
Case Adaptation with Neural Networks:
Capabilities and Limitations

Xiaomeng Ye[0000−0002−2289−1022], David Leake[0000−0002−8666−3416]

and David Crandall

Luddy School of Informatics, Computing, and Engineering
Indiana University, Bloomington IN 47408, USA
{xiaye, leake, djcran}@indiana.edu

Abstract. Neural network architectures for case adaptation in case-
based reasoning (CBR) have received considerable attention. However,
architectural gaps and general questions remain. First, existing architec-
tures focus on adaptation of numeric attributes alone. Second, some pro-
posed neural network adaptation architectures operate directly on pairs
of cases, so could be performing direct prediction instead of adaptation.
Third, it is unclear how the effectiveness of CBR systems with neural
network components compares to that of networks alone. This paper
addresses these questions. It extends a neural network-based case differ-
ence heuristic (NN-CDH) approach to handle both numeric and nom-
inal attributes, in an architecture that applies to both regression and
classification domains. The network predicts solution difference based
on problem difference, ensuring that it learns adaptations. The paper
presents experiments for both classification and regression tasks that
compare performance of a neural network to a baseline CBR system and
CBR variants with different retrieval schemes and adaptation schemes,
on both real data and controlled artificial data sets. In these tests, CBR
with the extended NN-CDH generally performs comparably to the base-
line neural network, and NN-CDH consistently improves the results from
naive retrieval but may worsen the results of network-based retrieval.

Keywords: Case Adaptation, Case Difference Heuristic, Hybrid Sys-
tems, Neural Network-Based Adaptation, Nominal differences

1 Introduction

Neural network architectures for case adaptation have been the subject of consid-
erable study within the case-based reasoning community. However, gaps remain
both in architectural capabilities and in fundamental questions of system be-
havior. First, existing architectures focus on adaptation of numeric attributes;
adapting nominal attributes is an open challenge, made harder because of the
lack of standard methods for expressing such adaptations in network architec-
tures. Second, some proposed neural network adaptation architectures take as
input a query and retrieved case and generate a solution, which raises a ques-
tion about whether they truly learn adaptation—–in principle, they could learn



to ignore the prior case and simply generate a solution from scratch. Third, the
performance benefit of using CBR systems with neural network components over
other models is unclear. This paper presents research on these questions.

This paper introduces a method for neural network adaptation of nominal
attributes based on expressing the difference between two one-hot encoded nom-
inal values as a vector, and extends the NN-CDH adaptation approach [12] to
predict a solution difference given a problem difference, where the differences
can involve nominal attributes. In contrast to the previous version of NN-CDH
for classification, this guarantees learning adaptation knowledge. Extensive ex-
periments on standard regression and classification data sets, and on artificial
data sets, compare the extended NN-CDH with other models. Some trends of
results paralleled those obtained in previous tests [12, 20], providing additional
support for those trends as general characteristics of neural network adaptation.

The experimental results suggest that NN-CDH is most useful when (1) re-
trieval is relatively good, in the sense of providing a starting point harmonized
to learned adaptation knowledge (cf. [9, 18]) and (2) queries are relatively novel,
so adaptation is needed, and yet not too novel, which could require adaptation
capabilities beyond the learned adaptation knowledge.

The results illustrate three lessons. First, good case retrieval alone may sur-
pass other ML methods such as neural networks. Second, learned adaptation
may actually worsen the retrieval result if the two processes are not harmonized.
This point is beyond the scope of this paper but examined in our previous work
[11]. Third, directly integrating neural networks into a CBR system may lead to
results comparable to the counterpart neural network, but is not a “magic bul-
let” for superior performance. Even with comparable performance, CBR offers
benefits such as interpretability. However, the results suggest that to reliably
surpass statistical AI methods, symbolic knowledge will be necessary.

2 Background

Neural Network Adaptation Learning by the Case Difference Heuristic: CBR
researchers have explored many machine learning techniques for acquiring case
adaptation knowledge. Because of the difficulty of codifying adaptation knowl-
edge, especially in poorly understood domains, there has been particular interest
in data-driven methods [2–4, 13, 17]. Hanney and Keane’s case difference heuris-
tic (CDH) approach [5] is a method for learning adaptation knowledge from
the case base, by comparing pairs of cases and attributing their solution dif-
ference to their problem difference. Originally, the CDH approach was applied
to learning adaptation rules, but other variants have been explored, including
network-based approaches. Liao, Liu, and Chao [13] train a neural network on
case pairs to predict solution difference based on problem difference. Leake, Ye,
and Crandall [12] take a similar approach but train the neural network with
adaptation context in addition to problem/solution differences. They call this
method the neural network-based case difference heuristic (NN-CDH) approach.



Case Adaptation Involving Nominal Attributes: The work mentioned in Sec-
tion 2 all focuses on case adaptation for regression tasks, based on numeric
attributes. As noted by Craw et al. [3], adaptation involving nominal attributes
is difficult compared to numerical attributes because there is no natural cal-
culation for symbolic similarity (for retrieval) or dissimilarity (for adaptation).
Some previous works have studied non-neural methods for learning case adap-
tation involving nominal attributes. For example, Jarmulak, Craw and Rowe [8]
present a case-based method that learns adaptation cases for both numeric and
nominal features. Jalali, Leake, and Forouzandehmehr [6] combine a statistical
method with an ensemble approach. Craw et al. [3] propose two methods to
adapt nominal attributes: first, a coarse-grained method indicating whether a
nominal attribute should remain the same or change, and second, a multi-class
adaptation which proposes the target solution directly.

Initial Version of NN-CDH for Classification: The initial version of NN-CDH
for classification followed the second route proposed by Craw et al. [3]; Ye et
al. [20] modify NN-CDH into an approach called C-NN-CDH which predicts
a target solution (class label) based on a source case and a target problem.
It was tested in comparison to other classification algorithms including SVMs
and neural networks. Those experiments supported that C-NN-CDH can achieve
state-of-art case adaptation and classification results.

However, C-NN-CDH operates differently from other CDH methods (includ-
ing NN-CDH) that work directly with problem/solution differences. C-NN-CDH
takes a source case and a target problem as inputs. It is not guaranteed to make
use of the source case to truly perform adaptation; in principle it could learn
to find a target solution based on the target problem only. In response, this pa-
per proposes a single adaptation model that learns from differences of nominal
features/labels and therefore guarantees the learning of adaptation knowledge.

NN-CDH can handle nominal feature differences but not nominal label dif-
ferences. To address this, we use the following encoding scheme. If a nominal
feature is one-hot encoded into a vector of numbers (with a single “1” and mul-
tiple “0”s), it can be treated as multiple numerical features and processed by the
neural network. Two such vectors can be subtracted from one another to form
a nominal difference, which can be then passed to the input layer of NN-CDH.
However, NN-CDH’s last layer uses a single neuron with the linear activation
function to predict a numerical output. This numerical output is the solution
difference in a regression task. This output neuron cannot represent a nominal
difference in the solution.

Both the studies on NN-CDH and C-NN-CDH methods (we will refer to
both as NN-CDHs for short) compared CBR systems using NN-CDHs with their
counterparts, neural network systems that predict target solution directly from
target problem [12, 20]. Ye et al. [20] show that NN-CDH performs comparably
to the counterpart neural network system on certain data sets. Leake, Ye and
Crandall [12] hypothesize that NN-CDHs can outperform end-to-end network
methods, for example, when the query is novel in a high dimensional space.



However more evidence is needed to assess this hypothesis. This paper reports
experiments to elucidate NN-CDH behavior.

Siamese Networks for Similarity Assessment: Siamese networks [1] are a neural
network architecture that can predict the distance between two input samples.
A siamese network is composite of two identical feature extraction networks and
a subtraction layer. Given two input vectors (in our context, two feature vectors,
one describing a query and the other the problem addressed by a prior case),
the feature extraction networks extract their features and the subtraction layer
compares their features and outputs a value indicating the distance (often using
a sigmoid function) between the two cases. Siamese networks have been used
as the similarity measure in case retrieval [14, 15], with good performance. This
study refers to a KNN retrieval process that uses a siamese network as similarity
measure as SN retrieval.

The Relationship Between Retrieval and Adaptation: Smyth and Keane observed
that for efficient adaptation, CBR retrieval and adaptation knowledge must be
tightly connected [18], and Leake, Kinley and Wilson [9] illustrated the efficiency
benefit of coordinating similarity and adaptation learning. Leake and Ye [11]
showed that even when strong network models are trained for both retrieval
and adaptation, adapted solutions might be less accurate than the retrieved
solution if the retrieval and adaptation knowledge are not coordinated—i.e., if
the retrieved cases are close to the real solution by the similarity metric but not
easily adaptable, or if the adaptation model is not trained to adapt such retrieval
results. The experiments in this study tested a CBR system adapting results
from either 1-NN retrieval or SN retrieval. The experiments further support
that when both the retrieval model and the adaptation model are well trained
individually but not in harmony with each other, adaptation may worsen the
result of retrieval.

3 NN-CDH for both Classification and Regression

The research reported in this paper extends NN-CDH to perform adaptation for
both regression and classification task domains. If the domain is regression, the
model works identically to the original NN-CDH [12]. The following first explains
the case adaptation process applicable to both classification and regression do-
mains, then introduces a network method for handling nominal difference, and
last discusses the neural network structure of NN-CDH and how it works with
both numerical and nominal differences.

3.1 General Model of Case Adaptation

Given a query describing a target problem, the standard CBR adaptation pro-
cess first retrieves a case whose problem is similar to the query. The system
calculates the difference between the retrieved problem and the query problem,



and modifies the solution of the retrieved case based on the problem difference.
NN-CDH augments the difference information by using the retrieved problem as
context for the adaptation. It uses both that context and the problem difference
to predict a solution difference.

If the system task is a regression task, NN-CDH calculates the difference of
two values over a numerical attribute by subtracting the two values. However, in
classification tasks, each case contains a solution description that is a nominal
label (Multi-class labeling is not within the scope of this study). The neural
network of NN-CDH needs to handle outputs of differences of nominal attributes.

3.2 1-Hot/1-Cold Nominal Difference

NN-CDH handles nominal differences as follows. Given a nominal-valued at-
tribute n that can take any of a set d different possible values for that attribute,
one-hot encoding converts n into a group of d binary bits {n1, n2, ...nd}, where ni

is ‘1’ and all others bits are ‘0’s. Given two nominal values n = {n1, n2, ...nd} and
m = {m1,m2, ...md} of the same attribute, their 1-hot/1-cold nominal difference
(or “nominal difference” for short) is defined as

n−m = {n1 −m1, n2 −m2, ...nd −md} (1)

Given two cases in a classification task, their problem difference is calculated
as a vector of individual feature differences concatenated, which may or may not
involve nominal differences; Their solution difference is the nominal difference
of their class labels. If the two cases are of the same class, then the solution
difference is all ‘0’s, indicating no difference between their solutions; Otherwise,
the solution difference contains exactly one ‘1’ and one ‘-1’ (hence the name
“1-hot/1-cold”), indicating changing from one class into another. Nominal dif-
ferences are vectors that can be either input or output of NN-CDH, allowing
NN-CDH to learn the projection from problem difference to solution difference
in a classification task.

As a side benefit, the problem difference may contain both nominal and
numerical differences, allowing interaction between the two categories of feature
differences. This benefit is similar to that of a classification neural network which
learns one-hot encoded nominal values and numerical values together.

3.3 Neural Network Structure of NN-CDH

Given a neural network structure for a given domain and task, the network
structure of the NN-CDH for it is similar. The main difference is in its first and
last layers. The first layer needs to have more neurons to accommodate both
adaptation context and problem difference. The last layer needs to express pre-
dicted solution difference. The last layer is a dense layer using the tanh activation
function, as opposed to the linear activation function in the original NN-CDH.

For regression, the last layer is a single neuron, producing a solution difference
between −1 and 1 to increase or decrease a retrieved solution. For classification,



Algorithm 1 Pseudocode for the Training and Usage of NN-CDH

1: procedure Training(cases)
2: pairs← assembled pairs of cases
3: NN -CDH ← new neural network
4: CDH data ← {}
5: for each source and target in pairs do
6: CDH data.append(
7: [prob(source),prob(source)− prob(target):sol(source)− sol(target)])

8: NN -CDH.fit(CDH data)
9: return NN -CDH
10: procedure Adapt(query,retrieval)
11: retrieved← retrieval(CB, query)
12: sol diff ← NN -CDH.predict(prob(retrieved), prob(retrieved)− prob(query))
13: if Task is regression then
14: r ← sol(retrieved)− sol diff
15: else if Task is classification then
16: r vector ← sol(retrieved)− sol diff #element-wise subtraction
17: r ← argmax(r vector)

18: return r

the last layer is a dense layer with d neurons, where d is the dimension of a one-
hot encoding of the classification label. Each neuron can have a value between −1
(indicating “change to this class”) and 1 (indicating “change from this class”).

3.4 Training and Adaptation Procedure

The training and adaptation procedures follow the original NN-CDH, but with
some modification. They are illustrated in Algorithm 1.

During training, pairs of training cases are assembled as training data for
NN-CDH. For each pair, their problem difference and solution difference are
calculated. One problem description of the two cases is used as the adaptation
context. The problem difference and the adaptation context are concatenated
to form the input of the NN-CDH and the solution difference is the expected
output of the NN-CDH. Last, the NN-CDH is trained using backpropagation
and the mean squared error as the loss function.

During adaptation, the NN-CDH predicts a solution difference based on a
problem difference and an adaptation context. Depending on the task domain,
the retrieved solution is modified according to the solution difference in one
of two ways. If it is a regression task, the retrieved solution subtracting the
predicted solution difference forms the final solution (as in the original NN-
CDH). If it is a classification task, the retrieved solution is a one-hot encoding
of the class of the retrieved case. The retrieved solution subtracts the predicted
solution difference element by element. The maximum bit of the resulting vector
is used to determine the final solution (Ties are broken arbitrarily).



4 Evaluation

Our evaluation addresses two questions: Does NN-CDH consistently improve the
result of retrieval, and how does a CBR system using NN-CDH perform when
compared to a neural network of equivalent computational power?

4.1 Systems Being Compared

This study tests six different methods and compares their performance in terms
of prediction accuracy. They are: 1) a baseline neural network, 2) k-nearest
neighbor (k-NN), 3) a CBR system whose retrieval is either 1-NN retrieval or
SN retrieval and whose adaptation is either a rule-based CDH or an NN-CDH.
The rule-based CDH is a baseline adaptation method (referred as CBA in the
work of Craw et al. [3]) where the case pairs are stored in an adaptation case
base. The rule-based CDH uses a non-optimised 1-NN retrieval to select the
case pairs based on the adaptation context and problem difference and applies
the solution difference as the adaptation. Because there are two variations of
retrieval and two of adaptation, four variations of CBR systems are tested. The
six different methods are referred as “all models” in the following text.

The neural networks may have more or fewer layers and neurons per layer
to accommodate the varying complexity of different data sets. In our imple-
mentation, the neural networks have 2-4 hidden layers, each of which has 8-128
neurons. For every task domain, the baseline neural network is almost identical
to the NN-CDH and they share the same number of layers, neurons and activa-
tion functions, except for the first layer because NN-CDH takes in adaptation
context and problem difference. This is to ensure fair comparison of the two
models because they share similar complexity. The structure of the NN-CDH is
as discussed in Section 3.3. The last layer of the baseline neural network uses
a sigmoid activation function for regression or softmax activation function for
classification. The baseline neural network model is trained with the loss func-
tion of mean squared error in regression or with the loss function of categorical
cross entropy for classification. Such designs of neural networks for regression
and classification are widely used.

Both k-NN and 1-NN are default implementations from the scikit-learn pack-
age [16]. They use Euclidean distance over problem feature values to calculate
distance between cases. All cases are weighted equally. Our k-NN used k=3.
When the CBR system uses a siamese network over the Euclidean distance for
similarity measure, a separate siamese network is trained to predict the similarity
of two given cases.

The siamese network for case retrieval measures the similarity between two
cases. The feature extraction network is composite of three dense layers (of
dimension 32, 32 and 16) with dropout layers (dropout rate = 0.1) in between.
For harder problems, the number of neurons in each layer is multiplied by 4.

The two features extracted from two cases are then passed to the subtraction
layer which outputs the element-wise feature distance. Last, this is passed into
a final dense layer to output a single similarity score. The final layer uses the



ReLU activation function for regression or the sigmoid activation function for
classification. The siamese network is trained with the mean average error loss
for regression or the contrastive loss for classification.

4.2 Assembling Case Pairs for Training

While the baseline neural network and the k-NN are trained from cases directly,
both the siamese network and the NN-CDH need case pairs for training. Using
all possible pairs may be infeasible, as a case base of n cases would have n2 pairs.
Multiple strategies exist for selective case pair assembly [7]. In all experiments
of this study, we use n neighboring pairs (each case is paired with its nearest
neighbor) and 10n random pairs (each case is randomly paired with another
case). From these pairs, 90% are used for training and the rest for validation. We
observed that this design choice can heavily influence the models, for example,
a model may not accommodate two highly different input cases if the model is
not trained with enough random pairs. However, this design choice is not the
focus of this study.

To train the siamese network, we assemble pairs of cases’ problem descriptions
as input and determine their distance as the expected output of the siamese
network. For regression, the distance is the absolute value of the distance between
the two cases’ solutions. For classification, the distance is 0 if the two solutions
are the same and 1 otherwise. To train the NN-CDH, we use problem differences
and solution differences of the case pairs.

4.3 Data Sets

This experiments test on five standard regression data sets (Airfoil, Car, Student
Performance, Yacht, Energy Efficiency) and five classification data sets (Credit,
Balance, Car, Yeast, Seeds), as well as on artificial data described in Section 4.4.
As preprocessing, all numeric attributes are scaled to the range of [0,1] and all
nominal attributes are one-hot encoded. This way the expected output values
match the output range of the NN-CDH. Each data set is tested with 10-fold
cross validation, and on three different settings:

– The normal setting: The standard setting where 90% of the cases are used
as the training set (out of which 90% of the cases are used for training and
the rest for validation) and 10% as the test set. The case pairs are assembled
from the training set. The models are first trained and then tested on the
whole test set.

– The novel setting (X): Similar to the normal setting with the difference that:
For every test case, we remove its top R% neighbors (based on Euclidean
distance on their problem descriptions) in the train set to form a trimmed
train set. All models are trained on the trimmed train set and then tested
on that single test case. This follows the design of a previous novel setting
experiment [12].



– The novel setting (Y): Similar to the novel setting (X), we still remove top
R% neighbors of a test case but the Euclidean distance is based on the
solution description rather than the problem description. All models are
trained on the trimmed train set and then tested on that single test case.
This is a modification of another previous novel setting experiment [21].

The novel setting (X) simulates when the models are not trained with cases
whose problem descriptions are similar to the query problem. The novel setting
(Y) simulates when the models are not trained with cases sharing similar solu-
tions as the query solution. The novel setting (Y) is arguably harder than the
novel setting (X) because a CBR system in the later setting may still retrieve a
case with good enough solution. The results for 1-NN retrieval under the novel
setting (Y) are not reported because the trend is already clear in the novel set-
ting (X). Moreover, the novel setting (Y) does not apply to classification data
sets because two cases can be very different but still share the same class label.
Removing cases based on class label does not necessarily make the query novel.

The data sets and various settings have been used in previous studies [12, 20,
21]. This study tests both classification and regression using the same models.
We chose R% as 40%. For the normal setting of simpler data sets, experimental
results are averaged over one ten-fold cross validation run. However, the novel
settings have very high computational costs. Even one run on the whole test set
is extremely expensive, because each test case requires a re-training of all the
models. We resort to randomly choosing only 50 cases from a test set for testing.

In the novel settings, the performance of any model on test cases can vary
tremendously as the novelty and difficulty of the test cases vary. Consequently
almost all the differences in novel settings are not statistically significant.

Experimental Results on Real Data Sets We observed the error rate of
models on regression in Table 1 (lower is better) and accuracy of models on
classification in Table 2 (higher is better). It is important to note that in novel
settings the variance is very high (not shown in the tables) and performance
differences of the models are not statistically significant. However, the general
trend still reveals some interesting comparisons between the models:

1. SN retrieval is almost always better than 1-NN retrieval.
2. The relation between retrieval methods and NN-CDH is complicated:

(a) NN-CDH consistently improves the result of 1-NN retrieval in regression,
but less so in classification. We believe this is largely because (1) it is
easier to retrieve a case with the same label in classification than to
retrieve a case with the exact same solution in regression, and (2) nominal
attributes hide subtle differences between cases (ex. a major problem
difference may lead to no class change or a minor problem difference
may lead to a class change) and therefore case pairs are harder for NN-
CDH to learn.

(b) NN-CDH often fails to improve the result of SN retrieval. When the
retrieval process is very good but not in synchronization with the adap-



Setting Retrieval
Neural
Network

k-NN Retrieval Rule CDH NN-CDH

Normal 1-NN 7.42% 6.87% 6.94% 5.80% 5.71%
Normal Siamese 7.60% 6.97% 6.49% 17.06% 8.82%
Novel(X) 1-NN 9.34% 16.88% 17.99% 23.85% 12.02%
Novel(X) Siamese 9.51% 16.20% 8.45% 18.16% 13.84%

Airfoil

Novel(Y) Siamese 8.90% 16.49% 17.18% 22.29% 13.44%
Normal 1-NN 1.52% 1.95% 1.63% 1.81% 1.38%
Normal Siamese 1.47% 1.92% 2.19% 6.89% 1.72%
Novel(X) 1-NN 5.00% 7.42% 8.48% 8.87% 4.31%
Novel(X) Siamese 5.41% 7.36% 2.76% 8.45% 3.61%

Car

Novel(Y) Siamese 5.06% 7.05% 6.20% 9.32% 4.77%
Normal 1-NN 21.61% 25.47% 31.59% 31.03% 29.63%
Normal Siamese 21.38% 25.64% 26.39% 31.66% 30.62%
Novel(X) 1-NN 16.42% 18.73% 23.30% 27.00% 24.33%
Novel(X) Siamese 16.32% 19.30% 21.00% 21.90% 25.82%

Student
Performance

Novel(Y) Siamese 23.73% 26.17% 32.00% 28.70% 33.38%
Normal 1-NN 7.53% 13.77% 11.48% 6.85% 8.05%
Normal Siamese 5.94% 13.87% 2.18% 17.11% 7.71%
Novel(X) 1-NN 10.50% 13.15% 16.72% 26.96% 10.50%
Novel(X) Siamese 10.14% 12.96% 3.52% 24.25% 6.43%

Yacht

Novel(Y) Siamese 15.64% 19.56% 13.68% 19.77% 23.22%
Normal 1-NN 7.36% 7.53% 14.62% 15.06% 13.04%
Normal Siamese 7.20% 7.55% 2.17% 12.51% 4.89%
Novel(X) 1-NN 17.96% 23.46% 25.83% 22.29% 14.88%
Novel(X) Siamese 17.82% 23.44% 16.40% 22.41% 13.20%

Energy
Efficiency

Novel(Y) Siamese 17.07% 24.19% 23.72% 20.74% 12.95%

Table 1. Error Rates of Models on Regression Data Sets

tation, in this case NN-CDH, the adaptation model does not necessarily
improve the retrieval result. See discussion in Section 2.

3. Neural network, SN retrieval and NN-CDH all may achieve best performance
in various settings of different data sets. It is unclear which model will be
most suitable in a given situation but some general trends are observed:
(a) Under normal settings, the neural network is often best performing. Un-

der novel settings, performance of all models degrades.
(b) Under the novel setting (X), 1-NN is much worse than in the normal

setting, but siamese retrieval performs relatively well and is often best.
(c) Under the novel setting (Y), the siamese retrieval also suffers. We observe

that NN-CDH may improve (but sometimes worsen) the retrieval results.
(d) The neural network and the NN-CDH have comparable performance.

This is because the two models share the same structure and computa-
tional power, although trained with different data for different purposes.
Often NN-CDH is slightly worse. This may be because NN-CDH is work-
ing on the retrieval result. If the retrieval result is bad or if the retrieval
and the adaptation are not in synchronization, it is harder to adapt.

(e) As the neural network and the NN-CDH are similar in terms of problem
solving power, if the neural network is underperforming (for example,
if it performs worse than the retrieval method), then NN-CDH is likely
underperforming as well and likely to worsen the retrieval result.

4.4 Artificial Data Sets

Considering the nature of different models, we hypothesize that the locality of the
task domain (whether local regions follow a specific pattern that is sufficiently



Setting Retrieval
Neural
Network

k-NN Retrieval Rule CDH NN-CDH

Normal 1-NN 86.06% 85.34% 85.34% 80.37% 81.10%
Normal Siamese 85.91% 85.06% 80.78% 75.73% 76.34%
Novel(X) 1-NN 77.80% 58.60% 58.60% 58.80% 70.20%

Credit

Novel(X) Siamese 68.00% 48.00% 70.00% 52.00% 76.00%
Normal 1-NN 97.21% 79.00% 79.00% 72.21% 97.15%
Normal Siamese 97.12% 79.44% 98.40% 73.66% 97.28%
Novel(X) 1-NN 84.00% 46.00% 46.00% 56.00% 70.00%

Balance

Novel(X) Siamese 88.00% 46.00% 90.00% 42.00% 70.00%
Normal 1-NN 99.87% 86.36% 86.36% 79.21% 99.27%
Normal Siamese 99.71% 84.84% 97.63% 71.12% 97.05%
Novel(X) 1-NN 82.00% 52.00% 52.00% 52.00% 84.00%

Car

Novel(X) Siamese 78.00% 60.00% 82.00% 64.00% 62.00%
Normal 1-NN 58.83% 54.65% 54.65% 50.68% 52.90%
Normal Siamese 58.84% 54.42% 48.18% 45.19% 49.03%
Novel(X) 1-NN 42.00% 40.00% 40.00% 38.00% 34.00%

Yeast

Novel(X) Siamese 40.00% 26.00% 26.00% 26.00% 30.00%
Normal 1-NN 93.71% 92.67% 92.67% 89.33% 94.29%
Normal Siamese 94.76% 93.33% 94.29% 90.48% 95.71%
Novel(X) 1-NN 46.00% 26.00% 28.00% 28.00% 48.00%

Seeds

Novel(X) Siamese 42.00% 14.00% 44.00% 32.00% 40.00%

Table 2. Accuracy Rates of Models on Classification Data Sets

different from the global landscape) is one factor causing disparity between the
performances of models. Obviously, there are many other factors of a data set
that might influence a model’s performance, for example, the sparsity of feature
values, the dimension, and the time-spatial relationship between features.

To further study the trends and find scenarios where one model may outper-
form the others, we created a way to generate artificial data sets with variable
locality. The artificial cases take the form of

{x1, x2, ...xk : y}, 0 ≤ xi ≤ 1

where {x1, x2, ...xk} is a problem description with k features and y is the solution.
k weights {w1, w2, ...wk} and k biases {b1, b2, ...bk} are randomly sampled from 0
to 1, each corresponding to one feature. For each case, xi are randomly sampled
from 0 to 1 and y is determined by two steps: 1) Find the first integer i such
that x1 ≤ i/k; 2) Calculate the value of y as y = wi ∗ xi + bi.

This data set can be converted to include nominal features and even nominal
solutions. For example, the first feature x1 can be converted to an nominal
feature of k possible values. If converted this way, the data set shows a perfect
example where the nominal and numerical features are independent and yet
interact, as the first feature (nominal) determines which numerical feature to
use in calculating the solution.

On a high level, the first feature x1 is globally used while the other features
are only locally used depending on the value of x1. Therefore this data set
demonstrates a good example of task domains involving both global and local
landscapes. By tuning the number of features k, we can modify the locality of
the data set. When k = 1, the data set follows a single global rule; When k is
large, the data set follows many local rules.

We generate data sets of 1000 cases respectively using k = 3, 5, and 7. For
each data set, we test it with all models and three settings: normal, novel (X),



and novel (Y). For each novel setting, we also vary R% to be 10%, 20%, and
30% in order to render gradual influences of the novel settings. To ensure fair
comparison between models, we use the same seed to generate random cases for
each choice of k and to select test queries.

Experimental Results on Artificial Data Sets We observed the perfor-
mance of models in Table 3 where the CBR system uses 1-NN retrieval and
in Table 4 where the CBR system uses SN retrieval. We recorded both the er-
ror rate and standard deviation of each model. Each model is tested with 50
samples under each novel setting. The standard deviation of all models is very
high in novel settings. This renders the comparisons in novel setting statistically
insignificant, but we still believe the average error rates provide interesting data.

Setting
Neural
Network

k-NN 1-NN Retrieval Rule CDH NN-CDH

3 features normal 17.47%(5.37) 9.677%(1.55) 9.818%(2.81) 12.31%(2.42) 9.906%(3.35)
novel 0.1 17.23%(16.4) 14.86%(15.3) 18.57%(19.6) 24.90%(27.3) 9.148%(12.0)
novel 0.2 19.90%(15.8) 19.09%(19.9) 23.94%(21.4) 27.62%(25.1) 11.41%(13.3)remove on X
novel 0.3 22.42%(16.0) 21.00%(17.5) 24.40%(22.3) 30.25%(26.3) 15.41%(15.7)

5 features normal 12.41%(1.66) 16.87%(2.13) 20.68%(1.98) 25.92%(2.12) 11.82%(2.82)
novel 0.1 11.39%(9.71) 17.76%(14.7) 19.28%(22.6) 26.61%(23.4) 9.961%(9.01)
novel 0.2 12.68%(11.6) 22.81%(15.7) 24.98%(23.7) 31.35%(23.9) 12.61%(11.8)remove on X
novel 0.3 13.08%(11.9) 21.13%(18.7) 24.36%(22.4) 35.70%(27.8) 12.89%(11.7)

7 features normal 24.42%(2.69) 25.70%(1.87) 32.08%(2.09) 39.37%(3.18) 25.49%(2.58)
novel 0.1 20.02%(13.6) 25.53%(15.8) 34.56%(22.7) 37.55%(29.3) 23.15%(14.5)
novel 0.2 21.38%(12.2) 25.70%(19.1) 33.92%(23.3) 40.67%(26.6) 23.84%(20.0)remove on X
novel 0.3 22.98%(12.2) 28.35%(16.1) 31.02%(20.7) 36.22%(22.6) 21.82%(15.4)

3 features normal 17.47%(5.37) 9.677%(1.55) 9.818%(2.81) 12.31%(2.42) 9.906%(3.35)
novel 0.1 15.59%(17.6) 13.77%(19.8) 15.27%(22.6) 14.24%(23.7) 10.63%(17.3)
novel 0.2 20.65%(18.0) 17.97%(22.5) 21.64%(23.8) 21.19%(25.4) 16.74%(21.8)remove on Y
novel 0.3 22.33%(19.2) 24.68%(21.8) 26.23%(23.2) 25.05%(24.9) 19.62%(22.0)

5 features normal 12.41%(1.66) 16.87%(2.13) 20.68%(1.98) 25.92%(2.12) 11.82%(2.82)
novel 0.1 12.11%(12.3) 16.81%(14.9) 18.15%(19.6) 21.64%(23.1) 11.83%(11.8)
novel 0.2 18.73%(17.3) 24.74%(18.0) 28.06%(21.5) 26.95%(20.2) 20.88%(18.5)remove on Y
novel 0.3 23.25%(20.7) 31.04%(19.4) 33.68%(19.6) 34.40%(19.2) 21.99%(19.2)

7 features normal 24.42%(2.69) 25.70%(1.87) 32.08%(2.09) 39.37%(3.18) 25.49%(2.58)
novel 0.1 29.76%(14.4) 29.85%(19.4) 33.85%(22.2) 37.84%(21.4) 31.37%(20.5)
novel 0.2 32.92%(17.9) 35.60%(19.3) 38.07%(20.4) 38.89%(22.9) 39.12%(20.7)remove on Y
novel 0.3 35.73%(15.9) 39.03%(17.8) 40.11%(18.6) 41.49%(21.0) 39.42%(19.8)

Table 3. Error rates (and standard deviation) of Models on the Artificial Regression
Data Sets. CBR uses 1-NN retrieval and adaptation is based on the retrieval result.

Many of the observations mesh with those in Section 4.3. We also observed
additional phenomena in the experiments with the artificial data sets:

1. To our surprise, the baseline network performs relatively well (and sometimes
best) in data sets with high locality. This contradicts our hypothesis.

2. Rule-based CDH always downgrades the retrieval result. Rule-based CDH
finds the best case pairs to apply using the naive 1-NN, which works poorly
in this special domain where only two features matter.

3. All models perform better in low-dimension data sets than high-dimension
ones. 1-NN performs well in low-dimension spaces. The NN-CDH further im-
proves the result of 1-NN retrieval, and often achieves the best performance.



Setting
Neural
Network

k-NN SN Retrieval Rule CDH NN-CDH

3 features normal 16.93%(4.94) 9.677%(1.55) 4.338%(1.09) 15.28%(4.23) 9.087%(3.05)
novel 0.1 16.83%(16.5) 14.86%(15.3) 8.870%(15.4) 21.35%(29.8) 8.562%(10.9)
novel 0.2 17.36%(14.3) 19.09%(19.9) 11.36%(15.8) 32.46%(27.5) 13.35%(12.3)remove on X
novel 0.3 22.95%(14.9) 21.00%(17.5) 16.28%(18.0) 36.49%(25.8) 19.17%(18.0)

5 features normal 13.01%(2.44) 16.87%(2.13) 7.322%(1.72) 25.59%(2.94) 12.51%(2.68)
novel 0.1 11.03%(10.6) 17.76%(14.7) 6.017%(10.1) 28.25%(22.7) 9.115%(8.58)
novel 0.2 11.38%(11.3) 22.81%(15.7) 6.954%(9.07) 25.10%(21.2) 12.42%(10.4)remove on X
novel 0.3 12.72%(10.9) 21.13%(18.7) 9.769%(13.1) 22.93%(21.4) 12.48%(11.0)

7 features normal 21.16%(2.38) 25.70%(1.87) 17.92%(4.98) 36.13%(3.47) 23.44%(2.90)
novel 0.1 21.60%(13.3) 25.53%(15.8) 19.76%(19.8) 32.57%(25.6) 24.73%(19.0)
novel 0.2 22.37%(13.0) 25.70%(19.1) 22.13%(20.3) 40.46%(33.8) 25.75%(17.9)remove on X
novel 0.3 25.39%(10.8) 28.35%(16.1) 23.00%(20.6) 38.59%(27.1) 27.47%(18.3)

3 features normal 16.93%(4.94) 9.677%(1.55) 4.338%(1.09) 15.28%(4.23) 9.087%(3.05)
novel 0.1 15.02%(18.3) 13.77%(19.8) 10.46%(13.9) 13.31%(16.6) 9.129%(11.6)
novel 0.2 22.83%(19.4) 17.97%(22.5) 18.77%(21.5) 25.64%(24.3) 16.33%(24.6)remove on Y
novel 0.3 21.29%(20.2) 24.68%(21.8) 22.06%(18.3) 28.12%(25.8) 21.04%(23.8)

5 features normal 13.01%(2.44) 16.87%(2.13) 7.322%(1.72) 25.59%(2.94) 12.51%(2.68)
novel 0.1 10.88%(10.4) 16.81%(14.9) 6.869%(8.68) 21.01%(20.2) 9.752%(9.32)
novel 0.2 19.78%(17.1) 24.74%(18.0) 17.66%(19.0) 33.89%(26.6) 20.01%(16.9)remove on Y
novel 0.3 22.53%(20.2) 31.04%(19.4) 23.35%(20.4) 34.45%(24.1) 24.40%(22.3)

7 features normal 21.16%(2.38) 25.70%(1.87) 17.92%(4.98) 36.13%(3.47) 23.44%(2.90)
novel 0.1 29.28%(15.8) 29.85%(19.4) 27.28%(22.3) 35.69%(22.4) 33.14%(21.8)
novel 0.2 34.26%(17.3) 35.60%(19.3) 36.82%(21.0) 46.45%(27.8) 40.74%(22.9)remove on Y
novel 0.3 36.16%(15.5) 39.03%(17.8) 40.23%(20.4) 41.37%(22.8) 41.06%(20.7)

Table 4. Error rates (and standard deviation) of Models on the Artificial Regression
Data Sets. CBR uses SN retrieval and adaptation is based on the retrieval result.

However, as the dimensionality increases, only two features are relevant and
1-NN retrieves worse results, making adaptation harder for NN-CDH. We
observe when k = 7, the neural network outperforms 1-NN retrieval and
NN-CDH consistently. This trend is not as obvious for SN retrieval.

4. SN retrieval can consistently outperform other models, except under novel
settings (Y). Under a novel setting (Y), even the best possible neighbor’s
solution will be different from the target solution, as all cases with close
solutions are removed. In such situations, we see the neural network and
NN-CDH can outperform SN retrieval.

5. The artificial data set can be perfectly solved if a symbolic system somehow
learns the rule to 1) find the first integer i such that x1 ≤ i/k; and 2)
calculate the value of y as y = wi ∗ xi + bi. However, none of the systems
tested achieve similar proficiency.

5 Conclusion

This paper proposed a way to handle nominal differences in network-based adap-
tation and extended NN-CDH to case adaptation for both classification and re-
gression domains. Experiments with both real and artificial data sets align with
results from previous studies of NN-CDH. In general, NN-CDH achieves com-
parable performance to its counterpart, the traditional neural network. More-
over, SN retrieval may outperform both the neural network and NN-CDH, and
NN-CDH can worsen the result from SN retrieval. This illustrates the need to
harmonize retrieval and adaptation methods [11].



In extensive experimental results, integrating neural network methods into
CBR did not give CBR power beyond the neural network, even on data designed
to test a hypothesized advantage for CBR. There are more sample pairs to
train NN-CDH than samples to train a baseline neural network, which might
provide an advantage [19] but we do not observe that here. On the other hand,
CBR generally achieves performance comparable to the network, making it a
competitive option, especially in tasks for which the intrinsic interpretability of
CBR would make it preferable to a network approach.

The artificial data set, which can be perfectly solved using simple rules, illus-
trates a situation in which neither the neural network or knowledge-light CBR
learns the underlying abstraction well. Symbolic CBR provides the opportunity
to integrate knowledge and task-optimized representations. We envision that a
balanced blend of domain knowledge, brought to bear by symbolic AI methods,
with network-learned methods, has the potential to achieve a performance edge.
We consider the study of such integration to be a key step in advancing the
performance of case adaptation [10].

6 Acknowledgments

This work was funded by the the Department of the Navy, Office of Naval Re-
search (Award N00014-19-1-2655). We thank the members of the Indiana Uni-
versity Deep CBR group for valuable discussions.

References

1. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verifica-
tion using a “siamese” time delay neural network. In: Proceedings of the 6th In-
ternational Conference on Neural Information Processing Systems. pp. 737–744.
NIPS’93, Morgan Kaufmann, San Francisco (1993)

2. Corchado, J., Lees, B.: Adaptation of cases for case based forecasting with neu-
ral network support. In: Soft Computing in Case Based Reasoning, pp. 293–319.
Springer, Berlin (2001)

3. Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence 170, 1175–1192 (2006)

4. F. Zhang, M. Ha, X. Wang, X. Li: Case adaptation using estimators of neural
network. In: Proceedings of 2004 International Conference on Machine Learning
and Cybernetics (IEEE Cat. No.04EX826). vol. 4, pp. 2162–2166 vol.4 (2004)

5. Hanney, K., Keane, M.: Learning adaptation rules from a case-base. In: Proceedings
of the Third European Workshop on Case-Based Reasoning. pp. 179–192. Springer,
Berlin (1996)

6. Jalali, V., Leake, D., Forouzandehmehr, N.: Learning and applying case adaptation
rules for classification: An ensemble approach. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17. pp. 4874–4878
(2017)

7. Jalali, V., Leake, D.: Extending case adaptation with automatically-generated en-
sembles of adaptation rules. In: Case-Based Reasoning Research and Development,
ICCBR 2013. pp. 188–202. Springer, Berlin (2013)



8. Jarmulak, J., Craw, S., Rowe, R.: Using case-base data to learn adaptation knowl-
edge for design. In: Proceedings of the 17th international joint conference on Ar-
tificial intelligence - Volume 2. pp. 1011–1016. IJCAI-01, Morgan Kaufmann, San
Francisco (2001)

9. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources
for case-based reasoning. In: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence. pp. 246–251. Morgan Kaufmann (1997)

10. Leake, D., Crandall, D.: On bringing case-based reasoning methodology to deep
learning. In: Case-Based Reasoning Research and Development, ICCBR-20. pp.
343–348. Springer, Cham (2020)

11. Leake, D., Ye, X.: Harmonizing case retrieval and adaptation with alternating
optimization. In: Case-Based Reasoning Research and Development, ICCBR 2019.
pp. 125–139. Springer (2021)

12. Leake, D., Ye, X., Crandall, D.: Supporting case-based reasoning with neural net-
works: An illustration for case adaptation. In: Proceedings of AAAI Spring Sym-
posium AAAI-MAKE 2021: Combining Machine Learning and Knowledge Engi-
neering (2021), https://www.aaai-make.info/program

13. Liao, C., Liu, A., Chao, Y.: A machine learning approach to case adaptation. In:
2018 IEEE First International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE). pp. 106–109 (2018)

14. Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A convolutional siamese
network for developing similarity knowledge in the SelfBACK dataset. In: Pro-
ceedings of the ICCBR 2017 Workshops, Doctoral Consortium, and Competitions.
pp. 85–94. CEUR Workshop Proceedings (2017), http://hdl.handle.net/10059/
2490

15. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures
from data. Progress in Artificial Intelligence pp. 129–143 (10 2019)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

17. Policastro, C.A., Carvalho, A.C., Delbem, A.C.: Automatic knowledge learning
and case adaptation with a hybrid committee approach. Journal of Applied Logic
4(1), 26–38 (2006)

18. Smyth, B., Keane, M.: Adaptation-guided retrieval: Questioning the similarity as-
sumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)

19. Ye, X., Leake, D., Huibregtse, W., Dalkilic, M.: Applying class-to-class siamese
networks to explain classifications with supportive and contrastive cases. In: Case-
based reasoning research and development, ICCBR-20. pp. 245–260. Springer
(2020)

20. Ye, X., Leake, D., Jalali, V., Crandall, D.J.: Learning adaptations for case-based
classification: A neural network approach. In: Case-based reasoning research and
development, ICCBR-21. pp. 279–293. Springer (2021)

21. Ye, X., Zhao, Z., Leake, D., Wang, X., Crandall, D.J.: Applying the case difference
heuristic to learn adaptations from deep network features. CoRR abs/2107.07095
(2021), https://arxiv.org/abs/2107.07095


