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ABSTRACT
Studying relationships between keyword tags on social sharing web-
sites has become a popular topic of research, both to improve tag
suggestion systems and to discover connections between the con-
cepts that the tags represent. Existing approaches have largely re-
lied on tag co-occurrences. In this paper, we show how to find con-
nections between tags by comparing their distributions over time
and space, discovering tags with similar geographic and temporal
patterns of use. Geo-spatial, temporal and geo-temporal distribu-
tions of tags are extracted and represented as vectors which can
then be compared and clustered. Using a dataset of tens of millions
of geo-tagged Flickr photos, we show that we can cluster Flickr
photo tags based on their geographic and temporal patterns, and
we evaluate the results both qualitatively and quantitatively using a
panel of human judges. We also develop visualizations of temporal
and geographic tag distributions, and show that they help humans
recognize semantic relationships between tags. This approach to
finding and visualizing similar tags is potentially useful for explor-
ing any data having geographic and temporal annotations.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining

General Terms
Measurement, Theory.

Keywords
tag semantics and visualization, Flickr, geo-spatial and temporal
clustering

1. INTRODUCTION
Online photo sharing is booming: as of late 2010, Flickr hosted

over 5 billion photos and users were uploading more than 3,000
new images every minute [29]. In addition to simply hosting im-
ages, these sites include social features that allow users to annotate
photos in a variety of ways, including adding descriptive keywords
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(called tags), titles, captions, quality scores, and free-form com-
ments. In the particular case of tags, empirical studies of Flickr
have shown that users add tags for a variety of reasons, includ-
ing to indicate geographic locations, descriptions of actions and
events, identities of objects, people, and groups, and so on [30].
Thus tags provide a rich (albeit noisy, incomplete and inconsis-
tent) source of information about the semantic content of photos.
Tags have been used in the data mining community to study the
properties of online photo collections, including identifying tem-
poral bursts of photographic activity corresponding to important
events [26], finding geo-spatial peaks of activity corresponding to
important landmarks [22], selecting iconic images to represent par-
ticular places [6], and even predicting product adoption rates by
monitoring the popularity of product photos [14].

A major theme of this existing work has been to study tag co-
occurrences, finding tags that frequently occur with one another
on the same photograph as a means of identifying semantically-
related tags. Co-occurrence has been particularly helpful for sug-
gesting new tags based on the existing tags of a photo [11, 18, 30].
Other work has applied clustering algorithms to find semantically-
related concepts by looking for groups of tags that frequently co-
occur [3, 28]. While these approaches often yield reasonable re-
sults, they make the assumption that tags are related only if they
co-occur often on the same photographs. But some related tags may
seldom co-occur: the Statue of Liberty and Central Park are clearly
related – both are major New York City landmarks – but the tags
statueofliberty and centralpark do not have many co-occurrences
because it is nearly impossible to take a photo that includes both.
Moreover, co-occurrences give little information about the nature
of the relationship – i.e. why two tags are related.

In this paper, we explore other more specific types of connec-
tions between tags – and, by extension, between the concepts that
the tags represent – by comparing the spatial and temporal distri-
butions of tags instead of their co-occurrences. The intuition here
is that related concepts have similar geo-temporal distributions be-
cause they occur at about the same times and places, even if they
rarely co-occur on photos. Our work takes advantage of the rich
metadata available on photo-sharing sites like Flickr, including the
timestamps recorded by modern digital cameras, and the geo-tags
specifying the latitude and longitude of where a photo was taken.
Geo-spatial and temporal properties of tags have been studied in
existing work (e.g. [14, 22, 26]), but we are not aware of work that
has used these properties to quantify connections between tags. We
also present methods for visualizing the relationships between tags
by comparing their geo-temporal distributions. These techniques
complement other methods like tag clouds [16] and temporal tag
evolution [8] to help people find and visualize the relationships be-
tween tags.



In the remainder of this paper, we describe an approach that finds
relationships between tags from geo-spatial and temporal similari-
ties, and we apply this approach on a large dataset of tens of mil-
lions of photos downloaded from Flickr. After surveying related
work in Section 2, we show how to define feature vectors to com-
pactly represent geo-temporal distributions and cluster tags based
on these features (Section 3). We then present qualitative visu-
alizations of the resulting clusters as well as a more quantitative
evaluation using a panel of human judges in Section 4.

2. RELATED WORK
Tags on social sharing systems have been studied extensively.

Here we review the work most relevant to studying tag semantics
and relationships in photo collections.

Clustering tags based on co-occurrences. Much work has been
based on photo tag co-occurrences, mostly in the context of tag
suggestion systems. Garg and Weber [11] use tag co-occurrences
to suggest additional tags for a new image. Sigurbjörnsson and Van
Zwol [30] take a similar approach but also conduct a study of tag-
ging behavior on Flickr. Liu et al [18] rank tags by performing
Pagerank-like random walks on tag graphs where the edge weights
are frequency of co-occurrence. Other work has clustered tags us-
ing co-occurrence features in order to find groups of semantically-
related tags. Shepitsen et al [28] use TF-IDF to build trees of
del.icio.us and Last.Fm tags, and then partition them into homo-
geneous clusters. Begelman et al [3] partition tag graphs using
spectral clustering. These papers inspired our idea of clustering
tags, but our work differs in that we use features other than co-
occurrence, instead looking for tags with second-order connections
like similarities in spatial and/or temporal distributions.

Temporal and geo-spatial properties of tags. Timestamps and geo-
tags of photos have been used to study temporal and geo-spatial
distributions of individual tags, often in order to identify peaks in
the temporal distribution (corresponding to events) and/or in the
geo-spatial distribution (corresponding to cities and popular land-
marks). Rattenbury et al [26] use burst detection techniques to
find tags with significant peaks in time and space, while Moxley et
al [22] build on this work by using entropy analysis on a quadtree
data structure to improve performance. Chen and Roy [4] model
tag occurrences as points in a 3D geo-temporal space, use wavelet
transform-based techniques to find tags with bursts in both tempo-
ral and spatial distributions, and then cluster these tags using DB-
SCAN. Ahern et al [1] cluster photos to find dense areas based on
geo-tags and find representative tags for the areas using TF-IDF,
while Moxley et al [21] use a similar approach to rank local tags.
Crandall et al [6] and Kennedy et al [17] find both distinctive tags
and images for clusters of photos found based on geo-tags. While
these papers analyze geo-spatial and temporal attributes of photos,
they are primarily focused on finding and studying “event” tags
corresponding to peaks in the geo-temporal tag usage distributions,
whereas we are interested in comparing and grouping larger and
more general sets of tags.

Visualizing tag clusters. The usual method to visualize tags is to
draw tag clouds [16], while Dubinko et al [8] visualize interesting
Flickr tags that evolve over time through animations. In this paper
we propose visualizations of the temporal semantics of tag clusters
by plotting time series representing their usage along time, and the
geo-spatial semantics of tag clusters in a 3-D space over a map to
represent their usage across space. We also show that the visualiza-
tions can help humans understand subtle semantic relationships.

Spatial clustering and co-location pattern mining. Our work is
reminiscent of spatial clustering [24, 27] which groups together
similar spatial data points based on their locations, but differs from
our problem in that it clusters spatial data points while we cluster
spatial distributions. Our goal is more related to co-location pattern
mining [9, 10, 13, 35], in which the goal is to identify features that
are often located near one another. Clustering is not used by Xiao et
al [35], while Huang and Zhang [13] and Estivill-Castro et al [9,10]
take different clustering approaches. We are not aware of work that
applies these techniques to vast datasets of user-generated social
media content as we do here.

Studies of query logs, tweets and news articles. Temporal and geo-
spatial patterns have been studied to discover concept relationships
in other domains, including tweets, news articles, and queries in
search engine logs. Radinsky et al [25] extend Explicit Semantic
Analysis to represent concepts as time series of word occurrences
in the New York Times archive. Vlachos et al [33] use frequency-
space analysis of search query time series to identify bursts and
semantically-similar queries. Chien and Immorlica [5] use sim-
ilar techniques but perform an experimental evaluation, and find
that for 70% of the queries, at least three of the top ten keywords
identified by temporal similarity are semantically related. The geo-
spatial distributions of search engine queries were studied by Back-
strom et al [2], who estimate geographic centers and dispersions of
queries. Vadrevu et al [32] use the co-occurrence of a query term
with place names in a region to determine whether the query is re-
lated to this region. Perhaps most similar to ours is very recent
work in the domains of search engine queries and Twitter hash-
tags. Mohebbi et al [20] developed a tool which takes a search
engine query and finds other queries with similar temporal or spa-
tial distributions. They quantize the weekly time series data and
state-by-state usage data of individual queries into vectors to rep-
resent temporal and spatial distributions, and then apply K-means
clustering and an approximate nearest neighbor alogorithm to look
up similar vectors efficiently. Meanwhile, Yang and Leskovec [36]
cluster Twitter hashtags and short phrases in news documents to
identify their temporal patterns and the dynamics of human atten-
tion they receive. Neither of these latter two papers evaluates the
semantic quality of the resulting clusters and connections, whereas
we use panels of human judges to evaluate our results.

Finally, our work is related in spirit to that of Wu et al [34], who
compute the “Flickr distance” between a pair of tags by computing
the visual similarity of photos having those tags, and then cluster
tags based on this score. Our work is similar in that it defines con-
nections between tags using a property other than co-occurrence,
but is complementary in that we define similarity metrics based on
metadata like timestamps and geo-tags instead of the visual con-
tent of images. This both allows us to discover connections that
may not be apparent from visual features, and also allows our tech-
niques to scale to much larger datasets (having tens of millions of
photographs) because processing metadata is much more efficient
than visual analysis.

3. DISCOVERING TAG RELATIONSHIPS
We assume that we have a dataset of online objects (e.g. photos),

each of which has a user id of the person generating the object (e.g.
the photographer), a timestamp specifying when the object was cre-
ated, a geo-tag specifying latitude-longitude coordinates for the ob-
ject, and a set of zero or more text tags. To define this formally, it is
useful to think of tagging events – individual acts of a user tagging
a photo with a text tag. The information associated with a particu-
lar event includes the tag that was applied, the photo to which the



tag was applied, the user who uploaded the tagged photo, the geo-
graphic location of the tagged photo, and the timestamp indicating
when the photo was taken. Letting T be the set of all possible text
tags, then the set of tagging actions A = {a1, a2, ..., aq} can be
defined as a set of tuples of the form ai = (ui, ti, τi, gi), where ui

is a user, ti ∈ T is a tag, τi is a timestamp, and gi ∈ R × R is a
geo-tag (latitude-longitude coordinate).

Given a collection of tagged objects, our goal is to cluster the tags
based on their geo-spatial and temporal properties. To do this, we
first extract a geo or temporal signature for each tag and represent it
with a corresponding feature vector, and then we cluster the feature
vectors using an unsupervised algorithm like k-means [19]. In ad-
dition to finding the geo-spatial and temporal distributions of each
tag, we also compute a feature vector based on the cross-product
of these two attributes, which allows us to represent a tag’s joint
geo-temporal distribution – i.e. the “motion” of how a tag’s spatial
distribution changes over time. The following three subsections
explain the geo, temporal, and motion feature vectors in turn.

3.1 Geo-spatial feature vectors
Since different types of tags have different geographical distri-

butions, our first feature aims to characterize the geographical dis-
tribution of a tag. Because the distribution of photographs over the
world is highly non-uniform, with most of the photographic activity
concentrated in cities, many areas of the world have very few pho-
tos. It is thus useful to aggregate photos together into coarse geo-
spatial buckets instead of clustering using raw geo-tags. (Quantiza-
tion of geo-tags also reduces the impact of noise in the geo-tags.)
To do this, we divide the world into n bins, each with s degrees
of latitude by s degrees of longitude. We assign each of the bins a
unique index number in the range [1, n], and define a quantization
function qG(g) that maps a latitude-longitude coordinate g into the
index number of the corresponding geo bin. In the results presented
in this paper, we use s = 1 degree, which corresponds to grid cells
of roughly 100 km × 100 km at the middle latitudes. Note that the
bins do not have the same surface area because degrees of longitude
became closer together near the poles; this tends not to be a prob-
lem in practice because the vast majority of photos are taken near
the middle latitudes. An equal-area partitioning of the globe [12]
would address this issue and is a direction for future work.

To compute a geo feature vector for tag t, we first count the num-
ber of unique users who have used that tag in each geo bin g,

UG(g, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t, g = qG(gi)} ||.

We count the number of users who applied a tag within a geo-
graphic area instead of the number of photos in order to prevent
high-activity users from biasing the distribution [1]. (This can be
thought of as giving each user a single “vote” for whether or not
a tag applies to a given geographic area.) Then we normalize the
vector to get the geo feature vG(t) of tag t,

vG
i (t) =

UG(i, t)qPn
j=1 U

2
G(j, t)

.

Normalization is necessary since tags sharing similar geo distribu-
tions might have different overall frequencies of occurrence. While
other work has found that L1 normalization works better in high
dimensional spaces [7, 23], we found that L2 normalization works
better in our context. (For example, for the clustering results pre-
sented in Section 4, we found that L2 norm generates clusters that
have more uniform and moderate sizes. When clustering 2000 tags
into 50 clusters, L1 norm produces 17 singletons (clusters that con-
tain only one tag) while L2 norm produces no singletons. L1 norm

Figure 1: Geographic distributions for tag “beach” (left) and
“mountains” (right).

cluster sizes also have much greater variation: their standard devi-
ation is 127.8 while the standard deviation of L2 norm is 54.1.)

As an example, Figures 1 visualizes the normalized matrices
for tags “beach” and “mountains” over North America, in which
greater intensity indicates that more users applied the tag to photos
in a given geo-bin. Notice that the Appalachian and Rocky Moun-
tain ranges are immediately apparent in the “mountains” map, while
the “beach” map highlights the coastline of North America.

3.2 Temporal feature vectors
Tags also have different temporal distributions, because some

tags (and semantic concepts) are much more popular at certain
times than others — for example, we might expect “beach” to be
used more often during the summer than in the winter, while “restau-
rant” might occur more often during the meal times of the day. As
with the geographic feature vectors described above, with temporal
features it is also useful to aggregate photos together into coarse
temporal bins. Let qT (τ) be a quantization function that maps a
timestamp τ into one of m temporal bins, returning a bin index
in the range [1,m]. This quantization function could be designed
to operate at different levels of granularity, for example mapping
timestamps to hours of the day, days of the week, months of the
year, etc. For any tag t, we then build an m-dimensional vector,
again counting the number of unique users who have used the tag
in each temporal period p,

UT (p, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t, p = qT (τi)} ||,

and then normalize to produce an m-dimensional temporal feature
vector vT (t),

vT
i (t) =

UT (i, t)qPm
j=1 U

2
T (j, t)

.

In this paper we primarily use a quantization function that maps
timestamps into one of 26 two-week periods of the year: January
1-14, January 15-28, etc. We disregard the specific year and as
a result, all the data is merged together into a single year – for
example, photos taken on January 1, 2008 and January 1, 2009 will
be mapped to the same cell. In addition to the 26-dimensional 2-
week vectors, we also create 7-dimensional day-of-week vectors
and 24-dimensional hour-of-day vectors.

Flickr users are significantly more active at certain times of the
year than others, as illustrated in Figure 2: note that nearly twice as
many users take photos during the first two weeks of July (period
14) than in early February (period 3). To correct for this effect,
in practice we normalize the temporal counts for tag t and period
p, UT (p, t), by the total number of photos taken in North America
during p, before applying L2 normalization to produce vT . Figure 3
shows the process of obtaining temporal feature vectors.

3.3 Geo-temporal (motion) features
Finally, we also want to produce a signature for a tag based on



Figure 2: Number of unique Flickr users active in North Amer-
ica, for each 2-week period of the year.

Figure 3: Computing temporal feature vectors.

its joint geo-temporal distribution – that is, how the geo-spatial dis-
tribution of the tag varies over the course of a year (or equivalently,
how the temporal distribution varies with spatial location). We call
these geo-temporal signatures our “motion” features. Given geo
and temporal quantization functions qG and qT (described above)
that map geo-tags into one of n bins and timestamps into one of m
bins, a motion feature vector has one bin per entry in the cross prod-
uct of these two sets of indices, or mn dimensions total. More pre-
cisely, we define a motion quantization function that maps a geo-tag
gi and timestamp τi to a bin index in [1,mn],

qM (gi, τi) = m× (qG(gi)− 1) + qT (τi),

then count the number of unique users who used a given tag t in
each geo-temporal bin,

UM (m, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t,m = qM (gi, τi)} ||,

and take the L2 norm (as above) to define a final motion feature
vector, vM . For the experiments in this paper, this vector has
mn = 124, 800 dimensions. As with the geo feature vectors, we
remove empty dimensions (geo-temporal cells having no photos)
as an optimization.

3.4 Co-occurrence features
For comparison purposes, we also define similarity metrics us-

ing using two more traditional techniques. First, the pairwise co-
occurrence between two tags t1 and t2, co_occur(t1, t2), is com-
puted by simply counting the number of photos that are tagged with
both t1 and t2. A disadvantage of this simple co-occurrence mea-
sure is that it favors pairs of tags that occur very often, since very
frequent tags will co-occur more often than infrequent tags even if
they are unrelated. Thus we include a second baseline feature, mu-
tual information, which overcomes this problem by normalizing the
co-occurrence measures by the overall frequency of the tags [3],

mutual_info(t1, t2) =
co_occur(t1, t2)

K
log

„
co_occur(t1, t2)K
occur(t1)occur(t2)

«
where occur(t) is the total number of photos having tag t and K
is the total number of photos. This score can be thought of as a
measure of the independence of the two tags: it is minimized if
the two tags are completely independent (never co-occur), and is
maximized if the tags are strongly correlated (always co-occur).

4. EXPERIMENTS AND VISUALIZATIONS
To test our techniques for characterizing tags based on geo and

temporal signatures, we used a dataset of geo-tagged, time-stamped
photos downloaded from Flickr through the site’s public API inter-
face, using a crawling technique similar to that described in [6]. We

collected the following information for each photo: the geo-tag (lat-
itude and longitude) of where the photo was taken, the timestamp
of when it was taken, and the set of textual tags (if any) associated
with the photo. From this collection of nearly 80 million photos,
we selected only the photos in North America (which we defined
to be a rectangular region spanning from 10 degrees north, -130
degrees west to 70 degrees north, -50 degrees west).

We then computed the top 2000 most frequent text tags (ranked
by the number of unique users applying the tag) in North Amer-
ica. (We chose this relatively small number of tags so that our geo-
temporal distributions would have substantial mass (each of these
tags has been used by at least 1,100 unique Flickr users), and to
make human evaluation tractable. Note that the majority (66.7%)
of photos on Flickr are tagged with at least one of these 2,000 tags
since Flickr tag frequency follows a long tailed distribution [30].)
For each of these tags, we extracted the geo feature vectors, tem-
poral feature vectors and motion vectors described in Section 3.
In preparation for geo feature vector extraction, we filtered the data
by removing photos with geotag precision less than about city-scale
(according to the precision reported by Flickr), resulting in a dataset
with about 44 million photos. For the temporal feature vectors, we
removed photos with inaccurate or suspicious timestamps (includ-
ing photos supposedly taken in the future or distant past), resulting
in about 41 million photos; for the motion feature vectors, both of
these filters were applied, yielding about 39 million photos.

4.1 Tag relationships
We can use the similarity metrics defined in Section 3 to find

pairs of similar tags. Given a tag t′, we can find a list of related tags
using each of the distances defined above, including geo-spatial,
temporal, and geo-temporal. To do this, we compute the feature
vectors vG(t), vT (t), and vM (t) for each tag t, and then compute
the pairwise Euclidean distances between these vectors and those of
t′. The tags are ranked according to their distances to t′ in ascend-
ing order, and the k tags with lowest distance are found. For the co-
occurrence and mutual information features, we compute the simi-
larity for each tag t using the co_occur(t, t′) and mutual_info(t, t′)
functions, and then rank the tags in increasing order of similarity.

As an example, Table 1 lists the tags that are most similar to
the tag “cherryblossoms” under the various measures of similarity.
The first column shows the 20 most similar tags according to the
geo-spatial similarity metric. Most of these tags are strongly re-
lated to Washington, DC (which is of course famous for its annual
cherry blossom festival in April), including “president”, “white-
house”, “smithsonian” and “lincolnmemorial” among others. The
second column shows tags having high temporal similarity, includ-
ing “easter”, “spring”, “april” and “magnolia”. The list of tags un-
der motion similarity appear to be a mixture of geographically sim-
ilar tags and temporally similar tags. In contrast, the co-occurrence
list has arguably much lower quality: “canon”, “water” and “usa”
are popular tags that also co-occur with many other tags, and are
not particularly relevant to “cherryblossoms”. Mutual information
gives more meaningful results compared to raw co-occurrence, but
it missed tags like “whitehouse”, “tulips” and “kite” which were
picked up by the temporal and geo-spatial analyses. These tags do
not frequently co-occur with “cherryblossoms” on the same photos,
but do share similar geo and/or temporal patterns.

4.2 Clustering tags
The analysis in the last section can be used to compute the sim-

ilarity between any arbitrary pair of tags, but it is difficult to visu-
alize or quantify the performance of these results directly because
there are so many possible pairs. In past work, tag similarity re-



Table 1: Top 20 most similar tags to “cherryblossoms” using different similarity metrics. The columns rank the tags according to
(from left): geo-spatial, temporal, motion (geo-temporal), co-occurrence, and mutual information.

Geo-spatial Temporal Motion Co-occurrence Mutual information
1. president 0.321 cherry 0.451 cherry 0.291 washingtondc 4568 washingtondc 2.41e-4
2. whitehouse 0.321 blossoms 0.505 blossoms 0.417 dc 3443 dc 1.70e-4
3. monument 0.323 blossom 0.612 blossom 0.546 spring 2319 spring 1.54e-4
4. smithsonian 0.324 easter 0.636 jefferson 0.673 washington 2089 blossoms 1.37e-4
5. memorial 0.324 spring 0.638 kite 0.868 flowers 1969 flowers 1.18e-4
6. georgetown 0.325 april 0.654 washingtonmonument 0.908 blossoms 1367 pink 9.22e-5
7. washingtonmonument 0.327 magnolia 0.735 monument 0.990 pink 1007 washington 8.37e-5
8. dc 0.327 buds 0.758 magnolia 0.998 trees 979 cherry 7.88e-5
9. lincolnmemorial 0.328 washingtonmonument 0.813 spring 1.026 canon 754 washingtonmonument 5.55e-5

10. wwii 0.331 tulip 0.822 bloom 1.042 cherry 753 trees 5.21e-5
11. washingtondc 0.332 jefferson 0.837 memorial 1.057 tree 703 tree 4.85e-5
12. jefferson 0.367 egg 0.858 lincolnmemorial 1.085 usa 610 flower 3.00e-5
13. arlington 0.370 tulips 0.862 washingtondc 1.086 flower 560 blossom 2.04e-5
14. lincoln 0.372 bloom 0.868 dc 1.091 washingtonmonument 552 bloom 1.94e-5
15. mall 0.392 break 0.869 whitehouse 1.092 water 498 april 1.42e-5
16. capitol 0.401 poppy 0.870 mall 1.096 2007 415 water 1.31e-5
17. soldier 0.407 eggs 0.883 festival 1.103 unitedstates 412 white 1.29e-5
18. war 0.421 bud 0.895 tulip 1.106 festival 379 sky 1.26e-5
19. cherry 0.429 kite 0.922 government 1.121 nature 377 blue 1.25e-5
20. capital 0.448 olympics 0.924 capital 1.122 brooklyn 347 nature 1.23e-5

sults have been summarized by grouping tags into a small num-
ber of similar clusters, typically using co-occurrence information
(e.g. [5]). We follow a similar strategy and cluster Flickr tags ac-
cording to each of our three types of distance metrics (temporal,
geo-spatial, geo-temporal) as well as traditional co-occurrence and
mutual information measures.

For each feature vector type, we clustered the 2000 tags using
k-means [19]. Squared Euclidean distance was used to measure
distances between vectors. Since k-means clustering is sensitive
to the initial choice of centroids, we ran k-means five times with
different random initial cluster centers and chose the best result (in
this case, choosing the clustering with the minimum total vector-to-
centroid distance). Of course, this clustering algorithm requires an
a priori choice of the number of clusters (k). For the purposes of
this paper, where our primary focus is on presenting techniques for
comparing tags based on their geo and temporal distributions and
not on presenting an end-to-end system for tag analysis, we simply
set k to a value (50) that gave reasonable results in our subjective
judgment. Various techniques exist for selecting k automatically
based on properties of a dataset (see e.g. [31]) and these techniques
could easily be applied to our work.

As we show in the next few sections, the overall “shape” of the
geo-spatial and temporal distributions varies dramatically from tag
to tag and cluster to cluster: some clusters contain tags that are dif-
fuse across space and time (like “canon”, “geotagged”, “blackand-
white”, etc.), while other distributions are very “peaky” (“newyorkc-
ity”, “washingtondc”, etc.), and others are somewhere in between
(“usa”, “newengland”, etc.). It is thus useful to compute a statis-
tical measure of the peakiness of a distribution, in order to com-
pactly characterize its overall “shape”. We measure the peakiness
of a vector v by computing its second moment,

second_moment(v) = v · v =

nX
i=1

v2
i ,

and measure the peakiness of a cluster of tags C as the average
second moment of the vectors that it contains,P

v∈C second_moment(v)
|C| .

Peaky distributions will have higher second moment values, while
distributions close to uniform will have low second moment. (Note
that the second moment of a discrete probability distribution is the
likelihood of sampling twice from the distribution and drawing the
same value both times.) The second moment gives a statistic by
which to rank clusters, as clusters with high average peakiness usu-
ally have bursts in temporal distributions or geo-spatial distribu-
tions which indicate particularly interesting clusters.

We present sample results and visualizations for several sample
tag clusters in the following sections. Due to space limitations we
do not show all the tag clusters generated from the three different
perspectives, but these and other detailed results are available at
http://vision.soic.indiana.edu/tagclusters.

4.2.1 Geo-spatial clusters
Figure 4 shows visualizations of several tag clusters produced by

analyzing geo-spatial distributions. The visualizations were cre-
ated by taking a cluster centroid and converting it back to a two-
dimensional matrix: i.e. for each geo bin, we find the correspond-
ing latitude-longitude coordinates for the bin center and plot them
together with their values in a 3D space over a schematic map of
North America. The result is a topographical visual effect with the
heights of the peaks as well as the intensity of red color indicat-
ing the usage of the tags in the cluster at corresponding locations
underneath. The figure shows three sample clusters. Figure 4(a)
consists of tags from the New York City area. Some not very ob-
vious tags are: “soho” which is a shopping area in New York City,
“bull” which is the Wall Street Bull and “ground” which relates
to Ground Zero referring to World Trade Center site. This cluster
is ranked 10th out of 50 clusters by second moment. Figure 4(b)
visualizes the cluster in which most tags are related to zoos and
animals and others are related to airports. As a result, the visual-
ization peaks at major US cities with famous zoos and airports. It
is ranked 37th. Figure 4(c) displays the cluster of tags that occur
predominantly in national parks. This cluster is ranked 27th.

Images that record the visualizations of all the 50 geo clusters
are available at the above website. The top ranked clusters by sec-
ond moment are more concentrated geographically. From these top
clusters, we see state clusters, city clusters, zoo clusters, park clus-

http://vision.soic.indiana.edu/tagclusters


(a) (b) (c)

Figure 4: Visualizations of sample clusters produced by analyzing similarity of geo-spatial distributions. The clusters seem to
correspond to (a) tags related to New York City, (b) tags related to cities with popular zoos and airports, and (c) tags related to
national parks and outdoor areas. Best viewed in color.

(a) (b) (c)

Figure 5: Visualizations of three clusters produced by analyzing similarity of temporal distributions: (a) tags related to spring, (b)
tags related to winter, (c) tags related to gatherings of friends.

ters, northern city clusters, coastal area clusters and so on. For
lower ranked clusters, the tags are more geographically distributed,
such as a cluster of rural regions and a cluster of urban regions.

4.2.2 Temporal clusters
Figure 5 shows visualizations of three of the clusters produced by

the temporal similarity metric. For each temporal cluster, we plot
the cluster centroid as well as the distributions of the individual tags
within the cluster, with each point representing the usage in the cor-
responding two-week period. Figure 5(a) displays the cluster with
a strong peak during spring. The thick black curve corresponds to
the cluster centroid while the other curves correspond to the signals
for individual tags. This cluster is ranked 11th out of 50 clusters by
second moment. Figure 5(b) visualizes a cluster with a shallow
peak during the winter season. Most tags are related to winter va-
cations in warm locales. This cluster is ranked 34th. The cluster in
Figure 5(c) (ranked 48th by second moment) seems to correspond
to family gatherings, with slight temporal peaks around Thanks-
giving and Christmas. There are also some year tags (e.g. “2008”,
“2009”, etc.) which appear frequently around New Year’s Day. Vi-
sualizations of all 50 temporal clusters are available at the website
above. We see that top ranked clusters of tags have sharp bursts in
smaller time windows and lower ranked clusters have more general
seasonal patterns.

We also clustered the data according to temporal features at other
time scales, including 7-dimensional day-of-week vectors and 24-

dimensional hours-of-day vectors. Due to space constraints we do
not present detailed results, but instead mention a few interesting
findings. For day-of-week vectors, we are able to see weekday
clusters such as “work office desk students commute” and week-
end clusters such as “live sushi gallery concert macys highschool
moma”. For hours-of-day clusters, we see clusters peak at differ-
ent time of the day, such as a morning cluster, “early sunrise dawn
morning,” and a nighttime cluster, “lightning concert longexposure
campfire nighttime nightphotography exposure live”.

4.2.3 Geo-temporal clusters
Tags within a motion cluster typically share either geo and tem-

poral similarities, or both. Cluster “vegas lasvegas las bellagio strip
paris casino nevada fountains flamingo” captures Las Vegas and its
hotels and casinos which has a counterpart in geo clusters. It is
ranked 5th out of 50. Cluster “christmas holiday xmas holidays
christmastree christmaslights december decorations ornament dec-
oration cookies gift santa fireplace” captures Christmas which has
a counterpart in temporal clusters and is ranked 31st. We observe
that top ranked clusters are more likely to have obvious geographic
connections while the clusters having temporal patterns are ranked
in the middle. All the motion clusters can also be found at the web-
site above.

4.3 Evaluation
We evaluated the idea of finding similar tags using geo-spatial



Top 10 temporal clusters
# 2nd

Tags in cluster tags moment
1 4th fourthofjuly 4thofjuly independenceday july4th 7 0.578
2 january newyearseve 2 0.5
3 turkey thanksgiving november 3 0.355
4 august 1 0.2785
5 iris may dandelion graduation memorialday 5 0.269
6 costume costumes halloween 3 0.223
7 christmastree christmaslights christmas ornament holidays 9 0.215
8 pride june 2 0.206
9 fallcolors pumpkins autumn fall foliage 7 0.190

10 irish march 2 0.144

Top 10 geo-spatial clusters
# 2nd

Tags in cluster tags moment
1 toronto niagara niagarafalls cntower falls 9 0.415
2 golden cablecar francisco sanfrancisco sf 27 0.402
3 los angeles santamonica la losangeles 8 0.397
4 broadway brooklyn empire cab empirestatebuilding 34 0.394
5 strip paris vegas las lasvegas 10 0.379
6 seattle needle pugetsound spaceneedle wa 8 0.374
7 chicago bean searstower illinois il 7 0.366
8 ma massachusetts boston cambridge newengland 6 0.332
9 prairie pennsylvania pa philadelphia philly 58 0.287

10 911 liberty chelsea wtc worldtradecenter 14 0.276

Top 10 motion (geo-temporal) clusters
# 2nd

Tags in cluster tags moment
1 losangeles angeles santamonica los la 7 0.021
2 taxi broadway empirestatebuilding brooklyn empire 38 0.01693
3 tx texas austin houston dallas 5 0.01691
4 chicago searstower bean illinois il 7 0.01679
5 vegas lasvegas las bellagio strip 10 0.01671
6 alberta calgary banff 3 0.01606
7 francisco sanfrancisco goldengatebridge goldengate berkeley 30 0.0158
8 pa philadelphia philly pennsylvania 4 0.0157
9 statueofliberty liberty newjersey jersey nj 13 0.0148

10 ski skiing snowboarding tahoe fdsflickrtoys 73 0.0138

10 randomly-chosen co-occurrence clusters
#

Tags in cluster tags
1 sea ocean beach boat island 41
2 coast waves sun shore pier 41
3 washington statue museum sculpture washingtondc 41
4 people model female face hair 43
5 vacation travel trip desert arizona 41
6 water canada winter sky nature 41
7 trees mountains mountain hiking hike 41
8 party wedding friends love dance 40
9 light city night bed sleep 39

10 geotagged us building architecture canon 41

10 randomly-chosen mutual information clusters
#

Tags in cluster tags
1 rails rail railway train railroad 36
2 independenceday july4th fourthofjuly 4th weird 39
3 marriage rings groom love couple 38
4 plane jet aviation aircraft planes 38
5 furry sleepy pet kitten fur 38
6 jeans jacket socks shoes feet 39
7 furniture toilet sink seat couch 34
8 tide waves surf ocean wave 41
9 rockies rockymountains peak glacier summit 38

10 sail port harbor docks sailing 37

Figure 6: Comparison of clusters produced by different similarity metrics: temporal (top left), geo-spatial (top right), and geo-
temporal (center). Clusters judged to be temporally significant by human judges are printed in blue boldface, while clusters judged
to be geographically related are printed in red boldface italics. Clusters are sorted in decreasing order of second moment. For
comparison, also shown are clusters produced by co-occurrence (bottom left) and mutual information (bottom right). For each
cluster, up to 5 top ranked tags are displayed. Relevancy was judged by users without visualizations being shown.

and temporal features by comparing the clustering results from
our proposed methods with those of the co-occurrence based tech-
niques. Because it is difficult to define the quality of a tag cluster
objectively, we involved humans in our experiments to judge the
geo-spatial and temporal relevance of the clusters we found. We
then used the human judgment as ground truth to compute the pre-
cisions and recalls when the task is to retrieve semantically mean-
ingful clusters in time and/or space by thresholding the average sec-
ond moment values. The goal of this evaluation was to test whether
our techniques produce coherent tag clusters that correspond to in-
tuitive geo-spatial and temporal concepts, and how these clusters
compare to traditional techniques that use co-occurrence. We also
showed our visualizations of geo-spatial and temporal tag distribu-
tions to a subset of the human judges, to try to measure how well
these visualizations could help people appreciate subtle semantic
connections between tags.

4.3.1 Clustering based on tag co-occurrences
As a baseline we used the method based on tag co-occurrence

described in [3] to cluster the top 2000 tags into 50 clusters for a

fair comparison. In particular, we constructed an undirected graph
of tags, weighted the edges between tags by metrics of their co-
occurrences and removed weak edges by thresholding the weights.
We then applied a graph partitioning program, KMETIS [15], to
partition the graph into clusters. We tried two different methods to
weight the edges, one by raw co-occurrence counts and the other
by mutual information (defined in Section 3). As a result, we gen-
erated two sets of 50 clusters: co-occurrence clusters and mutual
information clusters. For each cluster, we ranked its tags by the
numbers of edges inside the cluster: tags with more edges are con-
sidered to be more representative.

4.3.2 Ground truth from human judgment
To conduct the human judgment study at a large scale, we used

Amazon’s Mechanical Turk service, asking users to judge the geo
coherence and temporal coherence of clusters produced by the var-
ious similarity metrics that we propose. To improve the quality of
the human judgment, we required users to be in the United States
(so that they would be familiar with North American geography
and cultural events) and have a good (>=95%) historical approval



rate. For each cluster discovered by our methods, we selected its
ten top ranked tags to present to the user.

For each geo, motion, co-occurrence and mutual information
cluster, we asked the users to judge its geo relevance among the fol-
lowing three options: “more than 50% of its tag representatives rep-
resents a specific geographic area such as NYC”, “more than 50%
of its tag representatives represents an abstract geographic concept
such as ocean,” or “not geo relevant.” Similarly, for each cluster
we also asked the users to judge its temporal relevance according
to the scale: “more than 50% of its tag representatives represents a
specific temporal event such as Thanksgiving”, “more than 50% of
its tag representatives represents a broad temporal indication such
as spring", “not temporally relevant”. For both the geo and tem-
poral relevance questions, if at least 80% of the users choose the
first or second option for a cluster, we consider it to be geo or tem-
porally relevant respectively. We put the clusters in 16 batches of
25 clusters per assignment and each batch was assigned to up to
20 Mechanical Turk users. On average, each cluster was judged
by 19.9 users. Users were shown only the top ten tags associated
with each cluster. We conducted two independent sets of experi-
ments, one in which the 20 users were not shown the visualization
graphs described above, and another in which a separate group of
20 users were shown the visualizations, to quantify how useful the
visualizations might be in practice.

4.3.3 Evaluation results
The evaluation found that geo-spatial and motion clustering were

more effective in finding geo relevant clusters than the other tech-
niques: 29 (58%) of the geo clusters were found to be geo rele-
vant by the human judges who were not shown the visualizations,
compared to 30 (60%) of motion clusters, 11 (22%) of the co-
occurrence clusters, and 11 (22%) of the mutual information clus-
ters. A case study of some geo-temporal clusters judged not to be
geo or temporally relevant showed the visualizations gave hints to
people and helped understand the not-so-obvious semantics behind
the clusters. For the geo clusters, among the top 31 clusters ranked
by average second moment, 28 were judged to be geo relevant. We
examined the 3 clusters that were judged to be “not geo relevant,”
and even these appeared to have interesting geographical semantics
that were likely not obvious to the human judges. Visualizations for
these 3 clusters are shown in Figure 7. The cluster in Figure 7(a)
has an obvious peak in San Diego. The terms “polarbear” and “bor-
der” may not be immediately associated with San Diego, but in fact
they refer to the San Diego Zoo’s famous polar bears while the tag
“border” refers to the Mexican border which is just a few miles
away. In Figure 7(b), most tags are state or city names. They are
in one cluster as their geographical distributions are very concen-
trated resulting in very peaky geo vectors which are not far from
each other as measured by Euclidean distances. In Figure 7(c),
there is a peak in Northern California and the tags are related to
wine. Northern California is famous for its wine industry (Wine
Country). Some other lower ranked clusters judged to be “not geo
relevant” also show some geographical signal, such as the cluster
displayed in Figure 4(b), which highlights zoos and airports.

Temporal clustering also found more temporally-relevant clus-
ters than other techniques: 13 (26%) of the clusters produced by
the temporal similarity metric were found to be temporally rele-
vant, versus 5 (10%) of motion clusters and only 1 (2%) of the co-
occurrence clusters and 6 (12%) of the mutual information clusters.
We examined the temporal clusters judged not to be temporally rel-
evant and found that some did have temporal patterns that were
hard to observe when only the text tags were presented to users. We
present three such clusters in Figure 8. The cluster in Figure 8(a)

Figure 9: Precision-recall curves for retrieving geographically
(left) and temporally (right) relevant clusters.

has bursts around important dates for the Presidential election. The
cluster in Figure 8(b) has an autumn pattern and includes mostly in-
sects and plants that are active or increasing in autumn. Finally, the
cluster in Figure 8(c) has a January and February pattern, with tags
related to the Chinese New Year and the Super Bowl. Some other
such examples can be found in Figure 5(b) and (c) which were also
judged to be “not temporally relevant.”

In all of these cases, the visualizations of geo and temporal clus-
ters were helpful for us to discover the hidden semantics behind the
tag clusters. To try to measure the effectiveness of these visualiza-
tions, we conducted two separate evaluations on Mechanical Turk,
one in which the visualizations were shown and another in which
they were suppressed. The results suggested that the visualizations
were helpful; the results only differed in that some of the clusters
that were judged to be “not geo relevant” or “not temporally rele-
vant” by the group who did not see visualizations were judged to
be “geo relevant” or “temporally relevant” by the group that did.
For geo clusters, 2 more high-ranked clusters (ranked 11 and 31
by second moment) mentioned above and visualized in Figure 7(a)
and (c) were judged to be “geo relevant,” which gave in total 62%
of the 50 clusters judged to be “geo relevant.” For temporal clus-
ters, 6 more clusters (ranked in top 21) were judged to be “tempo-
rally relevant,” which gave in total 38% of the clusters judged to be
“temporally relevant” and 18 out the 22 top ranked clustered were
“temporally relevant.” Clusters displayed in Figures 8(a) and (b)
and Figure 5(b) and (c) are examples of the 6 clusters. Though the
cluster in Figure 8(c) was still judged to be “not temporally rele-
vant,” 65% of the users who saw the visualizations judged it to be
“temporally relevant” versus the 40% who did not. On average, for
each geo cluster, 66.7% of the users who saw visualizations judged
it to be “geo relevant,” compared with 64.4%; for each temporal
cluster, 56.9% of the users who saw visualizations judged it to be
“temporally relevant”, comparing with 49.7%.

Motion clustering found both geographically and temporally rel-
evant clusters. However, no motion clusters were judged to be both
geo and temporally relevant. Mutual information clustering and
co-occurrence clustering found the same number of geo relevant
clusters, but mutual information clustering found 5 more tempo-
rally relevant clusters. Using this measurement, mutual information
clustering performed better in finding temporally relevant clusters
than co-occurrence clustering.

A subset of the evaluation results are shown in more detail in
Figure 6. The figure shows the top 10 clusters produced by the geo-
spatial, temporal, motion, co-occurrence, and mutual information
analyses, and indicates which of these clusters were found to be
geo or temporally significant by the panel of human judges which
did not see the visualizations.



(a) (b) (c)

Figure 7: Sample geo clusters judged to be not geo relevant with high average second moment by users who were not shown the
visualizations. The clusters correspond to (a) tags related to San Diego, (b) tags related to cities and states, and (c) tags related to
Northern California Wine Country. Best viewed in color.

(a) (b) (c)

Figure 8: Sample temporal clusters judged to be not temporal relevant by users who were not shown the visualizations. The clusters
correspond to (a) tags related to the Presidential election, (b) tags related to autumn, (c) tags related to Jan and Feb.

4.3.4 Geo and temporally relevant cluster retrieval
We observed that the average second moment of the geo-spatial,

temporal, and motion clusters appears to be a good indicator of
whether a cluster will be judged to be geo or temporally relevant.
We quantified this relevance by studying a retrieval problem, in
which the task is to find relevant clusters using different average
second moment thresholds. Clusters are considered to be retrieved
if their average second moment is equal to or above a certain thresh-
old. We can then summarize the results in terms of standard pre-
cision and recall statistics. The precision and recall for geographi-
cally relevant cluster retrieval is computed as:

precision = |R∩G|
|R| recall = |R∩G|

|G|

where R is the set of retrieved clusters and G is the set of clusters
judged to be geographically relevant. The precision and recall for
temporally relevant cluster retrieval are computed in a similar way.

Figure 9(left) shows the precision-recall curves for retrieving geo
relevant clusters, in which the average second moment threshold
decreases from left to right on each curve. For example, for geo
clusters in geo relevant cluster retrieval, when the average second
moment threshold is 0.04, both the precision and recall are 93.1%.
Motion clusters performed slightly worse at high recalls.

Figure 9(right) shows the precision-recall curves for retrieving
temporally relevant clusters. The precisions and recalls for tempo-
ral clusters are worse than geo relevant cluster retrieval. When the
average second moment threshold is 0.07, the precision is 71.4%
and recall is 76.9%. Motion clusters performed much worse, be-
cause (as we discussed above) for motion clusters the average sec-
ond moment does not have strong correlation with temporal rele-
vance. In the ground truth, only 5 clusters were judged to be tempo-
rally relevant and their average second moment ranks ranged from
13 to 33. As future work, it would be interesting to study alterna-

tive statistics other than second moment that may perform better
for motion clusters.

We found that the retrieval statistics were best when ground truth
was defined by the group of users who were shown our visualiza-
tions; when the recall is 90.3%, the precision reaches 96.6% for the
geo-spatial clusters, and reached 68.4% recall and 92.9% precision
for the temporal features. This result suggests that the visualiza-
tions helped users see subtle geospatial or temporal connections
between tags in a cluster.

5. CONCLUSION
In this paper, we proposed techniques to measure the semantic

similarity of tags by comparing geo-spatial, temporal, and geo-
temporal patterns of use. We used these techniques on a large
dataset from Flickr to cluster tags using geo-temporal distributions
and proposed novel methods to visualize the resulting clusters. An
evaluation and case study showed the overall high quality of the se-
mantics mined by our approach, and that the second moment served
as a simple filtering measurement that achieved promising perfor-
mance in selecting geographically- and temporally-relevant clus-
ters. A case study suggests that our visualizations of tag semantics
can help people understand subtle geo-temporal relationships be-
tween tags.

There are many possible improvements and future directions for
this research. Currently, we are using only North American data
and clustering the top 2000 most used tags into 50 clusters. It would
be interesting to apply our approach within a more flexible frame-
work, deciding the number of tags and the number of clusters in
an automatic way. It would also be interesting to build a tag rec-
ommendation system that integrates our techniques, using multiple
kinds of tag similarity metrics to improve results and give corre-
sponding visualizations to the user. Finally, our approach could be



applied to other collections of objects with geographical and tem-
poral attributes, such as data from Wikipedia or Twitter.
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