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Abstract. Machine learning for extracting case features can provide
great benefit over feature engineering for retrieval in poorly understood
or hard to characterize domains. The effectiveness of machine learning
with deep neural networks has prompted much interest in neural net-
work approaches to feature learning in case-based reasoning, with sev-
eral works showing the value of feature extraction from input data using
convolutional neural networks. Those approaches are based on plausible
assumptions about where in the networks to extract features for maxi-
mal usefulness. This paper presents an empirical evaluation of those un-
derlying assumptions. We compare three extraction approaches, for an
image classification task: the most common feature extraction method,
extracting after the convolution layer; a recently proposed alternative,
extracting after the densely-connected layers; and a new approach, ex-
tracting after the densely-connected layers using multiple networks. Our
results show that the latter two approaches substantially increase case
retrieval accuracy in example-sparse domains, to which case-based rea-
soning systems are commonly applied.
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1 Introduction

Effective case-based reasoning (CBR) requires high-quality retrieval. Retrieval
quality in turn generally depends on case indexing, using atomic features and
possibly more complex indexing structures to characterize cases. Indexing knowl-
edge may be acquired manually through knowledge acquisition and engineering
(e.g., [7, 16, 20]). The manual acquisition process can provide high quality indices,
but it can be expensive and is not always feasible. For example, even domain
experts may not be capable of providing comprehensive feature vocabularies for
poorly-understood domains or for tasks such as image recognition.

Given the effectiveness of deep learning (DL) at extracting features from data,
it is natural to consider how automated indexing based on DL might supplement



or replace human feature engineering. In CBR research, substantial attention
has been focused on using convolutional neural networks (CNNs) to extract
feature information from multi-dimensional raw input data. For example, CNNs
have been used for extracting features from images for classifying examples with
novel classes [23, 24], and from outputs of three-dimensional movement sensors
for human activity recognition in digital health technologies [19]. As exemplified
in research by Turner et al. [23, 24] and Sani et al. [19], values from feature
vectors created by passing the raw input data through convolution and pooling
layers early on in the network can be extracted before those vectors are further
processed by densely-connected classification layers; these values become the
feature set for similarity metrics in the CBR component of the hybrid system.

Ideally, the convolution and pooling steps in a CNN capture the most salient
input features and structures (e.g., for image data, features such as shapes, edges,
etc.). The outputs from these steps traditionally are conceptualized as the atomic
features of the input. This contrasts with the outputs of the densely-connected
hidden layers, which “mix and match” these features to facilitate classification.
As convolution and pooling steps theoretically highlight atomic features of an
input image, especially in the context of the rest of the network, it is appealing
to map their features into similarity features for CBR, which has led to the use
of this mapping for feature extraction.

However, it is possible that mappings at other, less-explored locations in the
CNN might produce more useful features for similarity assessment in CBR. For
example, the fact that features are combined in the densely-connected layers and
that the final classification depends on the outputs of such combinations suggests
that useful features might be extracted from the densely-connected layers in a
CNN. This was proposed by Kenny and Keane [13] in the context of extracting
and modifying features to generate counterfactual explanations. We hypothesize
that feature extraction from the densely-connected layers will improve feature
quality for the goal of increasing accuracy of case-based image classification.

This paper compares three methods that extract information in different ways
from a single testbed network architecture. The extraction methods include (1) a
traditional technique that extracts output values from after the convolution and
pooling layers as features [19, 23, 24], (2) a previously proposed but less deeply-
explored method that extracts the result of processing by the densely-connected
layers—the inputs to the output layer of the CNN—as features [13], and (3) a
novel approach that extracts as features the inputs to the output layer of n
binary CNN classifiers (as opposed to one n-class classifier). Results show that
extracting from before the output layer and from multiple binary classifiers can
produce features that enable superior case-based classification accuracy, with es-
pecially notable performance improvements for lower-dimensional feature spaces
and more class-dense scenarios.



Fig. 1. Procedural diagram for a CNN in an aircraft sensor domain. Figure by Iuliana
Tabian, Hailing Fu, and Zahra Sharif Khodaei is licensed under CC BY 4.0 [22].

2 Potential Feature Extraction Points in CNNs

CNNs refine the information from raw input data into a classification prediction
through multiple layers. At the highest level of abstraction, a CNN may be
divided into two sections. The feature extraction section consists of a series of
layers designed to process the multi-dimensional raw data into a set of features
passed to the classification section, which is a multilayer perceptron network
(Figure 1).

The feature extraction section typically consists of convolution and pooling
layers that iteratively transform values from multi-dimensional input data. Each
convolution layer consists of several different filters that are applied iteratively
across the input to produce feature map output values. For each unit (e.g., pixel)
in the input P indexed by (i, j), and for a filter F of size (2k + 1) × (2l + 1)
(generally k = l), the output O is calculated by:

Oij =

k∑
m=−k

l∑
n=−l

Fmn ∗ P(i−m)(j−n) (1)

Thus, the output of each convolution layer is a set of modified feature maps,
one for each filter in the layer. In pooling steps, the resolution of each feature
map generated by the preceding convolution layer is reduced by replacing each
unit in a non-overlapping r × s region (again, usually r = s) by the value of a
representative unit from the region. For the post-convolution method described
below, features are extracted following the last pooling layer.

The resulting feature maps from all convolution and pooling layers in the
feature extraction section are then flattened into a one-dimensional feature vector
and passed as inputs into the classification section. The features are passed
through multiple fully-connected dense layers until the final outputs are used as
inputs to the output layer. The same final outputs are extracted as features for
the post-dense and multi-net methods described below.



3 Related Work

Case retrieval quality is critically dependent on the quality of the indices used [7,
14, 16, 17, 20]. Feature vocabularies form the foundation of case indices and are
commonly generated through knowledge engineering processes, reflecting com-
prehensive domain analysis [7, 16, 20]. However, manually generating the right set
of features can be costly. In addition, the resulting feature set may be incomplete
or unreliable when domain knowledge is imperfect. Symbolic learning methods
have long been applied to refining feature selection and weighting (e.g., [1, 3–
5, 8]), and recent work has begun to explore extraction of features and feature
weights from deep neural networks. For example, Grace et al. [9] use a DL system
in a recipe design domain to identify ingredient associations from the case base,
and the DL system uses this information to retrieve example cases that address
competing creativity and plausibility criteria. Shin et al. [21] apply an artificial
neural network architecture to learn feature weightings for a CBR-based data
mining task. Turner et al. [23, 24] leverage CNN-generated features in a CBR
classifier that classifies images for which the CNN has low confidence, defining
an implicit class of images that may fall outside of known classes. Their method
extracts features from different network architectures analogously to our post-
convolution method, illustrating how various CNN models may be leveraged to
generate CBR feature information. Sani et al. [19] apply CNNs to process multi-
dimensional data from tri-axis sensors that measure human movement. Features
extracted from after the convolution and pooling layers in their model are then
used to classify the type and intensity of the activity using CBR retrieval.

Feature extraction from networks has also been pursued in the context of
explainable AI. Kenny and Keane propose the use of CBR “twin systems,”
which explain network outputs by presenting cases retrieved using information
extracted from the networks [12]. They also study the use of extracted feature
information to generate counterfactual cases, with a method that extracts fea-
tures from the output of the densely-connected layers of a CNN [13], a concept
that we explore in this paper for extracting features for classification. Graziani
et al. [10] use regression analyses to select entries from a field of potential con-
cepts to identify those that a given neural network system is most likely to be
learning; to achieve this mapping, the regression algorithm draws from feature
data extracted from multiple regions in the network architecture.

One of the motivations for our work is the integration of knowledge-engineered
and network-generated features. Weber et al. [25] leverage additional knowledge-
engineered features to augment network-based explanation selection, and Bar-
nett et al. [2] integrate interpretable, CBR-derived principles directly into a CNN
image classifier. Specifically, in Barnett et al.’s work, network information is fun-
neled toward sub-sections of the network architecture represented by prototype
images in a way reminiscent of CBR retrieval. Wilkerson, Leake and Crandall [26]
explore feature and weight learning using a CNN system to extract information
from images to augment knowledge-engineered features. That work focuses on
how learned features and knowledge-engineered features can be used in concert



Fig. 2. Feature extraction locations for post-convolution, post-dense (both left), and
multi-net (right) feature extraction methods.

for greater retrieval quality and echoes the feature extraction design of Kenny
and Keane [13]. This paper solely explores feature extraction from networks.

4 Three Structure-Based Feature Extraction Methods

This paper examines three approaches for extracting CBR features/indices from
a CNN architecture: one well-studied prior method [19, 23, 24], one method that
has been explored for explanation [13] but, to our knowledge, not for classifica-
tion, and a new approach proposed in this paper:

1. Post-convolution: Extracting feature values from between the feature ex-
traction and classification sections in the CNN architecture

2. Post-dense: Extracting feature values from the outputs of the densely-
connected hidden layers in the CNN’s classification section

3. Multi-net: Expanding the single CNN architecture into multiple binary
CNNs for each prediction class, and extracting features as in the post-dense
approach

Figure 2 illustrates the architectures and extraction locations for each of these
approaches.

4.1 Post-Convolution Feature Extraction

As described in Section 2, iterations of convolution and pooling steps ideally
remove noise and highlight atomic features from raw input data before passing



the resulting output to the classification section. Therefore, if we assume that
these output values represent the atomic features of the original data (e.g., as
in [19, 23, 24]), features extracted from between the feature extraction and clas-
sification sections (i.e., features in the flattened feature vector passed into the
dense layers) are appropriate features to provide to the CBR retrieval process.
The retrieval process can then use the values of those features as inputs to, for
example, the distance calculation for k-nearest neighbors.

4.2 Post-Dense Feature Extraction

The post-dense method extracts as features the outputs from the last densely-
connected hidden layer in the classification section (i.e., the inputs to the output
layer in the CNN). This design is inspired by the observation that if the feature
extraction section generates atomic features from raw data, then the classifica-
tion section aggregates/combines those features into richer structures more di-
rectly relevant to the classification task. From the perspective of index extraction,
those structures might correspond to richer indices with more useful informa-
tion. This method has not received as much attention as the post-convolution
method in DL-CBR hybrid research, but some previous works have begun to
explore this approach (e.g,. [13, 26]).

4.3 Multi-Net Feature Extraction

During retrieval, feature applicability for classification can depend on the class
to which a query case is being compared. For example, features corresponding
to airplanes in an image are much more useful when classifying an airport than
a library. Traditionally, the issue of relative feature importance is addressed
through feature weighting, but sensitizing the feature space itself may be sim-
ilarly effective. Consequently, feature extraction that enables generating local
features, rather than requiring that the same features be used across the entire
space, might be more useful for case indexing.

To generate local features, we propose a novel feature extraction approach,
multi-net feature extraction. Rather than training a single n-class CNN classifier
and extracting features, multi-net feature extraction is based on training n binary
CNN classifiers that each distinguish between examples of a unique class and
all examples that are not in that class. Multi-net extraction creates a unique
feature generation approach for each class, and it uses different feature values
based on the class of the candidate case to which the query case is compared (i.e.,
calculating similarity as if the query and candidate are both members of the same
class). This potentially provides a benefit analagous to local similarity measures
(e.g., [18]), but rather than resulting in locally adjusted feature weights, it results
in an adjusted feature vocabulary. This increases flexibility by enabling richer
or different representations when needed. A tradeoff of this method is increased
processing cost: the training time for multi-net is increased by roughly a factor
of n relative to a standard CNN architecture.



5 Evaluation

Our evaluation compares the quality of features extracted by the methods de-
scribed previously, based on classification accuracy using the extracted features.

5.1 Hypotheses

Our evaluation tests the following hypotheses:

1. Post-convolution feature extraction will lead to the weakest accu-
racy. As discussed, the post-convolution method can be seen as extracting a
set of initial atomic features, rather than the more refined/complex features
generated by extracting from later in the network.

2. Post-dense feature extraction will result in higher accuracy than
post-convolution methods. As discussed, the features from post-dense
extraction can be seen as representing a richer range of factors.

3. Multi-net feature extraction will yield the highest retrieval accu-
racy. As discussed, the quality of the multi-net features can benefit both
from the richer features of the post-dense method and from the flexibility of
using different feature sets for different classes.

5.2 Test Domain and Test Set Selection

The approaches are evaluated on the Places data set for image recognition, which
has been used as a standard for competition for DL-based image recognition
algorithms [27]. This data set consists of images representing various common
locations (e.g., alley, library, airport, etc.).

To test the approaches across problems with different numbers of classes,
we generate three distinct subsets of the raw data set, respectively containing
image examples from ten, twenty-five, or fifty classes. Classes for each subset are
selected randomly, and for each experiment, these class subsets are frozen for
consistency between iterations. In each experimental iteration, training images
are selected randomly from the classes represented in the subset to create the
training set. To build the training sets, an equal number N of images is chosen
from each class represented in the set. Two groups of experiments are conducted.
The first group keeps constant the number of examples per class regardless of the
number of classes (resulting in the system having more total examples when there
are more classes). The second keeps the total number of examples constant by
decreasing the number of examples per class as the number of classes is increased.

For each group, three values of N are considered—10, 20, and 50. In the first
group, N = 10 and all experiments use the same number of images per class,
regardless of the number of classes. In the second group, the value of N depends
on the number of classes; in the fifty-class experiment, N = 10, for twenty-five,
N = 20, and for ten, N = 50, so that 500 training images are used for each
experiment. Because CBR systems are often used in example-sparse scenarios,
training set sizes are purposefully kept small in our experiments.



5.3 Testbed System

As this work only pertains to retrieval, the testbed case-based classifier has
no adaptation component. The classifier performs retrieval using 1-NN and a
Euclidean distance metric to determine case similarity. For these experiments,
all features are weighted equally, but future work could assess the effect of feature
weighting or extraction of both features and weights from CNN systems.

The CNN used to test each of the three approaches has the same structure. It
derives closely from the AlexNet architecture [15] but deviates from AlexNet in
excluding the bias term for output layer neurons. The rationale for this change
is that the bias term influences the other input values during training but is
not extracted along with other features. Consequently, a bias term could affect
feature values in the CNN but remain unaccounted for when those features are
transferred to the CBR system, reducing the ability of the extracted features to
truly reflect the CNN’s behavior.

During experimentation involving post-convolution feature extraction, the
number of filters in the last convolution layer is modified to vary the number of
features extracted for the CBR system; for the other two approaches, the number
of neurons in the dense layers is similarly modified for the same purpose.

The activation function for all dense layers is RELU, and, as our previous
work using post-dense extraction showed that training for fifty epochs produced
the best results [26], we continue that training structure for this work. Each
experiment iteration (i.e., training, feature extraction, and CBR-based retrieval
testing) is repeated thirty times, recording mean and standard deviation values.
For some multi-net tests involving the largest numbers of features, the tests
terminated prematurely due to memory constraints, resulting in only twenty
or twenty-five iterations overall. However, any impact would be felt only at
the rightmost data point in the graph, and the results remain consistent with
observed trends.

5.4 Accuracy Testing and Informal Upper Bound

In the evaluation, accuracy values are calculated by leave-one-out testing per-
formed on the training set. These values show the relative performance of the
three feature extraction methods. The figures with accuracy results also show
the performance of our CNN architecture, trained on the training set—as done
to generate the features extracted for the CBR system—and also tested on
the training set. These results give an informal indication of an upper bound
performance—the best performance that could result from the features avail-
able to the CBR system, were they applied in a neural network architecture to
the data from which they were generated. This can be taken to roughly reflect
the predictive power of the feature set under ideal conditions.

Results for the CNN upper bound should not be taken as suggesting that
CNNs necessarily outperform CBR in this task, for two reasons. First, the CNN
was trained on all examples, including each query being processed; in contrast,
the CBR systems process each query with its corresponding case omitted from



the case base. Second, the strongest CBR performance would require tuning
similarity weighting, which is not done in our experiments.

6 Results and Discussion

6.1 Comparative Performance

Figures 3 and 4 show training accuracy versus number of features for different
numbers of classes, comparing the three methods and the CNN classifier. In
general, the post-dense approach significantly outperforms the post-convolution
extraction method, and in many instances, the multi-net method outperforms
both the post-dense and post-convolution methods, especially for smaller num-
bers of features. There are only a few instances in which the post-convolution
method rivals either novel method, and only for limited numbers of features.
The overall pattern supports the three hypotheses and suggests that the novel
approaches improve feature quality. The results also illustrate several tradeoffs:

When the total number of examples varies, there is a tradeoff be-
tween more classes increasing the number of training examples and
increasing the degrees of freedom: Especially in the trends for post-dense
extraction, the maximum accuracy values are highest in the 25-class case when
holding the number of training examples per class constant. This illustrates a
tradeoff between the number of classes and the number of examples per class.
Specifically, a larger number of classes affords a greater number of training ex-
amples overall but creates more degrees of freedom in the classification problem
itself. The opposite is true when the number of classes is reduced. Thus, we see a
local maximum in the 25-class data for the post-dense results, as it represents a
“happy medium” between these two factors. This is further supported by results
when the number of training examples is held constant (Figure 4). In this in-
stance, accuracy curves for each approach essentially parallel one another across
the different numbers of classes, with overall decreases in accuracy with a higher
number of classes easily attributable to fewer training examples per class.

Fewer features can harm CNN convergence, while many features can
lead to a “curse of dimensionality”: For each method (except the CNN
classifier), accuracy broadly decreases as the number of features increases. Also
evident in the post-dense method’s accuracy curves, an even more pronounced
decrease in accuracy occurs for small numbers of features (we hypothesize that
a similar trend exists for the multi-net method for smaller numbers of features
than we show here). We believe that the first phenomenon is a consequence of
the “curse of dimensionality,” with individual features having increasingly small
influence on distances between examples in feature-dense spaces. Note that we
do not see this in the CNN classifier, as CNNs tend to be robust to (and often
more performant with) large numbers of features. Relative to the second phe-
nomenon, if a neural network has access to too few parameters during training,



Fig. 3. Accuracy versus number of features for the 50-class case (top), 25-class case
(middle) and 10-class case (bottom), using ten training examples per class. Error bars
represent one standard deviation. Boxed regions at left on each graph are shown en-
larged at right.



Fig. 4. Accuracy versus number of features for the 50-class case (top), 25-class case
(middle) and 10-class case (bottom), using 500 training examples for each. Error bars
represent one standard deviation. Boxed regions at left on each graph are shown en-
larged at right.



it may not converge on a representative feature set. Thus, we hypothesize the
existence of a tradeoff for the number of features in the CBR system—with too
few features, retrieval performance suffers because there are not enough features
for the network to converge while training, and with too many features, the
distance calculations are in so many dimensions that the individual features are
ineffective. Furthermore, the “happy medium” for this tradeoff should also be
dependent on the number of classes (i.e., more features are required to distin-
guish between a larger number of classes); this assertion is supported by the
data (e.g., the location of the maxima for the post-dense method).

Multi-net has an accuracy-training time tradeoff instead of an accuracy-
explainability tradeoff: The end-to-end CNN classifier, expected to be an up-
per bound, outperforms all methods almost all of the time in each experiment.
However, surprisingly, the multi-net approach outperforms the CNN for small
numbers of features. In this way, multi-net performance contrasts with the tra-
ditional conceptualization of the accuracy-explainability tradeoff [11]: compared
to the CNN it trades off increased training time against accuracy, while (through
the use of CBR) retaining explainability.

6.2 Discussion

A primary observation from the experiments is the superior performance of
the multi-net approach. Case-based classification using the local features gen-
erated by the multi-net approach frequently outperforms the other case-based
approaches, and it outperforms the CNN classifier for small numbers of features.
This is reasonable because fewer degrees of freedom in doing binary rather than
multiclass classification would suggest that fewer features are required to dis-
criminate between the classes. Instead of trading off accuracy and explainability,
as in other models that use extracted features for CBR, for small numbers of
features multi-net trades off accuracy and training efficiency.

In addition, we hypothesize that the local feature extraction of the multi-
net approach is critical to its performance. Specifically, the multi-net feature
extraction model, which selects a set of features based on the class of a candidate
case, can be seen as predicating features on the CBR component of the model,
as a form of the traditional CBR situation assessment process, which elaborates
and rerepresents features of an input query to be commensurate with the feature
vocabulary of the case base. Here, instead of asking the feature extraction model
“what features are present in the query?” it asks multi-net “what features related
to class x are present in the query?”

It is natural to ask whether a process similar to the multi-net process could be
achieved in an end-to-end CNN approach. It would be possible to use a collection
of CNN binary classifiers and select the one that predicts that the query is in
its class. However, in practice, multiple models may answer in the affirmative,
requiring some tiebreaker (e.g., a softmax), raising the question of whether the
result would be significantly different from a multiclass CNN. More research is
needed to quantify the exact factors that enable multi-net’s strong performance.



7 Ramifications for Interpretability

Hybrid systems as explored in this work sit at the intersection between DL
and CBR systems. The nearest-neighbor retrieval and classification process pre-
sented here is interpretable in being able to present cases to explain decisions, a
capability missing from DL systems alone. However, using learned features for
similarity assessment makes such systems less interpretable than a CBR system
applying knowledge-engineered features exclusively, for which case similarity—
the reason the case was selected—could be more readily explained. However, in
domains where a human user can holistically ascribe similarities between a query
case and the retrieved case, this “middle ground” between DL and knowledge-
engineered CBR may provide sufficient interpretability, and there is evidence for
the value of case presentation alone as an explanation mechanism [6].

Furthermore, these approaches (especially multi-net) may be applicable in
domains for which classification accuracy is more important than explainability,
and for which minimal training data exists. However, further research is needed
into the accuracy-interpretability tradeoff when using network-learned features,
as well as into the potential use of methods such as counterfactual/semi-factual
explanation generation [13] to generate additional cases to holistically illuminate
the boundaries for cases considered similar, even if it is not possible to point to
variations of user-understandable features.

8 Conclusions and Future Work

Feature extraction from neural networks can facilitate the application of case-
based reasoning to hard to characterize domains, where knowledge-engineered
feature information may be difficult and/or expensive to produce. Prior work in
feature extraction has focused primarily on extracting features immediately after
the convolution and pooling layers, based on the intuition that such layers will
be best suited to feature extraction because they provide atomic descriptions
of domain features. This paper challenges that assumption, proposing feature
extraction after the dense layers. It presents a new multi-net approach for this
extraction, and, to our knowledge, presents the first comparative evaluation to
assess the performance of alternative extraction locations. The results highlight
the strength of post-dense feature extraction in example-sparse domains, where
CBR systems are often the method of choice; furthermore, they support that
multi-net can provide even stronger performance in lower-dimensional spaces.

In future research, we expect to investigate the use of multi-net feature ex-
traction with different CNN architectures. In addition, building on our prior
work on combining network-learned and expert-provided features [26], we plan to
test its effects on hybrid retrieval using both extracted features and knowledge-
engineered features. We also intend to consider more example-dense training
scenarios and larger datasets, as well as exploring how similarity weights might
be extracted along with features from network architectures to further improve
performance.
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