use their hands to point to, reach

for, and exchange toys. The toddler’s view can potentially be very close to the action such

that perceived hand sizes can vary from small to very large. In addition, the child’s view is

very dynamic over time: the hands of both the child and the parent frequently disappear,

reappear, and overlap with each other. However, the egocentric context imposes important

spatial constraints on where to expect each type of hand. These constraints are quite

42



(a) Hands as part of a graphical model (b) Sample frames

Figure 3.1: Model overview and sample frames. (a) We propose a probabilistic model that
incorporates appearance, spatial, and temporal cues to locate and distinguish hands. (b)
Some sample images from the egocentric videos that were used in our experiments. The
child’s view is very dynamic; hands come in and out of view and overlap very frequently.

intuitive; for example, given that we see the scene through the eyes of the child, we expect

the child’s left hand to enter the child’s view predominantly from the lower left and the right

hand to enter from the lower right. In addition to these absolute spatial assumptions, one

can also think of relative spatial biases. We generally expect the child’s left hand to be to

the left of the right hand, and vice-versa. As most social interactions have both participants

facing each other, similar assumptions can be made for the social partner (in this case the

parent). The parent’s right hand usually occupies the left side of the child’s field of view

and the parent’s left hand is on the right.

We propose a probabilistic graphical model framework (sketched in Figure 3.1a) that

jointly models various spatial and temporal biases of hands, as well as the head motion of

the observer, in order to overcome the challenges of the dynamic first-person perspective.

While again motivated by the toddler data from Figure 3.1b, the proposed framework

generally models the dynamics between hands in egocentric interactions. Thus, we evaluate

our approach not only on a collection of 20 parent-child videos, but also on a small set of
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videos of interacting adults in a naturalistic environment.

The following sections formally introduce our proposed egocentric hand modeling frame-

work, show how to apply it with the child-parent data as an example, and evaluate its

performance compared to a set of baselines. As we will demonstrate, our approach helps

to significantly decrease errors resulting from confusing different types of hands while also

improving the overall detection rate.

3.2 MODELING EGOCENTRIC INTERACTIONS

Given a first-person video containing an interaction between the observer and a social

partner, our goal is to estimate which of the (up to four) hands are visible to the observer

at any given time, and where in the view those hands are. As we expect to often also

have our partner’s face prominently in view, and as the location of our partner’s hands are

naturally tied to the rest of his or her body, we also try to estimate the location of the

partner’s face. We will jointly refer to these five objects (four hands and the face) as body

parts or simply parts.

3.2.1 HANDS AS LATENT RANDOM VARIABLES

More formally, given a video sequence of n frames, each with r × c pixels, our goal is to

estimate the position of each of a set of parts P in each frame. We specifically consider

five parts, P = {ml,mr, yl, yr, yf}, referring to the observer’s hands (‘my left’ and ‘my

right’), the partner’s hands (‘your left’ and ‘your right’), and the partner’s face (‘your

face’), respectively. We denote the latent 2D position of part p ∈ P in frame i as Lip and

define Li to be the full configuration of parts within the frame, Li = {Lip}p∈P . At any

moment in time any given part can be anywhere in view or not in view at all. To address

the possible absence of parts, we augment the domain of Lip with an additional state ∅
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indicating that the part is not visible in the frame, i.e. Lip ∈ {∅} ∪ ([1, r]× [1, c]).

In addition to the position of each body part, we also want to estimate the global

motion of the observer’s view. If the observer decides to turn his or her head, all of the

visible parts should change their position accordingly. Thus, intuitively, an estimate for

the direction and amplitude of the observer’s head’s motion should help to estimate more

likely positions of body parts in view. We model global head motion by introducing a set

of random variables G = (G1, . . . , Gn−1), where Gi is an estimate of the two-dimensional

global coordinate shift between frame i and frame i + 1. The domain of Gi is bounded

by some maximum shift in horizontal and vertical direction that we allow to observe, i.e.

Gi ∈ ([0, xmax]× [0, ymax]). In this way, we assume the world has uniform depth such that

a change of viewing angle would have the same effect on all points in the 2D projection

of the environment. This assumption is reasonable given that the distances involved in a

paired interaction are relatively small.

3.2.2 BUILDING A GRAPHICAL MODEL

We now consider all of these variables as nodes in one big graphical model framework, which

will allow us to estimate the locations of all parts jointly and probabilistically across the

whole video. For each observed frame i of the video, we can apply any object detection

model to get a (noisy) estimate for likely positions of each part Lip. In addition to those

individual observations, the graphical model also incorporates three types of constraints:

(1) absolute constraints on where each body part should be, (2) intra-frame constraints

on spatial relationships between body parts, and (3) inter-frame constraints between body

parts, which enforce temporal smoothness on part positions. These constraints model intu-

itions such as: (1) my own left hand should likely be on the left side of my field of view, (2)

my own right hand should likely be to the right of my left hand, and (3) a hand in frame i
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Figure 3.2: Graphical depiction of our PGM for a 2-frame video, where the bottom five
nodes represent the locations of face and hands in one frame, and the top five nodes represent
the locations in the next frame. Between-frame links (green) enforce temporal smoothness,
shift links (blue) model global shifts in the field of view, and in-frame links (black) constrain
the spatial configuration of the body parts.

should be close to where it was in frame i− 1.

A visualization of the resulting graph for a 2-frame video is presented in Figure 3.2. The

connections within a frame (in black) form a complete graph over the five part nodes and

capture the pairwise correlations between spatial locations of the parts. The green edges

between each part and its corresponding variable in the next frame enforce the temporal

smoothness constraint. Finally, the global shift variable is influenced by all pairs of cor-

responding parts such that a similar motion in all part pairs is likely to indicate a global

shift, and conversely, an observed global shift is likely to influence all parts.

Following these constraints yields a joint distribution over all the latent variables L =

(L1, . . . , Ln) and G = (G1, . . . , Gn−1), conditioned on all video frames I = (I1, ..., In),

P (L,G|I) ∝

n∏
i=1

P (Ii, Ii+1|Gi)
∏

(p,q)∈E

P (Li
p|Li

q)
∏
p∈P

P (Ii|Li
p)P (Li+1

p |Li
p, G

i)P (Li
p)

 (3.1)
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where E ⊂ P2 is the set of undirected edges in the complete graph over P.

We can solve the part-tracking problem for an entire video I by maximizing Equa-

tion (3.1). Unfortunately, as discussed in Section 1.4.1, finding the global maximum is

intractable. Instead, we settle for approximate inference using Gibbs sampling [15]. As

we will discuss in Section 3.2.7, this avoids the need to compute or store the full joint

distribution because the sampling involves only small neighborhoods of the graph.

3.2.3 SPATIAL DISTRIBUTIONS AS ISOTROPIC GAUSSIANS

The next step in defining the PGM is to decide how to model the spatial relationships of

and among parts. As is common in part-based object detection models [23,36], we model all

spatial distributions as 2D Gaussians. For simplicity and computational efficiency, we also

assume that these Gaussians are isotropic, which is also common [23]. Thus, the probability

distribution of a part being at any location (x, y) in the frame is given as

fµ,Σ(x, y) = N (x;µ1,Σ11) ∗ N (y;µ2,Σ22), (3.2)

parameterized by µ = [µ1 µ2]T and Σ = diag(Σ11,Σ22). With that assumption, we can

calculate the probability of a part falling into a pixel bin (xp, yp) as

Fµ,Σ (xp, yp) =

xp+ 1
2∫

xp− 1
2

yp+ 1
2∫

yp− 1
2

fµ,Σ(x, y) dy dx

=

[
Φ(xp +

1

2
;µ1,Σ11)− Φ(xp −

1

2
;µ1,Σ11)

]
∗
[
Φ(yp +

1

2
;µ2,Σ22)− Φ(yp −

1

2
;µ2,Σ22)

]
, (3.3)

where Φ(·) is the normal cumulative density function and can be precomputed for efficient

computation.
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One extra complication for our problem is that we need to explicitly model the possibility

of a body part being outside of the field of view (the ∅ state introduced in Section 3.2.1).

We assume that calculating the probability that a part is ‘out’ of a frame is equal to one

minus the probability of being anywhere within the frame,

F ∅µ,Σ = 1−
c∫

1

r∫
1

fµ,Σ(x, y) dy dx, (3.4)

where the integral can again be computed efficiently using Φ(·) similarly to Equation 3.3.

3.2.4 ABSOLUTE SPATIAL PRIORS

Given the above parameterization, we can now define the spatial constraints of the model,

starting with (1) absolute spatial priors on part locations as

P (Lip) =


F ∅µpp,Σpp

: Lip = ∅

Fµpp,Σpp(Lip,x, L
i
p,y) : Lip 6= ∅,

(3.5)

where the mean absolute position µpp and the diagonal covariance matrix Σpp are learned

for each part p based on a set of ground truth training frames in which part locations were

manually annotated.

3.2.5 PAIRWISE SPATIAL PRIORS

Next, we define the pairwise spatial priors that model (2) intra-frame constraints on spa-

tial relationships between body parts, and (3) inter-frame constraints to enforce temporal

smoothness.
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In-Frame Conditionals

Consider a pair of parts p, q ∈ P (p 6= q) in frame i having positions Lip and Liq, respectively.

Based on training data, suppose we have an estimate of the relative spatial relationship

between these parts such that Lip − Liq ∼ N (µqp,Σqp) for diagonal Σqp. We define the

conditional probability distribution between Lip and Liq as

P (Lip|Liq) =


β : Liq = ∅

F ∅
µqp+Li

q ,Σqp
: Lip = ∅, Liq 6= ∅

Fµqp+Li
q ,Σqp

(Lip,x, L
i
p,y) : Lip, L

i
q 6= ∅,

(3.6)

where β is a constant. Intuitively, this means that if part q is outside the frame, then it

does not constrain part p’s location (the conditional probability distribution is uniform),

whereas if q is inside the frame, then p is either outside (and the conditional probability is

given by one minus the probability of being inside the frame), or it is inside the frame with

a probability given by the Gaussian distribution.

Between-Frame Conditionals

The inter-frame conditionals impose temporal smoothness on part locations, connecting

together part p’s location Li+1
p in frame i + 1, its location Lip in frame i, and the latent

global shift Gi between frames i and i + 1 (caused by head motion). We assume that if

the part is within view in both frames i and i + 1, then Lip and Li+1
p are related by a

Gaussian distribution with diagonal Σp around the location predicted by the global shift,

Li+1
p −Lip ∼ N (Gi,Σp). Including the possibility of parts entering or leaving the frame, the

49



full conditional probability is similar to the above in-frame distribution,

P (Li+1
p , Gi|Lip) =



α : Lip, L
i+1
p = ∅

1−α
rc : Lip = ∅, Li+1

p 6= ∅

F ∅
µi,Σp

: Lip 6= ∅, Li+1
p = ∅

Fµi,Σp
(Li+1

p,x , L
i+1
p,y ) : Lip, L

i+1
p 6= ∅,

(3.7)

where µi = Lip + Gi and α is a constant. This conditional encodes the intuition that if a

part is outside the image in one frame, it is outside the next frame with probability α or is

uniformly distributed at a pixel in the frame. On the other hand, if a part is in the image

in one frame, its probability distribution over pixels in the next frame is Gaussian, or it

is outside the frame with probability one minus the integral over all pixel locations. This

formulation encourages parts to stay at roughly the same position from one frame to the

next, but allows for large jumps due to global motion if the jump is observed for many of

the parts.

3.2.6 FULL CONDITIONALS

We use Gibbs sampling to perform inference, as we will describe in the next section. To

do this, we need to sample each random variable from its full conditional distribution.

Fortunately, because of the independence assumptions of our model, the full conditionals

can be written and computed easily.

Part Nodes

We begin by deriving the conditional distribution of a part node given the rest of the

variables in the graph. From Equation 3.1, we can compute the full conditional up to a
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Figure 3.3: Markov blankets for the full conditionals in our model. Due to the independence
assumptions given by the model, all latent variables only depend on a small set of other
variables. (a) The Markov blanket for the part node Liyl, with the blankets for all other

part nodes in Li looking equivalently. (b) The Markov blanket for each shift node Gi.

proportionality constant,

P (Lip|G,L, I) ∝ P (Li+1
p , Gi|Liyl)P (Li−1

p , Gi−1|Lip)

∗ P (Ii|Lip)P (Lip)
∏

q∈P−{p}

P (Liq|Lip), (3.8)

where P (Ii|Lip) is produced by an object detection model for p, which we define in Sec-

tion 3.3. Taking Liyl as an example, the Markov blanket (defining all variables that Liyl is

directly dependent upon) is shown in Figure 3.3a, such that the conditional is given as

P (Liyl|G,L, I) ∝ P (Li+1
yl , Gi|Liyl)P (Li−1

yl , Gi−1|Liyl)

∗ P (Ii|Liyl)P (Liyl)P (Liyf |Liyl)P (Liyr|Liyl)

∗ P (Liml|Liyl)P (Limr|Liyl). (3.9)

Since the state space is discrete, the normalization constant is not needed for sampling, as

it can be computed at runtime.
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Shift Nodes

As illustrated in Figure 3.3b, the full conditional of a shift node Gi can also be written as

a product of its neighbors in the graph,

P (Gi|G,L, I) ∝ P (Ii, Ii+1|Gi)
∏
p∈P

P (Li+1
p , Gi|Lip)

= P (Ii, Ii+1|Gi)P (Li+1
yf , Gi|Liyf)P (Li+1

yl , Gi|Liyl)

∗ P (Li+1
yr , Gi|Liyr)P (Li+1

mr , G
i|Limr)P (Li+1

ml , G
i|Liml). (3.10)

This product has several intuitive properties. If there is disagreement between the

relative movements of parts, then the overall distribution is diffuse and the likelihood

P (Ii, Ii+1|Gi) term dominates, meaning the global shift is best estimated based on ob-

serving the frames. Here, we use a normal distribution fit to the dense optical flow [106]

between frames i and i+ 1 as our estimate. If parts are in agreement, there is a high peak

and the global shift is best estimated based on the joint movements of all parts.

3.2.7 INFERENCE

We use Gibbs sampling [15] to perform inference on our model. Gibbs sampling is a Markov-

Chain Monte-Carlo method that generates samples from the full joint distribution of our

model based on iterative sampling of all conditionals. Thus, this method does not need a

(parametric or otherwise) representation of the very large joint distribution of our PGM.

In the limit, these samples form an accurate representation of the true joint distribution.

We obtain a solution from these samples as follows. If for any given frame, the majority

of samples for a given part are in the ∅ state, we label the part as “out” of the frame.

Otherwise, we take the median position over the in-frame samples. In our experiments, just

50 samples of the joint distribution provided good solutions.
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3.3 SPECIALIZING TO CHILD-PARENT TOY PLAY

Our hand tracking approach could in principle be applied to any egocentric video data, with

the various parameters and distributions set to customize it to a specific application. As

mentioned in Section 3.2.6, one can apply any object model to generate the distributions

for the per-part image likelihood terms P (Ii|Lip) for each part location p in frame i. Since

the context of our child-parent toy play data is rather controlled, we use simple (but fast to

extract) image features to demonstrate the effectiveness of our methodology. In particular,

we first detect skin pixel regions and use a distribution of P (Ii|Lip) that is near zero unless

Lip is on a skin pixel, and otherwise is proportional to the likelihood that an image patch

around Lip ‘looks like’ part p, as described below.

3.3.1 SKIN MODEL

As our data only contains indoor footage with controlled lighting, we found that a color-

based approach was sufficient for pixel-level skin detection. We learn non-parametric skin

and background models in YUV color space (discarding the luminance plane Y). To detect

skin in unlabeled images, we compute the log odds of each pixel under these models as

log ( P (U,V |skin)
P (U,V |background)), and threshold the output value to create a binary skin mask. We

then apply a median filter to suppress noise. We explicitly modeled the background (in

contrast to the skin detection approach in Section 2.3.1) as we found it to produce slightly

better results.

3.3.2 FACE MODEL

We apply the Viola & Jones [50] face detector to each frame i to compute the face likelihood

distribution, P (Ii|Liyf). We used a simple formulation in which pixels inside a detected face

box are assigned high likelihoods and pixels outside are assigned a low (non-zero) likelihood.
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We trained the detector on a small set of hand-labeled faces from our data.

3.3.3 ARM MODEL

Distinguishing hands based on the extracted color features alone is difficult. We thus

implemented a simple model that takes advantage of the clean lab setting to extract arm

regions, which provides a noisy estimate of the ownership of adjacent skin regions. The

participants’ sleeves tend to have a higher edge density than surrounding areas. To find

arms, we apply an edge detector to each image, blur the output, apply a threshold to

detect arm regions, and find skin patches that are adjacent to these regions. Suppose a skin

patch and arm region intersect at a point u. We calculate the longest possible straight line

through u intersecting the set of candidate arm pixels (i.e. the diameter of the arm pixel

region through u). The direction and length of this line are a measure of the arm direction

and length, so we use them to set the ‘your hand’ likelihoods, P (Ii|Liyl) and P (Ii|Liyr),

based on thresholding the line length and direction. For instance, a skin patch with a long,

upwards line is likely to belong to the partner’s hand.

3.4 EXPERIMENTS

We primarily evaluate our method on the child-parent toy play data introduced in Chapter

2. We use video data from five different child-parent dyads, where each of the five play

sessions consists of four trials that have an average length of 1.5 minutes, leading to a total

of 20 videos containing 56,535 frames (about 31 minutes) of social interaction from the

children’s perspective. Some example frames of this data are shown in Figure 3.1b.

We also collected a small second dataset that was designed to test our model in more

naturalistic settings. We used Google Glass to record three egocentric videos containing

two adults engaged in three kinds of social interactions: playing cards, playing tic-tac-toe,
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and solving a 3D puzzle. Each video is 90 seconds long, for a total of 4.5 minutes (8,100

frames), and was captured at 30Hz with a resolution of 1280 × 720px. Figure 3.5 shows

some example frames of this data.

3.4.1 EVALUATION

To evaluate our approach, we manually annotated 2,400 random frames (around 120 per

trial) from the lab dataset, and 300 frames (100 per video) from our Google Glass dataset,

with bounding boxes. This is about one frame for every second of video. Depending on

which body parts are in view, each frame has up to five bounding boxes: two observer’s

hands, two partner’s hands, and one partner face.

Detection Accuracy

For each frame, our system estimates the location of each of the five body parts, by either

providing a coordinate or indicating that it is outside the frame. We evaluate the accuracy

of our method as the fraction of true positives (i.e. cases where we correctly estimate a

position inside the ground truth bounding box) and true negatives (i.e. cases where we

correctly predict the part to be outside the frame) over all predictions.

We also evaluate the percentage of “perfect” frames, i.e. the fraction of frames in which

all five parts are predicted correctly.

Hand Disambiguation Error Rate

We are particularly interested in errors made when disambiguating the observer’s hands

from the partner’s hands, so we measure this explicitly. We consider a ground truth hand

to be a disambiguation error if it is either unlabeled, labeled as the wrong person’s hand,

or is marked with multiple labels of different people (falsely estimating that hands overlap).

The disambiguation error rate is the total number of incorrectly disambiguated hands over

55



Figure 3.4: Sample frames from our results, with rectangles showing ground truth bounding
boxes and dots showing predicted part positions (red = your face, blue = your left hand,
green = your right hand, magenta = my left hand, cyan = my right hand). The first two
rows show frames with perfect detection and demonstrate robustness with respect to partial
occlusions and changes in hand configurations, while the bottom row shows failure cases.

the total number of hands in all frames.

3.4.2 RESULTS

We first present qualitative results on the lab dataset. Figure 3.4 shows some sample frames,

where rectangles depict the ground truth bounding boxes, and dots mark our predicted

position. Part identities are represented by color, so that dots inside boxes of the same

color indicate correct estimates. The first two rows show perfect frames, while the last row

shows some error cases. Common failures include incorrectly estimating a hand to be out

of frame (e.g. the green box in the leftmost image) or falsely estimating overlapping hands.

This can be caused by hands that are closer to the observer than expected and thus too big

(e.g. in the middle two images), or because one hand is farther away from the other than

usual (e.g. wrong prediction for ‘my left hand’ in the right image).

We also show qualitative results for the naturalistic videos in Figure 3.5.
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Figure 3.5: Sample results for naturalistic video, in which two people played cards, tic-tac-
toe, and puzzles, while one wore Google Glass. (See Fig. 3.4 caption for the color legend.)

Quantitative Evaluation

We present detailed quantitative results in Table 3.1. Our overall detection accuracy across

the five child-parent dyads of the lab dataset is 68.4%. The technique generalized well

between different dyads, as evidenced by a low standard deviation across videos (σ = 3.0).

Accuracies between different hands are also fairly stable, ranging from 61.2% for ‘my left

hand’ to 70.7% for ‘my right hand.’ Overall, our approach perfectly predicted 19.1% of

frames on average, and for the third dyad even achieved a 24.7% perfect detection rate.

As expected, accuracy was lower for the naturalistic videos, at 50.7% overall. This drop

in accuracy is caused by two factors. First, we do not use a model for the partner’s hand (the

edge-based method described in Section 3.3 does not work well here). Second, the simple

color-based skin detection is much noisier in the natural environment compared to the

controlled laboratory. To quantify this, we calculated the fraction of detected skin pixels

that fall into ground truth bounding boxes of hands and faces. While 97% of detected

skin pixels fall into boxes in the lab videos, only 70% do so in the naturalistic videos.

Interestingly, we can still retain a relatively low disambiguation error rate in the naturalistic

videos (35.6% versus 32.7%), showing that our model can compensate for noisy likelihoods.

Although our main purpose is to detect hands, the temporal and spatial constraints in

our model also improve face detection. Table 3.1 compares the head-detection accuracy of

our model to that of the raw Viola-Jones detector (column headVJ). We achieve about a 10-

percentage-point increase for the lab dataset, and an over 17-percentage-point improvement
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Overall Observer Partner % Perfect Disambiguation
Accuracy right hand left hand right hand left hand head headVJ Frames Error Rate

Dyad 1 64.1 50.3 60.2 68.0 54.2 87.7 86.2 14.8 37.8
Dyad 2 72.6 78.5 63.3 63.8 79.7 77.5 55.5 22.8 27.4
Dyad 3 70.1 64.2 66.7 60.5 68.8 90.0 85.5 24.7 34.5
Dyad 4 67.3 88.0 54.7 59.5 59.3 75.2 66.0 15.5 33.1
Dyad 5 68.1 72.5 61.0 66.2 60.5 80.2 69.0 17.7 30.5
Average 68.4 70.7 61.2 63.6 64.5 82.1 72.4 19.1 32.7

Natural 50.7 54.3 18.7 73.3 49.3 57.7 40.3 9.0 35.6

Table 3.1: Detection accuracies of our approach, as well as a breakdown into different hands.
We also compare our head-detection accuracy with the accuracy of the raw Viola-Jones
detector (headVJ). The second to the last column shows the percentage of frames in which
all five predictions were correct and the last column shows the error when differentiating
the observer’s hands and the partner’s hands.

on the Google Glass videos.

Comparing to Baselines

We compared our model to three baselines of increasing complexity. First, we tried a simple

random predictor: for every part in every frame, we first flip a coin to decide whether it is

in the frame or not, and if it is in the frame, we assign it a random position. Second, we

added the skin likelihood by repeating the same process but limiting the space of possible

positions to be in skin patches. Finally, we build a more sensible baseline, clustering the

detected skin pixels into hand-sized patches using Mean Shift [20]. Then, we greedily assign

each part the position of the closest cluster centroid based on distance between centroid

and part-wise absolute spatial priors.

The results of these baselines and our method are compared in Table 3.2. The two

random baselines perform poorly, with accuracies of 17.0% and 27.3%, respectively. The

third method using clustering and distances to centroids performs better at 58.1%, but our

approach still beats it with 68.4% accuracy. We also tested a simplified version of our model

in which the in-frame and between-frame links were removed, so that only absolute spatial

priors and likelihoods are used. This achieved 59.1% accuracy, comparable to the third

baseline (which similarly does not incorporate temporal or relative spatial constraints).
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Overall % Perfect Disambiguation
Accuracy Frames Error Rate

Lab videos:
random 17.0 0.1 95.1
random (skin) 27.3 4.3 72.0
skin clusters 58.1 14.4 36.0
ours (likelihood + spatial prior) 59.1 9.2 44.5
our method (full) 68.4 19.1 32.7

Naturalistic videos:
skin clusters 39.2 0.0 65.4
our method 50.7 9.0 35.6

Table 3.2: Comparison of our model’s results to baselines, in terms of overall accuracy,
percentage of perfect frames, and hand disambiguation error rate (see text).

Our full model outperforms all the baseline methods by more then 10 percentage points for

accuracy and also performs best in terms of perfect frames and hand disambiguation error.

Finally, we compare the performance of our method and the third baseline on our

naturalistic videos. The baseline method suffers drastically from the noisy skin detections

and does not predict a single frame perfectly. Our method does much better at overcoming

weak object models, perfectly predicting almost 10% of frames, showing that it has the

potential to work well in less constrained scenarios.

3.5 SUMMARY

In this section, we proposed a probabilistic graphical model (PGM) that encodes spatial and

temporal constraints of hand locations in the view of an egocentric observer who interacts

with a partner. We demonstrated that, given noisy initial estimates of hands (e.g. by

using a simple skin color classifier), theses constraints can help to better detect hands and

to distinguish between different types of hands. Overall, this approach can produce high-

quality results for visually controlled video data (such as the child-parent videos introduced

in Chapter 2). For more naturalistic data, the success will depend on the quality of the

initial estimates. Nonetheless, we showed that our model has the potential to produce very

reasonable results even if the initial estimates are extremely noisy.
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CHAPTER 4

DETECTING HANDS BASED ON VISUAL APPEARANCE

4.1 INTRODUCTION

In the previous chapters, we established that spatial biases of hand trajectories in the first-

person view can be utilized to better detect hands, and, importantly, to distinguish between

different types of hands that may occur in egocentric interactions. The discussed approaches

all assume that initial (albeit noisy) detections of hands are possible (for example by using

simple skin color based models), but classification of those hands into semantic labels such

as left/right hands or own/other hands based on visual features is hard. In this chapter, we

investigate to what extent we can use strong appearance models to detect, distinguish, and

segment different hands in first-person videos of realistic settings directly based on visual

appearance. We are particularly motivated by the recent success of convolutional neural

networks (CNNs), which have improved the state-of-the-art for visual object recognition by

a large margin [59].

To utilize their full potential, CNN models require training on large amounts of data.

Thus, to make our experiments possible, we introduce a new dataset of 48 videos featuring

different participants interacting in a variety of activities and environments. The dataset

includes high-quality ground truth hand segmentation masks for over 15,000 hands. To de-

tect hands efficiently, we present a lightweight hand candidate proposal method that quickly

suggests potential hand locations to the CNN and produces better results than existing ap-
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Interactions

EgoHands Dataset

Hand Type Detection

Semantic Segmentation

Figure 4.1: Dataset and method overview. We present a CNN-based technique for detecting,
identifying, and segmenting hands in egocentric videos of multiple people interacting with
each other. To make this possible, we introduce a new large-scale dataset with over 15,000
hands with ground truth segmentations.

proaches for general object detection [2,112] at a fraction of the computational cost. Finally,

we use the resulting high-quality hand detections to perform pixel-level segmentations that

outperform existing first-person hand segmentation approaches [65].

4.2 EGOHANDS: A LARGE-SCALE EGOCENTRIC HAND DATASET

We begin by presenting a new dataset, EgoHands, that contains high quality first-person

video of interacting people in naturalistic environments. The dataset was collected with the

intent to collect many visually unconstrained exemplars of hands as seen from an egocentric

perspective, including the observer’s hands and hands of the interaction partner. While we

briefly experimented with a small set of naturalistic videos in Chapter 3, this dataset is at a

scale that (1) can facilitate the training of data-driven models such as CNNs and (2) allows

different partitionings into training, testing, and validation sets.
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(a) Ground truth hand segmentations superimposed on sample frames

(b) A random subset of cropped hands according to ground truth segmentations

Figure 4.2: Visualization of the EgoHands dataset. (a) Ground truth hand segmentation
masks superimposed on sample frames from the dataset, where different colors indicate the
four different hand types. Each column shows a different activity. (b) A random subset of
cropped hands according to ground truth segmentations (resized to square aspect ratios for
ease of visualization).

4.2.1 DIFFERENCES TO OTHER DATASETS

Various other first-person imaging datasets have been proposed in the past (e.g. [31,33,65,

80,90,102]). While many of them are designed to test recognition of activities that include

objects being held by the observer [33, 80], most of them do not contain high quality (i.e.

pixel-level) annotations of hands. One notable exception is the dataset of Li and Kitani [65],

who study pixel-level hand segmentation under varying illumination conditions. However,

their dataset contains no social interactions, so that the only hands in the video belong

to the camera owner, and there are no labels for hands of different semantic levels (such

as left or right hand). They also define a “hand” to include any contiguous skin regions

up to the sleeves, so they are really studying skin segmentation as opposed to trying to
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cleanly segment only hands. This is an important distinction from our work; we argue that

in applications like hand pose classification or activity recognition, segmentations that are

invariant to type of clothing are important. Lastly, we provide labeled hand exemplars at

a much larger scale than any previous dataset, with over 15,000 exemplars as opposed to

just a few hundred [65].

4.2.2 DATA COLLECTION

To create as realistic a dataset as possible while still giving some experimental control,

we collected data from different pairs of four participants who sat facing each other while

engaged in different activities (see Figure 4.1). After experimenting with various options,

we chose four activities that encourage interaction and hand motion: (1) playing cards,

specifically a simple version of Mau Mau; (2) playing chess, where for efficiency we en-

couraged participants to focus on speed rather than strategy; (3) solving a 24- or 48-piece

jigsaw puzzle; and (4) playing Jenga, which involves removing wooden building blocks from

a tower until it collapses. Each column in Figure 4.2a contains three sample frames for each

activity. We further varied context by collecting videos in three different locations: a table

in a conference room, a patio table in an outdoor courtyard, and a coffee table in a home. In

order to create realistic data, we did not constrain the locations in any way other than that

participants had to sit at a table and face each other. We also recorded over multiple days

and did not restrict participant clothing, resulting in a significant variety (e.g. both short-

and long-sleeved shirts, etc.). We systematically collected data from four actors performing

all four activities at all three locations while randomly assigning participants to one another

for interaction, resulting in 4× 4× 3 = 48 unique combinations of videos. Each participant

wore a Google Glass device, which recorded 720× 1280px video at 30Hz.

In post-processing, we manually synchronized the video pairs from both participants to

63



one another and cut them to be exactly 90 seconds (2,700 frames) each. To create ground

truth data, we manually annotated a random subset of 100 frames from each video (about

one frame per second) with pixel-level hand masks. Each hand pixel was given one of four

labels: the camera wearer’s left or right hand (“own left” or “own right”), or the social

partner’s left or right hand (“other left” or “other right”). Figure 4.2a shows examples

of our ground truth hand masks, where different colors indicate the different labels. The

ground truth was created by six students using a custom-built annotation tool that allowed

drawing polygons for each hand. Students were told to label any hand pixels they could

see, including very small hand regions caused by occlusion with objects or truncation at

frame boundaries. Importantly, we defined the “hand” to stop at the wrist, in contrast to

other work [64,65] which has also included arms up to the participant’s sleeves. We believe

our definition is more useful and realistic in practice: if the goal is to detect hand pose

and activities, for instance, the definition of what is a hand should not change dramatically

depending on what a participant is wearing.

4.2.3 DATASET PROPERTIES

In total, our dataset contains 48 videos with a total of 72 minutes (or 129,600 frames)

of video, of which 4,800 frames have pixel-level ground truth consisting of 15,053 hands

(see Figure 4.2b for examples). The partner’s hands appear in the vast majority of frames

(95.2% and 94.0% for left and right, respectively), while the observer’s hands are seen less

often (53.3% and 71.1% for left and right). This is likely because one’s own hands are more

frequently outside the camera’s field of view, but right hands occur more often because

people tend to align their attention with their dominant hand (and all our participants

were right-handed).

To our knowledge, this is the largest dataset of hands in egocentric video or any other
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first-person photo collection. To enable others to also profit from the data and to encourage

further research in this domain, we released the entire dataset including documented ground

truth annotations online.1 To facilitate quantitative comparisons with the detection and

segmentation approaches that we will present in the following chapters, we defined a bench-

mark partitioning of videos into training, validation, and test groups. This partitioning

has 36 training, 4 validation, and 8 test videos, with actors, activities and locations evenly

distributed across groups. This is the default partitioning for our experiments and we will

refer to it as “main split.”

4.3 CNN-BASED HAND DETECTION

In principle, one could consider finding hands in first-person images as a simple instantiation

of one particular object detection task, for which we could apply any general object detection

algorithm. However, in practice, detecting hands requires some special considerations.

Hands are highly flexible objects whose appearance can vary drastically (e.g. a fist as

opposed to an open hand). On top of that, we are interested in detecting semantically

different types of hands (i.e., left vs. right hands, and the camera wearer’s own hands vs.

their social partner’s), such that we need visual object models that can distinguish hand

variation caused by different types from variation caused by different poses (e.g. a left fist

and an open left hand both belong to the same type, but a left fist and a right fist do

not). Convolution Neural Networks (CNNs) offer state-of-the-art performance for visual

classification tasks [59] and may be suitable for this kind of visual hand type detection.

For CNN-based object detection, one common approach is to divide an image into

candidate windows, rescale each window to a fixed size, fine-tune a CNN for window classi-

fication [40,108], and then perform non-maximum suppression to combine the output of the

1http://vision.soic.indiana.edu/egohands/
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region-level classifier into object detection results. Of course, the space of possible proposal

windows is enormous, so it is important to propose regions that capture as many objects

as possible in the fewest number of proposals. Much of the work on region proposals has

studied general object detection in consumer photography, where there is typically little

prior information on the location or appearance of an object in an image. In the context of

detecting hands in egocentric views, however, we have shown in Chapters 2 and 3 that there

are strong spatial biases to hand location and size. We thus propose a simple approach to

candidate window sampling that combines spatial biases and appearance models in a unified

probabilistic framework.

4.3.1 GENERATING PROPOSALS EFFICIENTLY

Our primary motivation is to model the probability that an object O appears in a region

R of image I,

P (O|R, I) ∝ P (I|R,O)P (R|O)P (O), (4.1)

where P (O) is the occurrence probability of the object, P (R|O) is the prior distribution

over the size, shape, and position of regions containing O, and P (I|R,O) is an appearance

model evaluated at R for O. Given a parameterization that allows for sampling, high quality

regions can then be drawn from this distribution directly.

Here we assume regions are rectangular, so they are parameterized by an image co-

ordinate, width, and height. Thus, we can learn P (R|O) for each hand based on our

training data by fitting a four-dimensional (x, y, width, height) Gaussian kernel density es-

timator [47]. Similarly, we can estimate P (O) directly from the training data as the fraction

of labeled frames that contain each hand. For the appearance model P (I|R,O) we define a

simple color model that estimates the probability that the central pixel of R is skin, based
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Figure 4.3: Hand coverage versus number of proposals per frame, for various proposal meth-
ods. Shaded areas indicate the standard deviations across five trials.

on a non-parametric modeling of skin color in YUV color space (disregarding the luminance

channel). While simple, this model lets us sample very efficiently, by drawing a hand type

O, and then sampling a bounding box from the KDE of P (R|O), with the kernel weights

adjusted by P (I|R,O).

Evaluation

To evaluate this candidate generation technique, we measured its coverage, i.e. the percent-

age of ground truth objects that have a high enough overlap with the proposed windows (an

intersection over union between hand bounding box and candidate region of at least 50%)

to be counted as positives during detection. This is an important measure because it is an

upper-bound on recall; an object that is not covered by a candidate can never be detected.

Figure 4.3 shows coverage as a function of the number of proposed windows per frame for

our method and two other popular window proposal methods: selective search [112] (which

is the basis of the popular R-CNN detector [40]) and objectness [2]. The baselines were

run using those authors’ code, with parameters tuned for best results (for selective search,

we used the “fast” settings given by the authors but with k set to 50; for objectness, we
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retrained the object-specific weights on our dataset). As shown in the figure, our direct

sampling technique (red solid line) significantly outperforms either baseline (dashed green

and blue lines) at the same number of candidates per frame. Surprisingly, even our direct

sampling without the appearance model (red dotted line) performed significantly better

than objectness and about the same as selective search.

To further investigate the strength of the spatial consistencies of egocentric interaction,

we also subsampled the baseline proposals biased by our learned model P (O|R, I). For both

baselines, incorporating our learned distribution improved results significantly (solid blue

and green lines), to the extent that biased sampling from selective search performs as well

as our direct sampling for lower numbers of proposals. However, our full technique offers a

dramatic speedup, producing 1,500 windows per frame in just 0.078 seconds versus 4.38 and

7.22 seconds for selective search and objectness. All coverage experiments were performed

on a machine with a 2.50GHz Intel Xeon processor.

4.3.2 WINDOW CLASSIFICATION USING CNNS

Given our accurate, efficient window proposal technique, we can now use a standard CNN

classification framework, as introduced in Section 1.4.2, to classify each proposal (after

resizing it to the fixed-sized input of the CNN). We used the CaffeNet architecture from the

Caffe software package [49] which is a slightly modified form of AlexNet [59] as shown in

Figure 1.4. We also experimented with other common network designs such as GoogLeNet

[108], but found that when combined with our window proposal method, detection results

were practically identical.

We found that certain adjustments to the default Caffe training procedure were impor-

tant both to convergence and the performance of our networks. Despite the high coverage,

only 3% of our proposed windows are positive so to avoid converging to the trivial major-
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ity classifier, we construct each training batch to contain an equal number of samples from

each class. Also, we disabled Caffe’s default feature that randomly mirrors exemplar images

during training. While this is a clever means of data augmentation for most visual object

classes, in our case flipping images reduces the classifier’s ability to differentiate between

left and right hands, for example.

The full detection pipeline consists of generating spatially sampled window propos-

als, classifying the window crops with the fine-tuned CNN, and performing per-class non-

maximum suppression for each test frame. Each of these components has a number of free

parameters that must be learned. For our window proposal method, we estimate the spatial

and appearance distributions from ground truth annotations in the training set and sample

2,500 windows per frame to provide a high coverage. The CNN weights are initialized from

CaffeNet, meaning all network weights are set to pre-trained values from ImageNet [25]

excluding the final fully-connected layer, which is set using a zero-mean Gaussian. We then

fine-tune the network using stochastic gradient descent with a learning rate of 0.001 and

momentum of 0.999. The network was trained until the validation set error converged.

Finally, the non-maximum suppression step disregards windows with a high detection score

if they are closely overlapping with other windows that have an even higher score. These

overlap thresholds were optimized for each class based on average precision on the validation

set. We intentionally do not take advantage of the constraint that each hand type appears

at most once in a given frame in order to evaluate our technique as generally as possible.

4.3.3 DETECTION RESULTS

We evaluate the effectiveness of our detection pipeline in two contexts: detecting hands of

any type, and then detecting hands of specific types (“own left,” “own right,” etc.). We thus

train two different networks, one that only distinguishes between hands and background
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Figure 4.4: Precision-Recall curves for detecting hands. (a) General hand detection results
with other window-proposal methods as baselines. (b) Results for detecting four different
hand types.

(i.e. is trained on two classes), and one that also classifies between the four hand types

(i.e. is trained on five classes). In both cases, we use the PASCAL VOC [29] criteria for

scoring detections (that the intersection over union between the ground truth bounding

box and detected bounding box is greater than 0.5). Figure 4.4 shows precision-recall

curves for both tasks, based on the “main split” of our dataset as discussed in Section 4.2.

Precision-recall curves evaluate the performance of a retrieval system (in this case the hand

detector) by comparing the fraction of detected hands over all existing hands (recall) with

the fraction of correctly detected hands over all proposed detections (precision), across

all possible sensitivity thresholds of the system. The area under the curve (AUC) or the

closely related average precision (AP, as defined in [29]) thus quantify the overall retrieval

performance of the system.

For the general hand detection task (Figure 4.4a), we obtain an average precision (AP)

of 0.807 using our candidate window sampling approach, which is significantly higher than

the 0.763 for selective search [112] and 0.568 for objectness [2]. These overall detection
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results are quite strong and underline the power of CNNs for visual object classification.

For example, we can correctly detect 80% of all hands with only 18% false positives (as

indicated by the green circle in the figure).

Figure 4.4b shows precision-recall curves for distinguishing between the four hand types.

There is a curious asymmetry in our hand type detections, with our approach achieving

significantly better results for the social partner’s hands versus the camera owner’s. Figure

4.5 gives insight on why this may be, presenting detection results from randomly-chosen

frames of the test set. Hands of the camera wearer tend to have more duplicate detections

on subparts of the hands (e.g. in row 2, column 2 of the figure). We attribute this tendency

to how frequently “own” hands are truncated by the frame boundaries and thus appear

as single or only a few fingers in the dataset. Including these partial detections alongside

fully visible hands during training encourages the network to model both appearances to

minimize error. While this does result in a loss of precision, the system gains the ability to

robustly detect hands that are occluded or only partially in the frame (e.g. row 3, column

3) which is often the case for egocentric video, due to the relatively narrow field of view of

most cameras compared to that of humans.

Error Analysis

Overall, the average detection performance across hand types in Figure 4.4b is a little

lower than general hand detection performance reported in Figure 4.4a (AP 0.740 versus

0.807). An interesting question is whether this difference is primarily caused by failure to

detect hands of different types or confusion between hand types once a hand is detected.

An analysis of the per-window classifications showed that only 2% of hand windows are

mislabelled as other hands. Similarly for detection, 99% of undetected hands at a recall of

70% are due to confusion with the background class. In those rare cases with ambiguous
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Figure 4.5: Randomly-chosen frames with hand detection results, for own left (blue), own
right (yellow), other left (red), and other right (green) hands, at a detection threshold where
recall was 0.7. Thick and thin rectangles denote true and false positives, respectively.

hand types, the system predicts nearly uniform probabilities for each type, which are then

removed by reasonable decision thresholds and non-max suppression, decreasing the overall

performance. However, the system almost never confidently predicts the wrong type of

hand, which is also evidenced by the randomly-sampled examples shown in Figure 4.5.

Generalizing Across Actors, Activities, and Locations

We next tested how well our hand detectors generalize across different activities, different

people, and different locations. To do this, we generated dataset partitionings across each

dimension, where each split leaves out all videos containing a specific (first-person) actor,

activity, or location during training, and tests only on the held-out videos. We also split

on actor pairs and activities jointly, creating 18 divisions (as not all actor pairs did all

activities). This stricter task requires our method to detect hands of people it has never

seen, doing activities it has never seen.

Table 4.1 summarizes our results, again in terms of average precision (AP), with aver-

ages across splits weighted by the number of hand instances. The table shows that detectors

generalize robustly across actors, with APs in a tight range from 0.790 to 0.826 no mat-

ter which actor was held out. This suggests that our classifier may have learned general
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characteristics of human hands instead of specific properties of our particular participants,

although our sample size of four people is small and includes limited diversity (representing

three different ethnicities but all were male). For locations, the courtyard and office envi-

ronments were robust, but AP dropped to 0.648 when testing on the home data. A possible

explanation is that the viewpoint of participants in this location is significantly different,

because they were seated on the floor around a low table instead of sitting in chairs. For

activities, three of the four (cards, puzzle, and chess) show about the same precision when

held out, but Jenga had significantly lower AP (0.665). The Jenga videos contain frequent

partial hand occlusions with the tower, and the tower itself is prone to be mistaken for hands

that it occludes (e.g. row 3, column 3 of Figure 4.5). Finally, splitting across actor pairs

and activities results in a sharper decrease in AP, although results are still quite reasonable

given the much smaller (about 6×) training sets caused by this strict partitioning of the

data.

4.4 SEGMENTING HANDS

While simply detecting hands may be sufficient for some applications, pixel-wise segmenta-

tion is often more useful, especially for applications like hand pose recognition and in-hand

object detection [68]. In Chapters 2 and 3 we did not talk about segmentation explicitly,

mostly because the child-parent data considered in these chapters was visually clean and

controlled enough to make the problem relatively easy. Pixel-wise segmentation of objects

in unconstrained, natural photos and videos is a much harder computer vision problem.

Fortunately, as shown in the previous section, we do not have to start from scratch, but

instead can utilize the strong performance of our CNN-based hand type detector. Once

we have accurately localized hands using this approach, semantic segmentation is relatively

straightforward, as we can (1) focus segmentation efforts on local image regions and (2) get
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Own hands Other hands

All hands Left Right Left Right

Main split 0.807 0.640 0.727 0.813 0.781

All activities but:
cards 0.768 0.606 0.776 0.708 0.732
chess 0.851 0.712 0.788 0.821 0.808
Jenga 0.665 0.644 0.693 0.583 0.502
puzzle 0.803 0.747 0.813 0.675 0.681
weighted average 0.772 0.675 0.768 0.699 0.686

All actors but:
B 0.799 0.669 0.773 0.779 0.796
H 0.816 0.718 0.772 0.756 0.740
S 0.790 0.709 0.798 0.799 0.696
T 0.826 0.689 0.783 0.770 0.789
weighted average 0.807 0.700 0.782 0.776 0.756

All locations but:
courtyard 0.790 0.702 0.785 0.755 0.755
office 0.772 0.659 0.757 0.794 0.687
home 0.648 0.558 0.703 0.538 0.591
weighted average 0.737 0.639 0.748 0.698 0.678

Split across actor pairs and activities:

weighted average 0.627 0.492 0.598 0.513 0.542

Table 4.1: Hand detection accuracy when holding out individual activities, participants, and
locations, in terms of average precision. For example, the training set for all activities but
cards included all videos not containing card playing, while the test set consisted only of
card playing videos.

the correct hand type label for each segment for free.

4.4.1 REFINING LOCAL SEGMENTATIONS WITH GRABCUT

Our goal is to label each pixel as belonging either to the background or to a specific hand

class. We assume that most pixels inside a box produced by our CNN-based detector

correspond with a hand, albeit with a significant number of background pixels caused both

by detector error and because hands rarely fill a bounding rectangle. This assumption

allows us to apply a well-known semi-supervised segmentation algorithm, GrabCut [93], to

our problem.

GrabCut was proposed as an interactive figure-ground segmentation tool. Given a photo

of a foreground object with relatively distinct colors compared to the background (e.g. a

person standing on a green meadow), a user would initialize the algorithm by manually
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Figure 4.6: Semantic hand segmentation using GrabCut. We utilize the CNN-based hand
type detector to initialize the GrabCut [93] algorithm with local color models for hands and
background, and to provide the right hand type for each segment.

drawing a coarse segmentation (e.g. a bounding box) around the object. The color dis-

tributions of foreground (all pixels within the bounding box) and background (all pixels

outside the bounding box) are then represented as Gaussian Mixture Models (GMMs) [91]

in RGB space. To refine the user segmentation, all pixels within the bounding box are rep-

resented as a PGM with a grid structure (a Markov Random Field), and assigned to either

foreground or background according to the likelihood given by the color models, subject to

the constraint that neighboring pixels should have the same label. Since labels are binary,

exact inference on the PGM is possible using the Graph Cut algorithm [13]. The refined

segmentation is then used to repeatedly update the color models and relabel foreground

and background pixels under the new models, until convergence to the final segmentation.

Instead of having any user interaction, we initialize the GrabCut procedure with the

bounding boxes from our hand detector, as summarized in Figure 4.6. For each hand

bounding box, we first use the simple global skin color model as described in Section 4.3.1

to estimate an initial foreground mask. We use an aggressive threshold so that all pixels
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within the box are marked foreground except those having very low probability of being

skin. Importantly, we avoid initializing the background color model with the entire image

outside of the bounding box because arms, faces, and other hands would likely lead to

confusion with the foreground model. Instead, we use a padded region (marked as red

in Figure 4.6) around the bounding box, ensuring that only local background content is

modeled. This procedure is done for each detected box separately. If there are multiple

detected boxes for hands of same type, we take the union of all output masks as the final

segmentation. Should masks of different hand types overlap, we prefer the label of the hand

that had a stronger detection score.

4.4.2 SEGMENTATION RESULTS

Using the CNN hand detector (at a recall of 0.7) and the global skin color model trained on

the training set of the “main split” of our data, we detected hands and produced segmen-

tations for each frame in our test set. To put our results in context, we ran the publicly-

available pixel-wise hand detector of Li et al. [65], which was designed for first-person data.

We trained their technique with 900 randomly-sampled frames from our training set. As

we mentioned before, Li et al. [65] defines “hand” to include any skin regions connected to

a hand, including the entire arm if it is exposed. To enable a direct comparison to our more

literal definition of hand detection, we took the intersection between their method’s output

and our bounding boxes. Finally, as [65] is agnostic with respect to the semantic labels of

each hand, we use our inferred labels for the comparison.

Table 4.2 presents segmentation accuracy, in terms of pixel-wise intersection over union

between the estimated segmentation mask and the ground truth annotations. Our tech-

nique achieves significantly better accuracy than the baseline of [65] (0.556 versus 0.478). A

similar trend is present across the stricter actor pair and activity data splits. We attribute
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Own hands Other hands

Left Right Left Right Average

Main split:

Ours 0.515 0.579 0.560 0.569 0.556
Li et al. [65] 0.395 0.478 0.534 0.505 0.478

Split across actor pairs and activities:

Ours 0.357 0.477 0.367 0.398 0.400
Li et al. 0.243 0.420 0.361 0.387 0.353

Table 4.2: Hand segmentation accuracy measured in terms of pixel-level intersection over
union with ground truth masks.

this success to the fact that our GrabCut-based approach looks only at local image color

distributions and leans heavily on the quality of our detections. The baseline method, how-

ever, learns classifiers that must perform well across an entire frame, which is complicated

by the close visual similarity between hands and other visible skin. Figure 4.7 provides

qualitative examples of our segmentations based on some randomly-sampled test frames.

Failure Modes

Our method has two main possible failure modes: failure to properly detect hand bounding

boxes, and inaccuracy in distinguishing hand pixels from background within the boxes. To

analyze the influence of each, we performed an ablation study based on the ground truth

annotations. Applying our segmentation approach to the ground truth hand bounding

boxes instead of the output of the hand detector, our average accuracy rose from 0.556

to 0.73. On the contrary, taking the output of our hand detector but using the ground

truth segmentation masks (by taking the intersection with the detected boxes) achieved

and accuracy of 0.76. Thus, each of the studies improve over our fully automatic approach

by roughly 30-35%, indicating that neither detection nor segmentation is individually to

blame for the decrease in accuracy, and that there is room for future work to improve upon

both.
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Figure 4.7: Hand segmentation results on randomly-chosen test frames, zoomed into areas
containing hands for better visualization.

4.5 CONCLUSION

In this chapter we demonstrated how to detect and distinguish hands in natural and dy-

namic first-person videos, by combining CNN-based classification with a fast candidate

region proposal method based on sampling from a joint model of hand appearance and ge-

ometry. This approach is significantly more accurate and dramatically faster than existing

region proposal techniques based on selective search [112] or objectness [2]. An important

difference to the graphical model proposed in Chapter 3 is that instead of relying on spatial

biases to infer hand types, here we distinguish hands based on visual information alone,

and use spatial biases of hand locations primarily to locate hands more efficiently. We also

showed that our hand detections can be used to yield state-of-the-art hand pose segmenta-

tions. Finally, we introduced a novel, publicly available first-person dataset with dynamic

interactions between people, along with fine-grained ground truth.
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CHAPTER 5

USING HANDS TO INFER SOCIAL ACTIVITIES

5.1 INTRODUCTION

In the last chapter, we demonstrated that we can use convolutional neural networks to

robustly detect hands in egocentric videos, even in very naturalistic data. Importantly, we

showed that our CNN-based technique is able to distinguish high level concepts such as left

and right hands, and observer hands and other hands, without taking into consideration

any context other than the visual information of the captured hand. As we are also able

to segment the shape of each hand and thus extract information about its two-dimensional

pose, one interesting question is whether there is other high level information that we can

infer from automated visual analysis of hands and hand poses. In this chapter, we explore

this question by further experimenting with the EgoHands dataset that we introduced in

Chapter 4. More precisely, we investigate whether we can infer social activities (specifically

the four in the dataset: cards, chess, puzzle, Jenga) by analyzing only the pose and position

of hands within the egocentric view. As interacting with different objects affords different

types of hand grasps (the taxonomies of which have been thoroughly studied [76]), the 2D

pose of a hand should to some extend contain high level information about the type of

interaction. Moreover, when multiple people are interacting with each other, it seems likely

that the absolute and relative position of all hands within in the field of view should also

reveal some evidence about the activity they are engaged in.
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Figure 5.1: Hand-based activity recognition overview. Two actors are engaged in different
social interactions, while both wear Google Glass to capture video from each field of view.
We present a vision-based framework that extracts hands from each view to investigate how
well we can estimate the performed activity based on hand pose and position alone.

Our main hypothesis is that hand poses by themselves reveal significant evidence about

the objects people are interacting with and the activities they are doing. This would imply

that automatic activity recognition systems could focus on accurately recognizing one type

of object – the hands – instead of having to model and detect the thousands of possible

objects and backgrounds that occur in real-world scenarios. While the hand poses in any

given video frame may not necessarily be informative, we hypothesize that integrating

hand pose evidence across frames and across viewpoints may significantly improve activity

recognition results. We investigate (1) how well activities can be recognized in our dataset

based on hand pose information alone, and (2) whether the two first-person viewpoints can

be complementary with respect to this task.
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5.2 RECOGNIZING FIRST-PERSON HAND POSES WITH CNNS

To explore if hand poses can uniquely identify activities, we create masked frames in which

all content except hands is replaced by a gray color. Some examples of masked frames

are shown in Figure 5.1 and also Figure 5.2. These frames contain information about the

relative position of hands in the frame (and to each other) as well as the 2D pose of each

hand, but no other visual context. Since CNNs showed a strong performance in the hand

type detection task, we again make use of the AlexNet [59] CNN architecture described in

Section 4.3.2. However, instead of classifying cropped-out region proposals into different

hands or background, here we feed the entire masked frame to the network and directly

classify between the four activities (cards, chess, puzzle, Jenga) it belongs to.

Because we are also interested in aggregating information across both participants’ view-

points, we create a new partitioning of the EgoHands dataset that ensures that correspond-

ing viewpoints are grouped together. We split the 48 videos into 16 test videos (8 videos per

viewpoint), 24 training videos (12 per viewpoint) and 8 validation videos (4 per viewpoint),

such that each set has an equal amount of each activity.

In the training phase, we used ground truth hand segmentations to create masked hands

to prevent the classifier from learning any visual bias not related to hands (e.g. portions of

other objects that could be visible due to imperfect hand extraction). With 100 annotated

frames per video and 24 videos in the training set, this led to a total of 2,400 training

images (600 per activity). Network weights were initialized with pre-trained values from

ImageNet [25] and all other learning parameters were as described in Section 4.3.2. The

network was trained with stochastic gradient descent until the accuracy on the validation

videos converged, wich occured after around 12 epochs, i.e. after observing the entire

training data about 12 times.
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5.3 EXPERIMENTS

To test the performance of the trained CNN, we performed a series of experiments including

single frame predictions with ablation studies, as well as predictions based on multiple

frames and viewpoints.

5.3.1 SINGLE FRAME PREDICTION AND ABLATION STUDY

One interesting question is how well activities can be inferred from hands in a fully auto-

mated system. To test this, we first applied the hand detection and segmentation pipeline

as described in Chapter 4 to each frame of all 16 videos in our test dataset, resulting in

16× 2,700 = 43,200 masked test frames. Classifying each frame individually gave a 53.6%

accuracy, nearly twice the random baseline (25.0%). This promising result suggests a strong

relationship between hand poses and activities.

This fully automated approach of course suffers from the same types of errors as dis-

cussed in Section 4.4.2: incorrect information about the spatial configuration of the hands

due to imperfect detection, and incorrect hand pose information due to imperfect seg-

mentation. We once again investigated the relative effect of these errors with an abla-

tion study, and tested the network on the subset of frames with ground truth hand data

(16 × 100 = 1, 600 masked test frames). We found that replacing either detection or seg-

mentation with ground truth increased the fully automatic performance by about nine

percentage points. This suggests that capturing the spatial arrangement of hands and cor-

rectly predicting their pose are equally important to per-frame activity recognition using

only hand information. Finally, a perfect hand extraction system (simulated by using the

full ground truth data) could improve the performance by around 16 percentage points.
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Figure 5.2: Viewpoint differences. Different examples of moments where one viewpoint
observes much more informative hand poses than the other.

5.3.2 INTEGRATING INFORMATION ACROSS FRAMES

As discussed in the previous section, our automatic hand extraction is not without errors.

Even when hand masks are perfect, they may not always be informative: Hands may be

occluded or not in view at all (see Figure 5.2 for examples). However, even if the hands

are occluded or inaccurately extracted in one frame, it is likely that another frame, either

from the other person’s view or from a nearby moment in time, yields a more informative

estimate of the hand pose.

We integrate evidence across frames using a straightforward late fusion method at the

decision level. Suppose we have a set P of actors, each of whom records a sequence of n

frames, i.e. Fp = (F 1
p , F

2
p , ..., F

n
p ) for each p ∈ P. The frames are synchronized so that for

any t and pair of actors p, q ∈ P, F tp and F tq were captured at the same moment. Without

loss of generality, we consider the specific case of two actors, P = {A,B}. Suppose that our

goal is to jointly estimate the unknown activity label H from a set of possible activities H.

By applying the CNN trained in the last section on any given frame F tp, we can estimate

(using only the evidence in that single frame) the probability that it belongs to any activity

h ∈ H, P (H = h|F tp).
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Temporal Integration

We integrate evidence across the temporal dimension, given the evidence in individual

frames across a time window from ti to tj in a single view p,

Ĥ
ti,tj
p = arg max

H∈H
P (H|F tip , F ti+1

p , ..., F
tj
p )

= arg max
H∈H

tj∏
k=ti

P (H|F kp ), (5.1)

where the latter equation follows from assumptions that frames are conditionally indepen-

dent given activity, that activities are equally likely a priori, and from Bayes’ Law. We

evaluated this approach by repeatedly testing classification performance on our videos over

many different time windows of different lengths (different values of |tj − ti|). The red line

in Figure 5.3a shows that accuracy increases with the number of frames considered. For in-

stance, when observing 20 seconds of interacting hands from a single viewpoint, the system

predicts the interaction with 74% accuracy.

Viewpoint Integration

Next we take advantage of the coupled interaction by integrating evidence across viewpoints,

Ĥti,tj = arg max
H∈H

tj∏
k=ti

P (H|F kA)P (H|F kB), (5.2)

which makes the additional assumption that the viewpoints are independent conditioned on

activity. We again test over many different temporal windows of different sizes in our videos,

but now using frames from both viewpoints. The results are plotted in blue in Figure 5.3a

and clearly outperform the single view approach, showing that the two views are indeed

complementary. However, this fusion method has the potentially unfair advantage of seeing

twice as many frames as the single view method, so we also show a more conservative line
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Figure 5.3: Comparison of activity recognition accuracies, using one (red) and both (blue)
viewpoints, using (a) a sliding temporal window and (b) sampling nonadjacent frames.

(dashed blue) that considers half the temporal window size (so that for any position on

the x-axis, the red line and dashed blue line are seeing the same number of frames). This

conservative comparison still outperforms the single view, demonstrating that observing

x/2 seconds of hand interactions from both viewpoints is more informative than observing

x seconds from only one.

Sampling Frames

Temporally adjacent frames are highly correlated, so another interesting question is how

classification performance changes when sampling frames across the whole video, thus in-

tegrating evidence across wider time periods. A generalization of Equation 5.2 is to use a

set T ⊆ [1, n] of randomly sampled times at which to observe frames,

ĤT = arg max
H∈H

∏
k∈T

P (H|F kA)P (H|F kB). (5.3)
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We tested this by repeatedly sampling different numbers of frames from each video. The

red line in Figure 5.3b shows accuracy as a function of number of frames (|T |) for single

viewpoints (with the shaded area indicating standard deviation over 2,700 sampling itera-

tions). After a high initial variance, accuracy converges to 81.25%, or 13 of 16 videos, when

sampling around 500 frames (about 20% of a video). Of the three incorrect videos, two are

of chess (where we predict puzzle and cards) and one is of cards (where we predict Jenga).

Finally, we combine both viewpoints together by sampling sets of corresponding frames

from both views. The blue line in Figure 5.3b shows the results (plotted so that at any

position on the x-axis, the red line sees x frames while the blue line sees x/2 frames from

each viewpoint). Even for a small number of samples, this method dramatically outperforms

single view, albeit with a large standard deviation, indicating that some paired samples are

much more informative than others. More importantly, as the number of samples increases,

the joint view method approaches 100% accuracy. This means that using the complementary

information from both viewpoints helps correctly predict the three videos that were not

correctly predicted with the single view.

5.4 SUMMARY

Our results demonstrate that (1) hands in the field of view can be informative visual cues for

inferring higher level semantic information, such as the type of social interaction between

two people, and (2) CNNs are powerful enough to interpret these cues. More precisely, we

show that we can build a fully automated computer vision system that robustly extracts

information about hand pose and position, and use it to distinguish between the four activi-

ties present in our first-person video data. Further, we demonstrate that the two viewpoints

are complementary and that predicting the interaction based on integrating evidence across

viewpoints leads to better results than analyzing them individually.
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CHAPTER 6

CONCLUSION

6.1 THESIS SUMMARY

This dissertation began with the idea that wearable cameras are becoming increasingly less

intrusive and thus can be used as tools to study visual attention and perception in dynamic

real-world contexts, in addition to strictly controlled laboratory environments. However,

the downside of this newly gained freedom is that the vast amounts of collected video data

are often hard to analyze. Computer vision techniques could potentially help to overcome

this problem by annotating data automatically. Reviewing related literature revealed that

computer vision researchers have identified many challenges unique to data captured by

first-person cameras, most of them due to the fact that egocentric images and videos often

lack the clean characteristics of traditional photography.

We identified one particular domain that has a rich history in computer vision but has

received relatively little attention within the first-person context: the analysis of hands.

Hands are arguably the most frequently present objects in our field of view and the primary

tool of physical interaction with the world around us. Thus, first-person cameras can

provide a unique embodied perspective of one’s own hands and how they are perceived.

We further argued that hands are closely tied to visual attention and also motivated the

analysis of hands from a cognitive perspective. We reviewed work that, for example, shows

that infants’ eye gaze tends to follow both their own hands and their caretaker’s hands in
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order to establish joint attention towards toy objects [122], and that adults are faster to

fixate on target objects if they appear near their own hands [86].

We proposed and investigated different methods to extract information about hands

from first-person videos, particularly focusing on videos containing interactions between

two people. This focus allowed us not only to examine the detection and segmentation

of hands, but also address questions concerning higher-level understanding of a detected

hand, such as determining whether it belongs to the camera wearer or the other person. We

demonstrated that this information can be useful using a dataset of first-person infant videos

that also contained infant eye gaze data. Automatically collecting fine-grained statistics of

hands within the infant’s view revealed where and when the infant’s own hands guided

visual attention, and where and when it was guided by the parent’s hands.

We introduced two major vision-based approaches for automatic hand type detection

in naturalistic first-person videos. The first approach was based on the idea of building a

probabilistic graphical model (PGM) to encode temporal and spatial constraints of hands

in the field of view. For example, a left hand is more likely to appear in the left side

of one’s view and also more likely to be to the left of the right hand. We demonstrated

that encoding this information in our model can help reducing uncertainty in locating

hands and distinguishing among different types of hands. The second approach was based

on training convolutional neural networks (CNNs) for our task. Such networks are very

powerful models for visual recognition, but depend on supervised learning that requires

large amounts of labeled data. We collected a large-scale egocentric dataset that included

fine-grained annotations of different types of hands (left vs. right, own hands vs. other

hands), and demonstrated that a properly trained CNN can detect hands and distinguish

among types of hands based on visual information alone.

Finally, we demonstrated that a CNN could also infer other higher-level semantics, such
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as the type of interaction displayed in the video, based on the position and shape of hands

in view. This result underscores the importance and the informative potential of hands with

respect to our overarching goal of automatically analyzing data from first-person cameras.

In the remainder of this chapter, we round off the dissertation with a comparison of

the proposed approaches from Chapter 3 and Chapter 4, and also give some practical

recommendations on when to prefer one over the other. Finally, we give an outlook into

possible future work, both directly tied to this thesis, but also including thoughts that go

beyond the work presented here.

6.2 METHOD COMPARISON: DEEP OR SPATIAL?

Chapters 3 and 4 introduced two different approaches to hand type detection in first-person

videos. While we described both methods in great detail separately, we have yet to compare

them explicitly. This section aims to fill this gap.

The PGM introduced in Chapter 3 aimed to help distinguish between (potentially noisy)

detections of different hands by encoding spatial relationships between them. The CNN

(from Chapter 4) then demonstrated that this distinction can actually be done robustly

without encoding any additional information other than local appearance information. This

naturally raises the question if there is still any benefit in modeling spatial constraints at

all. There are two ways to approach this question.

The first way is from a purely practical perspective. As presented in this thesis, the

PGM-based approach can process an entire video in near real-time on a conventional CPU.

The CNN-based approach as presented here requires a few seconds per frame on a high-end

GPU. At the same time, the PGM only provides location estimates in the form of an object-

center coordinate while the CNN provides a more informative bounding box detection. For

applications where coordinate estimates are sufficient (e.g. the toddler data presented in
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this thesis), or for applications where time and computational resources are limiting factors,

the PGM-based approach might be the preferable solution. However, it is worth noting that

there is currently a large amount of research (some of which we will address in Section 6.3)

on improving deep network architectures to allow much faster processing speeds, albeit

likely at the cost of decreased accuracy and still requiring the processing power of expensive

GPUs. Another possible practical benefit of the PGM approach is that it includes implicit

tracking of hands (by encoding temporal constraints on hand locations), while the CNN

currently treats each frame independently. In scenarios where hands are likely to overlap,

the PGM has the potential to infer the position of an occluded hand based on its temporal

trajectory, which the CNN as presented here does not.

The second way to approach the question of whether there is any benefit to modeling

spatial constraints is from a more theoretical perspective. Can adding spatial information

(in whichever way) to the CNN-based method improve detection or decrease errors resulting

from confusing hand types? One way to investigate this would be to feed the hand location

estimates derived from the CNN into the graphical model. After all, the PGM is agnos-

tic with respect to where the estimates come from as long as they can be expressed as a

probability distribution. We performed some preliminary experiments in this direction, but

instead of first running the CNN detection pipeline and then adding spatial constraints, we

tried to directly inject spatial information into the deep network. As described in Section

4.3.2 of the CNN-based method, different window proposals are cropped from the frame

and then fed to the network separately. Thus, the spatial information of each window (its

xy-position within the frame, but also its width and height) is implicitly available. We

experimented with different network architectures that would receive this information (via

additional input neurons) in combination with the image input and thus could potentially

learn to utilize spatial biases on top of the visual information. However, preliminary experi-
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ments based on training such CNNs using the EgoHands dataset from Section 4.2 indicated

no improvement in hand type classification over the method described in Chapter 4. At

the same time, training a simple two-layer neural network with only the spatial coordinates

of each window proposal showed that networks can in principle learn the spatial biases of

different hand types in view. Taken together, these results suggest that CNNs are usually

confident enough in distinguishing different types of hands based on visual appearance that

additional spatial information, although useful on its own, is not a strong enough signal to

change the network’s decision.

6.3 FUTURE WORK

The work presented in this dissertation opens up many different directions for future work,

both on the level of improving upon proposed computer vision algorithms, and on the level

of utilizing first-person hand analysis and first-person computer vision in general as tools

to aid cognitive and behavioral research. We conclude with some final thoughts on both of

these levels.

6.3.1 HANDS

As hinted to in Section 1.4.2, deep learning and convolutional neural networks in partic-

ular are currently dominating research efforts in many domains of computer vision, and

are quickly driving progress in areas potentially relevant to the type of first-person hand

analysis presented here. One interesting area of future work relates to further improving

the bounding box-based hand detection described in Section 4.3. Our approach relies on

first generating a set of proposal boxes and then processing those boxes with the CNN in a

subsequent step. While we demonstrated that our method is faster and more suitable for

first-person hand detection than other proposal methods [2, 112], there is an emerging line
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of research on potentially even faster methods that do not rely on proposals at all [85, 88].

The core idea among these approaches is to design network architectures and corresponding

loss functions that aim to regress window locations which maximize object detection scores

during training. For example, Redmon et al. [85] divide the input image into an n × n

grid where each grid cell regresses k bounding boxes anchored around the cell. Such a grid

design might be particularly interesting for hand detection in first-person images as it has

the potential to implicitly encode spatial biases of objects.

Another potential area for future research relates to hand segmentation. Our approach

as described in Section 4.4 relies on local segmentations based on prior coarse detections.

While similar ideas (e.g. Arbeláez et al. [4]) have traditionally been successful on semantic

segmentation benchmark challenges such as PASCAL VOC [29], fully convolutional neural

networks have recently achieved superior results [70]. Instead of predicting a k-dimensional

distribution over k classes like the CNN described in Section 1.4.2, fully convolutional

networks are trained end-to-end to directly make dense per-pixel class predictions. It might

be interesting to investigate how well hands and hand poses could be segmented without

the intermediate detection step.

Finally, there is a compelling future direction for the idea of inferring interactions from

hands as introduced in Chapter 5. As demonstrated in Section 5.3.2, the prediction accu-

racy can improve drastically when integrating frames across time. However, our approach

does not combine evidence until after propagating each frame through the CNN separately.

Recently proposed network architectures [52, 100] aim to jointly process stacks of frames,

sometimes in combination with optical flow [100]. Such networks could explicitly take ad-

vantage of motion information or specific temporal sequences of hand gestures to further

improve hand pose-based inference from egocentric cameras.
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6.3.2 BEYOND HANDS

The work presented in this dissertation underlined the potential of computer vision as an

effective tool in the scientific analysis of visual data collected with head-mounted cameras.

While we focused on hands as one particularly interesting subject to study in this context,

there are arguably many more ways in which the combination of wearable cameras systems

and powerful vision algorithms can yield novel insights into the visual systems of humans

(or even other animals [48]).

We are particularly interested in extending our work to further investigate the devel-

opment of visual attention and visual object learning in infants. One paradigm that we

are actively studying is to utilize deep neural networks as human proxies to evaluate the

learnability of real-world visual input captured from wearable cameras [7]. For example,

in a scenario where infants and parents jointly play with a set of toys, CNNs trained on

first-person data (from either parents or infants) for the task of toy object recognition could

yield interesting differences in the way the two groups visually explore and perceive these

objects. Adding eye gaze tracking to simulate the effects of central and peripheral vision in

this learning context is an interesting future direction.

Lastly, recent advancements in deep learning combine computer vision with another

research area: natural language processing (NLP). For example, researchers have proposed

networks that process an image and generate a sentence describing the image (e.g. “A

little girl is eating piece of cake.”) as an output [51]. This process in generally referred

to as image captioning. A related topic is that of visual question answering [3]. Here,

the network receives two inputs, an image and a question regarding the image (e.g. “How

many horses are in this image?”), and then aims to produce the correct answer. While

these systems currently rely on labeled large-scale photo datasets, evaluating pre-trained

networks with real-world, first-person data could potentially open up exciting new directions
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to jointly study visual learning and language learning. Again considering the scenario of

infant-parent toy play, one could image a system that tries to learn the mapping between a

novel toy object and its name by interpreting both the infant’s visual input as well as the

language description of the parent.

Overall, we believe that computer vision methods have matured enough in recent years

to provide reliable annotations for many interesting applications related to wearable camera

systems. Moreover, as outlined in this section, deep learning-based computer vision systems

have the potential to be directly used as models for visual learning, which (particularly in

the context of first-person vision) could provide new insights into how we see the world

around us.
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[4] Pablo Arbeláez, Bharath Hariharan, Chunhui Gu, Saurabh Gupta, Lubomir Bour-

dev, and Jitendra Malik. Semantic segmentation using regions and parts. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 3378–3385,

2012.

[5] Vassilis Athitsos and Stan Sclaroff. Estimating 3d hand pose from a cluttered image.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2,

pages II–432, 2003.

[6] Dana H Ballard, Mary M Hayhoe, Polly K Pook, and Rajesh PN Rao. Deictic codes

for the embodiment of cognition. Behavioral and Brain Sciences, 20(04):723–742,

1997.

95



[7] Sven Bambach, David J Crandall, Linda B Smith, and Chen Yu. Active viewing in

toddlers facilitates visual object learning: an egocentric vision approach. In Proceed-

ings of the 38th annual meeting of the Cognitive Science Society, 2016.

[8] Sven Bambach, Linda B Smith, David J Crandall, and Chen Yu. Objects in the center:

how the infant’s body constrains infant scenes. In 6th Joint IEEE International

Conference on Development and Learning and Epigenetic Robotics (ICDL). IEEE,

2016.

[9] Paul J Besl and Neil D McKay. A method for registration of 3d shapes. IEEE Trans

on PAMI, 14(2):239–256, 1992.

[10] Alejandro Betancourt, Miriam M. Lopez, Carlo S. Regazzoni, and Matthias Rauter-

berg. A sequential classifier for hand detection in the framework of egocentric vision.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Work-

shops, June 2014.

[11] Alejandro Betancourt, Pietro Morerio, Carlo S Regazzoni, and Matthias Rauterberg.

The evolution of first person vision methods: A survey. IEEE Transactions on Circuits

and Systems for Video Technology, 25(5):744–760, 2015.

[12] Vinay Bettadapura, Irfan Essa, and Caroline Pantofaru. Egocentric field-of-view lo-

calization using first-person point-of-view devices. In IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 626–633, 2015.

[13] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization

via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

23(11):1222–1239, 2001.

96



[14] James R Brockmole, Christopher C Davoli, Richard A Abrams, and Jessica K Witt.

The world within reach: Effects of hand posture and tool use on visual cognition.

Current Directions in Psychological Science, 22(1):38–44, 2013.

[15] George Casella and Edward I George. Explaining the gibbs sampler. The American

Statistician, 46(3):167–174, 1992.

[16] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep colorization. In IEEE Inter-

national Conference on Computer Vision (ICCV), pages 415–423, 2015.

[17] Brian Clarkson, Alex Pentland, and Kenji Mase. Recognizing user context via wear-

able sensors. In IEEE International Symposium on Wearable Computers, page 69,

2000.

[18] Laura J Claxton, Dawn K Melzer, Joong Hyun Ryu, and Jeffrey M Haddad. The

control of posture in newly standing infants is task dependent. Journal of experimental

child psychology, 113(1):159–165, 2012.

[19] Laura J Claxton, Jennifer M Strasser, Elise J Leung, Joong Hyun Ryu, and Kath-

leen M O’Brien. Sitting infants alter the magnitude and structure of postural

sway when performing a manual goal-directed task. Developmental psychobiology,

56(6):1416–1422, 2014.

[20] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature

space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(5):603–619, 2002.

[21] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

97



[22] Joshua D Cosman and Shaun P Vecera. Attention affects visual perceptual processing

near the hand. Psychological Science, 2010.

[23] David Crandall, Pedro Felzenszwalb, and Daniel Huttenlocher. Spatial priors for part-

based recognition using statistical models. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 10–17, 2005.

[24] Christopher C Davoli and James R Brockmole. The hands shield attention from visual

interference. Attention, Perception, & Psychophysics, 74(7):1386–1390, 2012.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 248–255, 2009.

[26] Aiden R Doherty, Daragh Byrne, Alan F Smeaton, Gareth JF Jones, and Mark

Hughes. Investigating keyframe selection methods in the novel domain of passively

captured visual lifelogs. In Proceedings of the 2008 International Conference on

Content-based Image and Video Retrieval, pages 259–268. ACM, 2008.

[27] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In IEEE International Conference

on Computer Vision (ICCV), December 2015.

[28] Ali Erol, George Bebis, Mircea Nicolescu, Richard D Boyle, and Xander Twombly.

Vision-based hand pose estimation: A review. Computer Vision and Image Under-

standing, 108(1):52–73, 2007.

98



[29] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. The pascal visual object classes (voc) challenge. International Journal of

Computer Vision, 88(2):303–338, 2010.

[30] Alireza Fathi, Ali Farhadi, and James M Rehg. Understanding egocentric activities.

In IEEE International Conference on Computer Vision (ICCV), pages 407–414, 2011.

[31] Alireza Fathi, Jessica K Hodgins, and James M Rehg. Social interactions: A first-

person perspective. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1226–1233, 2012.

[32] Alireza Fathi and James Rehg. Modeling actions through state changes. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 2579–2586,

2013.

[33] Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning to recognize objects in ego-

centric activities. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3281–3288. IEEE, 2011.

[34] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image seg-

mentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[35] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient belief propagation for

early vision. International journal of computer vision, 70(1):41–54, 2006.

[36] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition by

unsupervised scale-invariant learning. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), volume 2, pages II–264, 2003.

[37] Ross Ed Flom, Kang Ed Lee, and Darwin Ed Muir. Gaze-following: Its development

and significance. Lawrence Erlbaum Associates Publishers, 2007.

99



[38] Tom Foulsham, Esther Walker, and Alan Kingstone. The where, what and when of

gaze allocation in the lab and the natural environment. Vision research, 51(17):1920–

1931, 2011.

[39] John M Franchak, Kari S Kretch, Kasey C Soska, and Karen E Adolph. Head-

mounted eye tracking: A new method to describe infant looking. Child development,

82(6):1738–1750, 2011.

[40] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2014.

[41] Stephanie C Goodhew, Davood G Gozli, Susanne Ferber, and Jay Pratt. Reduced

temporal fusion in near-hand space. Psychological Science, page 0956797612463402,

2013.

[42] Davood G Gozli, Greg L West, and Jay Pratt. Hand position alters vision by biasing

processing through different visual pathways. Cognition, 124(2):244–250, 2012.

[43] Mary Hayhoe and Dana Ballard. Eye movements in natural behavior. Trends in

cognitive sciences, 9(4):188–194, 2005.

[44] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srinivasan,

Alex Butler, Gavin Smyth, Narinder Kapur, and Ken Wood. Sensecam: A retrospec-

tive memory aid. In UbiComp 2006: Ubiquitous Computing, pages 177–193. Springer,

2006.

[45] Berthold K Horn and Brian G Schunck. Determining optical flow. In 1981 Technical

symposium east, pages 319–331. International Society for Optics and Photonics, 1981.

100



[46] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

[47] A. Ihler. Kernel Density Estimation (KDE) Toolbox for Matlab. http://www.ics.

uci.edu/~ihler/code/kde.html.

[48] Yumi Iwashita, Asamichi Takamine, Ryo Kurazume, and MS Ryoo. First-person

animal activity recognition from egocentric videos. In 22nd International Conference

on Pattern Recognition (ICPR), pages 4310–4315. IEEE, 2014.

[49] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the ACM International Conference on

Multimedia, pages 675–678. ACM, 2014.

[50] Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi Electric

Research Lab TR-20003-96, 3:14, 2003.

[51] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating

image descriptions. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[52] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural

networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 1725–1732, 2014.
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