On Combining Knowledge-Engineered and
Network-Extracted Features for Retrieval

Zachary Wilkerson, David Leake and David J. Crandall

Luddy School of Informatics, Computing, and Engineering, Indiana University
Bloomington IN 47408, USA
{zachwilk,leake,djcran}@indiana.edu

Abstract. The quality of case retrieval in case-based reasoning (CBR)
systems depends on assigning appropriate case indices. Defining feature
vocabularies for indexing is an important knowledge acquisition problem
for CBR, often addressed by hand. The manual process may result in
high-quality vocabularies, but at considerable effort and expense, and
it may be difficult for non-symbolic input such as images. Recently, the
ability of deep learning (DL) to identify important features has made it
appealing for learning to assign case features. However, such methods
may miss features apparent to knowledge engineers. This paper presents
a case study on methods for combining benefits of both engineered and
DL-generated features. It considers case-based classification of cases de-
scribed by both symbolic features and images. It evaluates the power of
both types of features individually, examines how quality of engineered
feature information affects their combined benefit, and tests network
methods to generate weights for their combination. Experimental results
show that in the test domain under suitable circumstances, the combined
approach can outperform either method individually.

Keywords: Case-Based Reasoning, Deep Learning, Indexing, Hybrid Systems,
Knowledge Containers, Integrated Systems

1 Introduction

The performance of CBR systems depends critically on retrieving the right cases.
This depends on the indices used to organize and retrieve cases (e.g., [10, 13, 21]),
which in turn depend on the vocabulary of features from which indices can be
constructed. The feature vocabulary may be generated through a knowledge ac-
quisition process in which experts analyze a domain (e.g., [17]). However, relying
on manual feature acquisition can be problematic. First, especially in instances
where the domain is poorly understood, or in non-symbolic domains (e.g., classi-
fying images), it may be hard to identify the right set of features for a feature vo-
cabulary. Second, developing feature vocabularies may be highly expensive—and
the expense may need to be repeated as vocabularies lose their appropriateness
over time due to concept drift. Third, the situation assessment process required

to characterize inputs in terms of the vocabulary may be difficult, resulting in
partial, erroneous, or noisy case descriptions.

Some of the previous problems can be alleviated by applying machine learn-
ing (ML) to feature selection and similarity assessment. For example, learning
techniques may be used to identify features to consider [6] or assign feature
weightings [4]. Recently, substantial effort has focused on the potential of DL
approaches to generate features and feature weightings. For example, convolu-
tional neural networks (CNNs) have been used to extract feature information
from images [23] and tri-axis sensors [20]. In that work, rather than relying on
human-engineered features and situation assessment, the CBR system imports
feature information from a network and uses it as the sole feature source during
retrieval.

Such methods facilitate feature generation and enable features to be tuned as
data changes. However, they are not guaranteed to capture the deep relationships
that may be contained in expert-generated features. Thus each approach has ben-
efits and drawbacks. In domains where a set of knowledge-engineered (KE) fea-
tures exists, it is natural to consider combining human-engineered and network-
learned (NL) features extracted using ML techniques. This paper presents a new
method for extracting NL features and a case study on combining symbolic KE
features with features extracted from CNNs for a classification task. It addresses
how the benefit of combining such features varies with symbolic feature quality.
As the effectiveness of retrieval depends strongly on feature weightings (e.g.,
[1]), it also studies how feature weight learning can be applied when merging
the two sets of features, and its benefit. Results show that in the test domain,
which combines symbolic and image information, the combined approach can
outperform either method individually. This performance increase can be aug-
mented with certain weight-learning strategies, though results also suggest that
the benefit may be primarily for low-dimensional spaces, so new strategies may
be necessary to accommodate feature-dense spaces created by NL techniques.

2 Convolutional Neural Networks for Classification

As a reference for the architecture described later in this paper, we begin with
a brief description of convolutional neural networks for image classification. A
CNN for image classification begins with alternating convolution and pooling
layers that identify common shapes, contrasts, etc. present in similar regions of
images with the same class during training; these extracted features then are
“flattened” into a single layer and passed through a dense multilayer perceptron
(MLP) section connected into the final output layer. A graphic representation
of this process is shown in Figure 1. CNNs may be applied broadly to multi-
dimensional data (e.g., image data [23] or sensor data that tracks movement in
three dimensions [20]), where their architecture enables processing and condens-
ing of complex data into features based on data relationships. Such features then
may be extracted from the CNN’s internal structure and applied to the feature
set in a case-based reasoner.

- Healthy
- Alarm
- Danger
O [- Damaged
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN O ep SOFTMAX
Aircraft Structural Condition

Feature Learning

Sensing Input Classification

Fig. 1. Procedural diagram for a CNN in an aircraft sensor domain. Figure by Iuliana
Tabian, Hailing Fu, and Zahra Sharif Khodaei is licensed under CC BY 4.0 [22].

3 Related Work

There has been much CBR research on feature learning using symbolic learning
methods. Recently, there has been much interest in combining CBR and DL
(e.g., [8,14,16,19]) Much of this work focuses on CBR-DL hybrids in which DL
components provide capabilities such as feature extraction to a CBR system.

Feature Learning A range of symbolic methods have been used to refine fea-
tures/indices for CBR, often using knowledge-rich techniques. One example of
feature learning strategies involves hybridizing with model-based learning to in-
form feature selection [3]. Bhatta and Goel apply a model-based system to select
indices based on features simulated in the model. Barletta and Mark [2] propose
explanation-based indexing. Cox and Ram [5] and Fox and Leake [6] apply in-
trospective reasoning to refine features as expectation failures are encountered.
Such methods rely on rich knowledge but can do powerful feature learning.
More recent research focuses on applying neural networks to directly infer
similarity information from raw input data. Such methods do not require do-
main knowledge within the system (however, the dependence of network archi-
tecture on input structure makes many such methods domain-specific). Sani et
al. present a system for human activity recognition that extracts features from a
sensor and then uses a CNN to interpret the input data, which is represented in
three dimensions [20]. The generated features are then compared against known
wave form cases to infer the type, duration, etc. of activity that generated the
sensory input data. Other approaches go a level of abstraction higher and look
at the similarity functions themselves. Grace et al. [7] propose a hybrid system
for creating plausible, yet unexpected, recipe designs. Their system applies DL
techniques to infer relationships between cases in a case base; this provides ad-
ditional knowledge that can be patterned to expectations when attempting to
address the parameters of a presented goal. Mathisen et al. [15] use neural net-
works to learn similarity measures and also analyze different types of similarity
metrics in depth. Outside of CBR, Kraska et al. [11] explore feature learning

using linear models and neural networks to aggregate and discriminate between
features, showing performance benefits over traditional structures like B-trees,
hashmaps, and bloom filters; they also propose combinations of ML techniques
or multi-dimensional indices as potential means to greater efficiency.

Inductive feature learning is especially applicable in domains such as image
recognition, for which CNNs have been used to extract feature data from complex
inputs to inform case-based reasoning systems. Turner et al. [23] apply this to
novel object recognition. A CNN architecture classifies inputs that correlate
with known classes with high confidence; when encountering “new” inputs with
a correspondingly lower confidence, the image features are extracted from the
CNN to be used in similarity calculations to group the new input with other
similar images. As a result, the combined system can be sensitive to images that
do not have known classification labels by loosely classifying them in terms of one
another. Turner et al. extract features for their CBR system from between the
convolution/pooling and dense layers of the CNN; we take a different approach
by extracting features just before the output layer (details in Section 4).

Learning Weights Many strategies exist to dynamically generate feature weights
for case-based classification. Wettschereck et al. [24] present a survey of methods
including hill-climbers, which modify feature weights according to a gradient to
gradually maximize classification accuracy; genetic algorithms, which evaluate
weights based on fitness as measured relative to the similarity calculation; and
conditional probability models, which define weights based on the probability
that a given class has the feature in question, among other wrapper and filter
models. However, this is also a ripe domain for neural networks, which pro-
vide numerous opportunities to analyze relative importance of input features.
In particular, Kenny and Keane [9] analyze multiple methods involving gener-
ating weights by taking advantage of neural network properties. One method
generates weights by perturbing input elements individually and tracking the
corresponding change in accuracy; this method builds on the assumption that
feature importance correlates with the magnitude of accuracy change. We ex-
plore a version of this approach in Section 5, with slight modification for our
test domain.

4 Bridging Engineered and Network-Extracted Features

This paper focuses on two aspects of bridging engineered features with features
generated by DL:

1. Extracting features from DL models to use in concert with KE features
2. Using neural networks to learn feature weights for both KE features and
network-learned features

It investigates these in the context of a case study of case-based classification.
We propose a general model integrating three major components as shown in

Training Classification
Images, Labels KE Features, Labels Query Image, Assoc.
T KE Feature Values
CNN
| Convolution/Pooling | > >
‘ y A 4
| D | Weight Learning Case-Based Reasoner
Model
NL Features I NL Weights
A4
(o] | '
utput layer . .
putiave Classification
Features Weights Retrieval

Fig. 2. Illustration of data flow through our model.

Figure 2. In the model, features are learned by a CNN from training data, feature
weightings for the new features and existing knowledge engineered features are
learned by another network, and the features and weights are used in a case-
based classifier. Specifically, components are:

1. A CNN that extracts features from input data (e.g., images) to be used for
case-based classification

2. A neural network that generates weights for both learned and knowledge
engineered features, for the classifier similarity calculation.

3. A case-based classifier that uses a combination of engineered features and
features from (1), weighted according to (2), for case retrieval.

CNN Architecture Our feature extraction CNN derives closely from the
AlexNet architecture [12]. AlexNet is a foundational CNN architecture for image
classification that employs a batch-normalized interleaving of five convolution
and three pooling layers that are flattened into a network of two fully-connected
dense layers that feed into the output layer. Our method deviates from other
approaches on extracting CBR features from a CNN [20, 23] by extracting fea-
tures from the dense layer preceding the output layer in the CNN, rather than
before the dense layers. The rationale for this approach is as follows. An output
node’s activation in a neural network is determined by a weighted sum of the
outputs from the previous layer. Thus, extracting features immediately after the
final convolution layer neglects intermediate layers’ modifications to the feature
set ultimately used to perform classification, motivating extracting features from
later in the CNN structure. Also, we remove the bias node from the CNN output
layer. This ensures that NL features are not skewed during training, because a

bias node would factor into the weighted sum used for prediction but would not
be extracted as a feature.

Sequential Architecture and Weight Generation Approaches To gener-
ate network learned weights, we apply a sequential architecture (i.e., successive
fully-connected layers) mapping inputs corresponding with each feature directly
to the classifying output layer.

1. Directly extracted weights: After training, local feature weights are gen-
erated for each case in the case base. For each feature, the local feature
weight is the normalized absolute value of the weight of the link leading
into the output node corresponding to that case’s class (for later similarity
calculations, only magnitude is important). This produces a localized set
of feature weights for the cases that are unique on a per-class basis. Both
linear and RELU activation functions were considered for the output layer
before applying softmax to select a class prediction, with comparative results
reported in Section 5.

2. Weights from Perturbation: Calculating weight values based on the shift
in prediction accuracy as feature inputs (KE features only, NL features only,
or both combined into a single input set) are perturbed individually, accord-
ing to the following equation derived from Kenny and Keane [9]:

w; = Aacc(fi, o) +2AaCC(fz‘, —0) (1)

Here weight w; is the average change in prediction accuracy that results
from perturbing feature f; by £o. In contrast to extracting weights from the
network directly, this generates a global set of feature weights applied to all
cases, regardless of class.

5 Evaluation

Our evaluation addresses the following questions:

1. How is classification accuracy affected by degradation of reliability of input
(KE features)?

2. How does using NL features in concert with KE features affect classification
accuracy?

3. How do CBR retrieval weights based on NL weights influence classification
accuracy for different combinations of NL and KE features?

5.1 Test Domain and Testbed System

Test Domain: As a test domain including both engineered features and non-
symbolic information, we selected the Animals with Attributes 2 data set (AwA2)

[25]. This data set, designed for one-shot learning, includes over 37000 im-
ages across 50 animal classes; each class also has an associated feature vec-
tor of 85 features corresponding to 85 symbolic descriptions (e.g., herbivorous,
desert habitat, quadrupedal, etc.). Each feature is assigned a continuous value
in [—1.0,100.0]. Because all instances of a class are assigned the same feature
vector, with no variance, these feature vectors yield “perfect” classification accu-
racy when used for retrieval. To simulate imperfect situation assessment assign-
ing symbolic feature values and/or symbolic feature characterizations that are
not 100% predictive, we use perturbation. This is defined by a multiplier = that
is applied to each feature value individually; x is defined as a random integer on
the interval [1, n] with 50% probability or its inverse with 50% probability. We
consider values of n on the interval [1,10).

Testbed System: As case adaptation is beyond the scope of our work, the testbed
case-based classifier has no adaptation component. The classifier retrieves the
nearest neighbor (i.e., 1-NN) using a weighted Euclidean distance metric for
similarity calculations, using either local feature weights (for directly extracted
weights) or global weights (for weights extracted by perturbations).

Properties of the chosen data set were reflected in parameter choices for the
networks. The CNN architecture was modified to use 1024 nodes in the dense
layers (rather than the traditional 4096) to concentrate extracted information
into fewer features in an effort to make comparisons between KE and NL features
more one-to-one. However, this was only partially possible, since smaller layers
increase training time and decrease accuracy, to the point where epoch training
steps do not converge. Even though we found a one-to-one comparison impossible
as a result, the number of nodes was still used as it did not appear to negatively
impact classification accuracy. The output layers of both the CNN and sequential
architecture contained 50 nodes based on the number of AwA2 classes, and the
input layer of the sequential architecture contained one node for each feature.
Specifically, this translated to 85 nodes when considering only KE features, 1024
when considering only NL features, and 1109 when considering both feature sets
in tandem. Lastly, we found that ¢ = 0.8 led to the highest retrieval accuracy in
preliminary tests when generating weights using perturbation, likely due to the
lack of variance in the KE feature set.

5.2 Preliminary Experiments to Set Network Parameters

Both NL features and NL weights depend on training the networks from which
they are generated. We first determined the number of epochs to use, to balance
the trade-off between predictive accuracy and low training time. For the CNN,
models are trained on ten randomly-selected images from each of the fifty classes
in the AwA2 data set, for a total of 500 images. Sequential architecture models
are trained on the 1024 NL features generated by the CNN and/or the 85 KE
features. All epoch training evaluations are performed for a number of epochs on
the interval [10, 100] in increments of ten, with higher-resolution tests conducted

HEpocthTrain Accuracy|Test AccuracyHEpocthTrain Accuracy|Test AccuracyH

10 0.176 £ 0.028 | 0.045 £ 0.008 60 1.0 0.085 4+ 0.015
20 0.765 £ 0.063 | 0.064 £ 0.009 70 1.0 0.083 £ 0.014
30 0.974 £ 0.010 |0.076 = 0.014 80 1.0 0.088 +£0.014
40 0.997 £ 0.003 | 0.076 £ 0.012 90 1.0 0.088 +0.013
50 1.000 £ 0.001 | 0.081 £0.010 || 100 1.0 0.092 £ 0.013

Table 1. Comparing classification accuracy values (+ one standard deviation) for the
sequential architecture for a given number of epochs, evaluated using the training set
and an independent testing set.

for feature-dense spaces (i.e., requiring fewer then ten training epochs). Evalu-
ations are performed thirty separate times and averaged to compute a sample
mean and its standard deviation.

Tuning Results From these procedures, we chose the following parameter set-
tings. For learning NL features, the CNN model is trained for 50 epochs. The
sequential architecture is trained for 80 epochs when learning weights for KE fea-
tures only, 5 epochs when learning weights for NL features or both NL and KE
features combined, and 50 epochs when learning weights using feature perturba-
tion. These decisions reflect values that maximize classification accuracy on the
training set while also minimizing the number of epochs. Further research could
investigate finer tuning parameters, such as learning rate and early stopping.

We note that for our modified AlexNet architecture, training appears to hit a
point of diminishing returns after fifty epochs. This pattern holds for prediction
both on the training set and on an independent testing set of 500 new images
(Table 1). Furthermore, the accuracy on the testing set is significantly lower,
suggesting that a general set of NL features is difficult to learn from the training
set, and/or that the model overfits to the training set. However, considering
that the model is designed to learn features that discriminate between cases of
different classes, overfitting relative to a given case base may be acceptable so
long as network training can efficiently be redone as new cases are added.

5.3 How Retrieval Accuracy Changes with KE Feature Degradation

Experiment Overview We explore relationships between retrieval accuracy
and perturbation of the KE feature set. Specifically, retrieval accuracy is evalu-
ated for leave-one-out experiments that are unweighted or weighted using linear
or RELU activation functions for the sequential architecture to facilitate NL
weight generation; each experiment is conducted for thirty iterations per value
of n to establish a sample mean and standard deviation.

Sensitivity of Retrieval Accuracy to Feature Quality Results for these
experiments are shown in Table 2. Predictably, retrieval accuracy decreases as

HnH Unweighted

Linear

RELU

|

0.440 £ 0.028

0.235 £ 0.045

0.238 £ 0.041

0.458 £ 0.030

0.251 £ 0.044

0.253 £ 0.040

0.506 £+ 0.025

0.266 £ 0.047

0.287 £0.035

0.567 £ 0.028

0.291 £ 0.056

0.313 £ 0.033

0.651 £ 0.028

0.363 £ 0.053

0.358 £ 0.057

0.785 £ 0.022

0.481 £ 0.059

0.449 £ 0.060

0.931 +£0.014

0.625 £ 0.068

0.642 £ 0.046

0.999 £ 0.002

0.941 £ 0.035

0.924 £ 0.028

N WO O | 0| ©

1.0

1.0

1.0

Table 2. Comparing classification accuracy values (+ one standard deviation) across
the various perturbation levels. Results are shown for unweighted features and features
weighted using linear and RELU output activation functions for the sequential network.

the perturbation magnitude increases, because a higher degree of noise is present
in the KE feature set. Given this relationship, it is interesting to consider the
possibility of using retrieval accuracy with KE features alone as proxy for the
comprehensiveness/completeness of the KE feature set (and by extension, under
what conditions its combination with a NL feature set might provide the greatest
benefit). More research is required to provide a finer-grained assessment. We
observe that the linear and RELU activation strategies appear less performant
than the unweighted strategy; we explore this result more deeply in Section 5.5.

5.4 How using KE and NL Features in Concert Affects Accuracy

Experiment Overview We evaluate classification accuracy using KE and NL
features in tandem by considering various perturbations of KE features in concert
with the NL feature set against retrieval accuracy using each set individually.
Each experiment is performed using unweighted leave-one-out testing on the case
base of 500 cases using uniform feature weights for thirty iterations to establish
a sample mean and standard deviation.

Benefits of Combining Features As shown in Figure 3, there frequently ex-
ists an interesting—if not always statistically significant—increase in classification
accuracy when considering a combination of KE and NL features over either
feature set’s individual classification accuracy. This accuracy increase is most
evident and most significant when both feature sets considered individually lead
to similar classification accuracy values (i.e., when the perturbation magnitude
is such that their accuracy values are similar) and when classification accuracy
using NL features alone is higher than when using KE features alone.

The existence of this “accuracy bump” has multiple potential causes. For one,
general accuracy trends and standard deviation patterns appear to be dominated
by the NL features; this is unsurprising given that many more NL features (1024)

10

KE NL Both KE NL Both ' KE NL Both

Fig. 3. Comparison of classification accuracy values for different feature perturbations
(n=7A;n=06 B; n=>5 C). Error bars represent one standard deviation relative to
thirty iterations.

are considered than KE features (85). While it can be argued that this blunts
the significance of the observed trend, it is important to provide further context.
In particular, the modified AlexNet CNN produces novel features that capture
aspects of the feature space not adequately represented in the KE feature set.
That is, even though this trend may at least partially be attributed simply to
the existence of more features, the NL features must also be significant/helpful
in order to produce an increase in accuracy. The real question becomes whether
the increase in accuracy when considering the union of the feature sets comes
strictly from the existence of new features or from new interplay between the
two feature spaces that creates a whole greater than the sum of its parts. This
proved difficult to measure directly given the chosen domain. In preliminary tests
a CNN having only 85 nodes per dense layer never converged (i.e., it could never
outperform a random baseline).

Implications for Hybrid Systems These data suggest an interesting poten-
tial implication. Specifically, if this accuracy increase can be at least partially
attributed to the nature of the two sets of features in a hybrid system (rather
than simply an influx of new features alone), such a result could highlight direct
hybridization of KE and NL features as a new avenue for accuracy improvement
for CBR retrieval. That is, in the presence of additional environmental informa-
tion (represented by the images in the AwA2 domain), a neural network may
be able to generate features that are both novel when compared against the
KE feature set and especially useful in concert with the KE feature set. This is
naturally difficult to verify due to the well-documented inexplainability of neu-
ral network features, but future work focusing on detailed feature relationships
and/or correlations, while likely computationally costly, might be able to identify
useful correspondences between the feature sets for exactly this purpose.

11

KE NL Both KE NL Both ’ KE NL Both

Fig. 4. Comparison of classification accuracy values for different feature perturbations
n=9D;n=8E;n=7TF;n=5A; n=4B; n=23C). Error bars represent one
standard deviation in experiments using a linear activation function (top) or RELU
activation function (bottom) to generate NL weights.

5.5 How Learned Weights Further Influence Retrieval Accuracy

Experiment Overview For these experiments, features are weighted based
on the strategies described for NL weights in the model section. Classification
accuracy values for combined NL and KE features are evaluated against using
each set of features individually, based on leave-one-out experiments repeated
thirty times to establish a sample mean and standard deviation.

On Feature Weights and the “Curse of Dimensionality” While previous
research appears to achieve reasonable success generating weights by perturbing
KE features [9], such methods may not be applicable to feature-dense spaces.
Specifically, when generating NL weights using feature perturbation on NL fea-
tures, we observe that perturbing a single feature seldom changes the overall
classification accuracy of the model, even when considering large values of o.
Therefore, many of the generated weights are at or near zero, crippling sim-
ilarity assessment. It is possible that perturbing features in batches or using
more complex neural network models might address some of these shortcom-
ings; however, we suspect that existing weighting algorithms are significantly

12

less effective in high dimensional spaces created by generating NL features. Al-
ternative weight generation algorithms may be applicable here (e.g., [1]), but
research in additional domains is needed.

Weighting can Augment Retrieval Benefits In terms of overall retrieval
accuracy, our initial results on using NL weights drawn directly from a network
model in concert with combined NL and KE weights appear disappointing (Fig-
ure 4). However, trend behavior in these experiments is interesting. First, we
note that accuracy values for the linear activation function are consistently at
least as high as those for the RELU activation function. This is reasonable given
that RELU would likely favor large-magnitude negative correlation weights less
strongly than positive correlation weights. Curiously, however, the linear acti-
vation accuracy values suggest that combining KE and NL features produces a
harmful effect. Contrast this with the RELU activation function, where combin-
ing KE and NL features produces the most significant relative accuracy improve-
ment across all tests (Figure 4). So why did the weighting methods attempted
not increase classification accuracy overall? This could be a result of the lack
of variation in the raw KE features, so weighting provides little benefit for fea-
tures that exist due to random perturbations; alternatively, this could simply
be a symptom of the simplicity of the weighting algorithms investigated. How-
ever, the dramatic relative improvement in retrieval accuracy when generating
weights using an RELU activation function suggests that deeper investigation
into interplay between KE and NL features with NL weights is worthwhile.

6 Ramifications for Explainability

The previous experiments support the accuracy benefits of combining knowledge
engineered and neural network features, especially for domains where additional
features may be extracted from supplementary/environmental information. Un-
fortunately, while such features may be powerful and have the potential to cap-
ture aspects of the case base that humans cannot, this comes at a cost for
explainability of retrieval. As the network-based features may be difficult to ex-
plain, it may be equally difficult to assess similarity judgments when they are
based on network features.

Such a loss might not always be important. In a domain for which humans
can assess similarity directly from the retrieved case, no explanation may be
needed. In domains for which the combination of features results in substantial
accuracy gains, the loss of explainability might be considered less important
than gains in accuracy. However, the accuracy-explainability trade-off merits
future research, and potential ways to mitigate it, such as integrating aides to
interpreting feature assessments (e.g., CBR-LIME [18]) would be an interesting
area for future research.

13

7 Conclusions

This paper presents results from a case study on methods for supplementing
existing knowledge-engineered features with features learned from data with deep
learning, with feature weightings for both learned by a neural network. The paper
illustrates circumstances under which combining network-learned features with
knowledge engineered features can produce classification accuracy values greater
than either of the feature sets considered individually. It also points to challenges
in weight generation for high-dimensional spaces, as may arise from learning
large features sets from deep learning, and considers strategies to alleviate this
difficulty.

These conclusions suggest numerous avenues for future work. First, testing
across additional domains and network architectures and baselines is an essential
next step. Also important exploring the tuning conditions under which combin-
ing KE and NL features produces maximum benefit, or under which the CNN
generates features that are especially useful for retrieval. Investigating weighting
strategies that perform better in feature-dense spaces is an another important
step. Finally, an interesting question outside of the learning methods is how the
inclusion of NL features and NL weights affects the explainability of the CBR
model that applies them and how explanation issues might be addressed.

8 Acknowledgments

We acknowledge support from the Department of the Navy, Office of Naval Re-
search (Award N00014-19-1-2655), and the US Department of Defense (Contract
W52P1J2093009).

References

1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine
Learning 6(1), 37-66 (1991)

2. Barletta, R., Mark, W.: Explanation-based indexing of cases. In: Kolodner, J. (ed.)
Proceedings of a Workshop on Case-Based Reasoning. pp. 50-60. DARPA, Morgan
Kaufmann, Palo Alto (1988)

3. Bhatta, S., Goel, A.: Model-based learning of structural indices to design cases. In:
Proceedings of the IJCAI-93 Workshop on Reuse of Design. pp. A1-A13. IJCAI,
Chambery, France (1993)

4. Bonzano, A.,; Cunningham, P., Smyth, B.: Using introspective learning to improve
retrieval in CBR: A case study in air traffic control. In: Proceedings of the Sec-
ond International Conference on Case-Based Reasoning (ICCBR-97). pp. 291-302.
Springer, Berlin (1997)

5. Cox, M., Ram, A.: Introspective multistrategy learning: On the construction of
learning strategies. Artificial Intelligence 112(1-2), 1-55 (1999)

6. Fox, S., Leake, D.: Introspective reasoning for index refinement in case-based rea-
soning. The Journal of Experimental and Theoretical Artificial Intelligence 13(1),
63-88 (2001)

14

7.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Grace, K., Maher, M.L., Wilson, D.C., Najjar, N.: Combining CBR and deep learn-
ing to generate surprising recipe designs. In: Case-Based Reasoning Research and
Development, ICCBR 2016. Springer, Berlin (2016)

Hegdal, S., Kofod-Petersen, A.: A CBR-ANN hybrid for dynamic environments.
In: Proceedings of the ICCBR 2019 Workshop on Case-Based Reasoning and Deep
Learning (09 2019)

Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using
case-based reasoning: Comparative tests of feature-weighting methods in ANN-
CBR twins for XAI. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (2019)

Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA (1993)
Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned
index structures. In: Sensors. pp. 489-504 (2019)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems. vol. 1, pp. 1097-1105 (2012)

Lépez de Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.:
Retrieval, reuse, revision, and retention in CBR. Knowledge Engineering Review
20(3) (2005)

Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A convolutional siamese
network for developing similarity knowledge in the selfBACK dataset. In: Sanchez-
Ruiz, A.A., Kofod-Petersen, A. (eds.) Proceedings of the ICCBR 2017 Workshop
on Case-Based Reasoning and Deep Learning. pp. 85-94. CEUR Workshop Pro-
ceedings (2017)

Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures
from data. Progress in Artificial Intelligence (10 2019)

Nasiri, S., Helsper, J.F., Jung, M., Fathi, M.: Enriching a CBR recommender sys-
tem by classification of skin lesions using deep neural networks. In: Proceedings
of the ICCBR 2018 Workshop on Case-Based Reasoning and Deep Learning (07
2018)

Osgood, R., Bareiss, R.: Automated index generation for constructing large-scale
conversational hypermedia systems. In: Proceedings of the Eleventh National Con-
ference on Artificial Intelligence. pp. 309-314. AAAI, Washington, DC (1993)
Recio-Garcia, J.A., Diaz-Agudo, B., Pino-Castilla, V.: CBR-LIME: A case-based
reasoning approach to provide specific local interpretable model-agnostic expla-
nations. In: Case-Based Reasoning Research and Development: 28th International
Conference, ICCBR 2020. Springer (2020)

Samakovitis, G., Petridis, M., Lansley, M., Polatidis, N., Kapetanakis, S., Amin, K.:
Seen the villains: Detecting social engineering attacks using case-based reasoning
and deep learning. In: Proceedings of the ICCBR 2019 Workshop on Case-Based
Reasoning and Deep Learning. pp. 39-48 (2019)

Sani, S., Wiratunga, N., Massie, S.: Learning deep features for kNN-based human
activity recognition. In: Proceedings of ICCBR 2017 Workshops (CAW, CBRDL,
PO-CBR), Doctoral Consortium, and Competitions co-located with the 25th Inter-
national Conference on Case-Based Reasoning (ICCBR 2017), Trondheim, Norway,
June 26-28, 2017. CEUR Workshop Proceedings, vol. 2028, pp. 95-103. CEUR-
WS.org (2017)

Schank, R., Brand, M., Burke, R., Domeshek, E., Edelson, D., Ferguson, W., Freed,
M., Jona, M., Krulwich, B., Ohmayo, E., Osgood, R., Pryor, L.: Towards a general

22.

23.

24.

25.

15

content theory of indices. In: Proceedings of the 1990 AAAT spring symposium on
Case-Based Reasoning. AAAI Press, Menlo Park, CA (1990)

Tabian, I., Fu, H., Khodaei, Z.S.: A convolutional neural network for impact detec-
tion and characterization of complex composite structures. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence (T-PAMI). vol. 19 (2018)

Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery using
case-based reasoning and convolutional neural networks. In: Case-Based Reasoning
Research and Development, ICCBR, 2018. pp. 399414 (2018)

Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature-
weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11(1-5), 273-314 (1997)

Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a compre-
hensive evaluation of the good, the bad and the ugly. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (T-PAMI). vol. 40, pp. 1-14 (2018)

