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Abstract

The popularit y of digital video is increasing rapidly. To help usersnavigate li-

braries of video, algorithms that automatically index video basedon content are needed.

One approach is to extract text appearing in video. Such text often givesan indication

of a scene'ssemantic content. This is a more di�cult problem than recognition of doc-

ument imagesdue to the unconstrained nature of general-purposevideo. Text can have

arbitrary color, size,and orientation. Backgrounds may be complex and changing.

Most work sofar hasmaderestrictiv e assumptionsabout the nature of text occur-

ring in video. Such work is therefore not applicable to unconstrained, general-purpose

video. Also, most work so far has focusedonly on detecting the spatial extent of text

in individual video frames. But text occurring in video usually persists for several sec-

onds. This constitutes a text event that should be entered only oncein the video index.

Therefore it is also necessaryto determine the temporal extent of text events. This is

a non-trivial problem becausetext may move, rotate, grow, shrink, or otherwise change

over time. Such text e�ects are common in television programs and commercials to

attract viewer attention, but have so far beenignored in the literature.

This thesis discussesthe problems involved in extracting caption text from un-

constrained, general-purposeMPEG-1 video. Theseproblems include localizing text in

individual video frames,binarizing text, and tracking text as it movesand changesover

time. Solutions are proposed for each of these problems and compared with existing

work found in the literature.
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Chapter 1

In tro duction

1.1 Motiv ation for in telligen t video indexing

The popularit y of digital video is growing at an explosive rate. Hundreds of

television stations are now broadcastover digital cableevery day. Digital Versatile Discs

(DVDs) are quickly replacing analog video tape as the preferred medium for viewing

movies at home. Inexpensive video capture cardsand plummeting data storagecostsare

allowing userswith even modest workstations to convert home movies to digital form.

Surveillancecamerasare everywhere,capturing video for detection of suspiciousactivit y.

Streaming video clips are becomingincreasingly popular on the Internet.

The rapid rise in quantities of digital video carriesenormouspromise. Given such

huge amounts of video data available, it is quite probable that a video clip that a user

wants to seeexists somewherein digital form. One can imagine large video databases

available on the Internet that would give usersaccessto vast quantities of video data

from their home personalcomputers.

But asquantities of available video data grow, it will becomeincreasinglydi�cult

for usersto locatespeci�c video clips of interest. It is analogousto the proverbial problem

of �nding a needlein an ever-growing haystack of video data. Search enginesare required

that can automatically identify relevant video clips basedon a user's query.
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However, the current state-of-the-art in video search technology is quite limited.

The video search enginesof Lycos and Alta vista exemplify the current technology avail-

able on the Internet. Lycos [51] requireshumansto manually index each video by identi-

fying keywords that describe its content. User queriesare matched against this keyword

index to �nd relevant video clips. This approach is clearly intractable for large, growing

video libraries becauseof the large amount of e�ort required to create video indices by

hand. Also, the quality of the search engineis directly limited by the quality and scope

of the manually-created index. It is impossible for the human indexer to identify all

possiblekeywords that describe a given video sequence.

Alta vista's video search engine [2] attempts to index videos contained in World

Wide Web pages automatically. Words near a video in a web page are assumedto

describe the content of the video and are usedas its keywords. This approach eliminates

the dependenceon human indexers, but the assumption that words appearing near a

video are appropriate keywords is not true in general. This can causeirrelevant words

to be placed into the keyword index, and decreasesearch result quality. Alta vista's

approach cannot be used unless a textual description is available. It is therefore not

applicable to general-purposevideo.

Clearly, better video search technologies are required. Algorithms must be de-

veloped that can automatically extract semantic information from video using content

alone. Given an arbitrary video sequence,such algorithms would determine as much

information as possible, such as genre (sitcom, movie, sports program, etc.), �lming

location characteristics (indoor or outdoor, time of day, weather conditions, etc.), iden-

tit y of important objects, identit y of people(politicians, movie stars, sitcom characters,
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etc.), and human activit y and interaction (running, laughing, talking, arguing, etc.).

This wealth of information could be used to better identify video sequencesof interest

to a user.

Automatically extracting this information from unconstrained video is very chal-

lenging. Solving the underlying computer vision and arti�cial intelligence problems will

undoubtedly occupy theseresearch communities for many years.

1.2 Motiv ation for extracting text from video

In addition to the features mentioned above, text appearing in a video sequence

can provide useful semantic information. Text occurring in video naturally gives clues

to the video's content. Words have well-de�ned, unambiguousmeanings. If the text in a

video sequencecan be extracted, it can provide natural, meaningful keywords indicating

the video's content.

Text occurring in video can be classi�ed as caption text or scenetext. Caption

text is arti�cially superimposedon the video at the time of editing. Caption text usually

underscoresor summarizesthe video's content. This makes caption text particularly

useful for building a keyword index. Figure 1.1 presents someexamplesof caption text.

Scenetext naturally occursin the �eld of view of the cameraduring video capture.

Figure 1.2presents examplesof scenetext occurring in video frames. Scenetext occurring

on signs,banners,etc. givesnatural indications as to the content of a video sequence.
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(a) (b)

(c) (d)

(e) (f )

Fig. 1.1. Examples of caption text indicating the semantic content of video.
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(a) (b)

(c) (d)

(e) (f )

Fig. 1.2. Examples of scenetext indicating the semantic content of video.
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1.3 Di�erences between video text extraction and documen t OCR

Optical character recognition (OCR) of document images has been studied ex-

tensively for decades[35]. Technology has evolved to nearly solve the document OCR

problem. Recognition accuracy rates higher than 99% are now achievable.

However, extraction of text from video presents unique challengesover OCR of

document images. Document images are usually scanned at high resolutions of 300

dots per inch or higher. In contrast, video frames are usually digitized at much lower

resolutions, typically 640� 480 or 320� 240 pixels for an entire frame. In addition, lossy

compressionschemesare usually applied to digital video to keep storage requirements

reasonable.Video frames therefore su�er from color bleeding, lossof contrast, blocking

artifacts, and other noisethat signi�cantly increasesthe di�cult y of accuratelyextracting

text.

Many characteristics of the text in a document image are known a priori . For

example, the text color in a document is nearly always black, and the background is

known to be uniform white. There is high contrast between the background color and

the text color. The orientation of the text can be assumedto be horizontal, or can

easily be inferred by analyzing the structure of the document. In contrast, text in video

can have arbitrary and non-uniform stroke color. The background may be non-uniform,

complex, and changing from frame to frame. The contrast betweenthe background and

foreground may be low. Text size, location, and orientation are unconstrained.

The temporal nature of video introducesa new dimensioninto the text extraction

problem. Text in video usually persistsfor at least several seconds,to givehuman viewers
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the necessarytime to read it. Sometext events remain unchangedduring their lifetimes.

Others, like movie credits, move in a simple, rigid, linear fashion. Still others, like scene

text and stylized caption text, move and change in complex ways. Text can grow or

shrink, or character spacingcan increaseor decrease.Text color can changeover time.

Text can rotate and changeorientation. Text can morph from one font to another. Text

strings can break apart or join together. Special e�ects or a moving camera can cause

changing text perspective.

The problem of text extraction from video is therefore signi�cantly more di�cult

than the document imageOCR problem. It is possibleto simplify the problem by making

a priori assumptionsabout the type of video, or to extract only certain types of text.

However, in a general-purposevideo indexing application, it is important to be able to

extract as much text as possible. Therefore text extraction systemsmust be applicable

to general-purpose video data and must be able to handle as many types of text as

possible.

1.4 Problem statemen t and scope of this thesis

This thesis discussesthe extraction of unconstrained caption text from general-

purposevideo. In particular, it addressesthe extraction of typesof text that have largely

beenignored by the work in the literature to date. Thesetypesof caption text include

moving text, rotating text, growing text, shrinking text, text of arbitrary orientation, and

text of arbitrary size. The focus of this work is on extraction of caption text, although

much of the work could be applied to extracting scenetext as well.

Text extraction from video can be divided into the following subproblems:
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� Detection: The text detection problem involves locating regionsin a video frame

that contain text.

� Lo calization: Text localization groups the text regionsidenti�ed by the detection

stage into text instances. The output of a good localization algorithm is a set of

tight bounding boxesaround each text instance.

� Tracking: The text tracking problem involves following a text event as it moves

or changesover time. Together, the detection, localization, and tracking modules

determine the temporal and spatial locations and extents of text events.

� Binarization: The text binarization problem involvesseparatingtext strokesfrom

the background in a localized text region.1 The output of a binarization module

is a binary image, with pixels corresponding to text strokesmarked as one binary

level and background pixels marked as the other.

� Recognition: The �nal stage is the text recognition problem, in which the text

appearing in the binarized text imageis recognized.I do not discussthe recognition

problem in this thesis. It is assumedthat oncetext has beenbinarized, any of the

many commercialdocument imageOCR systemscould be usedfor the recognition

stage.

1In previouspublications (e.g. [3, 11]) we usedthe term segmentation to refer to the binariza-
tion problem. We used it in the context of segmenting individual text pixels from background
pixels. Unfortunately this term is used inconsistently in the text extraction literature. Some
authors (e.g. [6]) use this term to refer to the text region segmentation problem. Others (e.g.
[22]) use it to refer to the character segmentation problem, in which individual characters are
located. To avoid confusion, I will avoid the term segmentation in this thesis.
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This thesis discussesthe text detection, tracking, and binarization problems, and

presents the resultsof work toward their solutions. Chapter 2 describesthe text detection

and localization problems. After a review of previous work in this area, two algorithms

are presented for detecting and localizing text in video frames. One of the algorithms

assumesthat text is horizontal and within a size range; the other removes both of

theserestrictions. A quantitativ e performanceevaluation is performed to comparethese

algorithms with others in the literature. In Chapter 3, the text tracking problem is

discussed.A tracking algorithm is presented that tracks rigid text events using MPEG

motion vectors for speedand robustness.A secondtracking algorithm is presented that

removes the rigidit y constraint, allowing for growing, shrinking, and rotating text to be

tracked. In Chapter 4, the binarization problem is discussed.A binarization algorithm

is presented that makes few assumptions about the nature of the text. It is designed

to work with text of arbitrary color appearing against complex backgrounds. Outputs

from this algorithm are comparedto outputs from another binarization algorithm in the

literature. Finally, conclusionsare drawn and areas for future work are identi�ed in

Chapter 5.
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Chapter 2

Detection and localization of unconstrained caption text

2.1 In tro duction

A digital video is a sequenceof still images,displayed rapidly to give the illusion

of continuous motion. Locating text in video therefore begins with locating text in

images. This chapter considersthe problem of identifying text regions in images and

video frames.

The processof identifying text regionscan be split into two subproblems: detec-

tion and localization. In the detection step, generalregionsof the frame are classi�ed as

text or non-text. The sizeand shape of theseregionsdi�er from algorithm to algorithm.

For example,somealgorithms classify 8 � 8 pixel blocks, while others classify individual

scanlines. In the localization step, the results of detection are grouped together to form

one or more text instances. This is usually represented as a bounding box around each

text instance.

The remainder of the chapter discussesthe detection and localization problems.

In Section 2.2, I give a survey of related work in the literature to date. In Section 2.3,

I present a fast algorithm for detecting and localizing horizontal caption text in MPEG

video. Section 2.4 extends this work to allow detection and localization of oriented text

and to improve accuracy. Finally, the results of a performanceevaluation of this and

other detection algorithms in the literature are presented in Section 2.5.
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2.2 Review of prior text detection and localization work

This section reviews past work in locating text in individual images and video

frames. I have classi�ed theseexisting algorithms into �v e categoriesaccording to their

basicunderlying approaches. Each type of approach is reviewed in the following sections.

2.2.1 Edge-based text lo calization

Text tends to have complex shapesand high contrast with the background. The

algorithms in this category exploit this by looking for edgesin the image. Alignment,

size, and orientation features of the edgesare used to discriminate text regions from

other \edgy" portions of an image.

� LeBourgeois[22] localizestext in complex grayscale images. After pre-processing,

imagegradients aresmearedin the horizontal direction. Connectedcomponents are

found in the resulting image to localize text regions into text lines. Text lines are

further segmented into individual characters by locating valleys in the horizontal

and vertical projection pro�les.

� Sato et al [45] localize caption text in news broadcasts by looking for areas of

edge pixels that satisfy aspect ratio and other criteria. Text is assumedto be

light-colored, appear over a dark background, and have horizontal orientation.

� Agnihotri and Dimitro va [1] detect horizontal white, yellow, and black caption

text in video frames. A pre-processingstep enhancesedgesand removessalt-and-

pepper noise. Edge pixels are found using a kernel and a �xed threshold. Frame

regionswith very high edgedensity are consideredtoo noisy for text extraction and
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are disregarded. Connected components are found in the edgepixels of remain-

ing regions. Edge components are merged basedon size, spacing, and alignment

heuristics to produce the localization result. This algorithm relies on many �xed

thresholds. It appearstoo restrictiv e and fragile for use in general-purposevideo.

� Garcia and Apostolidis [9] locate horizontal text in color images. Edge pixel mag-

nitudes and locations are determined in each color plane. Text regionsare selected

by identifying areaswith high edgedensity and high variance of edgeorientation.

This prevents incorrect identi�cation of regionswith \simple" edgesuncharacteris-

tic of text. Morphological operations are performed to remove singletonsand non-

horizontal regions. Localization is performed by �nding connected components.

Candidate text regions are joined together or split apart basedon the geometric

constraints of horizontal text.

� Qi et al [43] extract captions from newsvideo sequences.Horizontal and vertical

edgemaps for a video frame are determined using a Sobel operator. Alignment

of edgesis analyzed to �nd horizontally-oriented text instances. Sample results

shown in the paper are quite noisy, suggestingthat the algorithm is unsuitable for

general-purposevideo.

2.2.2 Strok e-based text lo calization

Text is usually composedof strokesof uniform width and color. Algorithms in this

category look for pixel runs of similar color that may correspond to character strokes.
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The distinction betweenedge-and stroke-basedlocalization techniques is similar to the

distinction betweenedge-and region-basedimage segmentation [18].

� Ohya et al [38] threshold gray level imagesand localize text regionsby looking for

strokesof high contrast, uniform width, and uniform gray level. An OCR stageis

usedto validate the detection. If a localizedregion cannot be recognizedwith high

con�dence by the OCR module, it is discarded.

� Lee et al [24] locate vertical and horizontal runs of pixels in a quantized gray scale

image. Runs having high contrast with neighboring pixels are assumedto lie on

the boundary of a text instance. Connectedsegments are mergedto form character

candidate regions. Post-processingremoves non-characters basedon size, aspect

ratio, and contrast heuristics. Specialconsiderationis given to di�eren tiate \1" and

\l" characters from solid non-text connectedcomponents. The algorithm is tested

on imagesof identi�cation numbers appearing on the sidesof railroad boxcars.

� Lienhart [28] applies the split-and-merge image segmentation technique [14] to

locate text in video frames. Local color variance in the R'G'B' space[41] is usedas

the homogeneity criteria for segmentation. Segmented regionsare chosenbasedon

text-lik e size,spacing,and contrast heuristics. Example detection results shown in

the paper show many falsealarms. This is mitigated by a customOCR module that

discardscandidate regionsthat cannot be recognizedwith a reasonablecon�dence.

Inter-frame analysis is performed to eliminate regionsof noisepersisting for just a

single frame.
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� Shim et al [48, 49] proposea method to detect caption text in video frames. Regions

with homogeneousintensity are identi�ed, positive and negative imagesare formed

by double thresholding, and heuristics are applied to eliminate non-text regions.

Text is assumedto be either black or white. Inter-frame analysis is performed for

added robustness.

� Gargi et al [10] describe an algorithm for locating horizontal text strings in video

frames. Their method looks for horizontal streaks of similar color that may corre-

spond to character strokes. Sizeand aspect ratio heuristics are applied to reduce

falsealarms.

2.2.3 Lo cal texture-based lo calization

Algorithms in this category examine local texture features within small regions

of an image. Text is assumedto have a distinct texture. If the texture features are

consistent with the characteristics of text, all pixels in the region are marked as text.

� Wu et al [57] describe a schemefor �nding text in images. Texture segmentation is

usedto locate potential text regions. Edge detection is then applied to �nd candi-

date text strokes,which are mergedto form text regions. Their algorithm is tested

against a dataset of imageswith text appearing on relatively simple backgrounds.

� Schaar-Mitrea et al [46] proposean algorithm to �nd overlaid text and graphics

in video frames. Blocks of size 4 � 4 pixels are examined. The number of pixels

within the block having similar gray levels is counted. If this count is greater
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than a threshold, and if the dynamic range of the block is found to be lessthan a

threshold or greater than another threshold, the block is classi�ed as text.

� Wong [56] locate text in the luminance plane of a video frame. A 1 � 21 pixel

window is passedover the image, and the di�erence between the maximum and

minimum gradients within the window are determined. Gradient zero-crossings

are found and the meanand variancebetweenzero-crossingsare computed. Pixels

under the window are marked astext if the gradient di�erence is high, the variance

is low, and the mean is within a reasonablerange. These text lines are merged

together into localized text regions.

2.2.4 Color clustering-based lo calization

Algorithms in this category try to simplify image content by performing color

clustering. The assumption is that text pixels and the background will fall into separate

color clusters. Featuresof the clustered image are examined to locate text regions.

� Jain and Yu [17] presents a method to locate text in pseudo-colorimageson the

web, full color images,and color video frames. Quantization and color clustering

are performedin the RGB color space.It is assumedthat the largest color cluster is

the background (non-text) region and the other clusters represent text. Connected

components in the foreground colors are found and are grouped together into text

linesusingalignment, spacing,and projection pro�le heuristics. The examplevideo

images shown in the paper are relatively simple, yet the algorithm inexplicably
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missesseveral prominent text instances. It is not clear that the assumption that

all background pixels are clustered together is true for unconstrained video.

� Mariano [31] performs simultaneous detection and binarization of horizontal text

regionsby performing color clustering on individual scanlines. Streakson adjacent

scanlinesbelonging to the samecolor cluster are assumedto be character strokes.

The algorithm fails if text is even slightly oriented o� of horizontal. It givesgood

results for horizontal text, but its large computation cost makes it prohibitiv e.

2.2.5 Neural-net work based lo calization

Someresearchers have applied neural networks to the problem of detection and

localization of text regions. Two samplepapers are mentioned here.

� Jeonget al [19] apply neural networks to �nd text captions in Korean newsbroad-

casts. Detection is performed on sub-sampled images in a hierarchical fashion

to detect text of di�eren t sizes. Character spacing, text line spacing, horizontal

alignment, and aspect ratio heuristics are applied in post-processing.

� Li et al [27] apply wavelets and a neural network to �nd text. A window of 16 �

16 pixels is passedover the image. The wavelet transform of the pixels under

the window is taken, and moments of it are used as input into a neural network

classi�er. If the classi�er indicates a text region, all pixels under the window

are marked as text. A horizontal bounding box is determined for each connected

component of text pixels. This processis repeated on di�eren t scalesto allow

detection of text of di�eren t sizes.
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2.2.6 Observ ations on text detection literature to date

Unfortunately, it is di�cult to determine the performance of detection and lo-

calization algorithms presented in the literature just by reading the papers. Many of

the \exp erimental results" sectionsof the above papers consist simply of the proposed

algorithm applied to a few sample images. It is impossibleto know whether the sample

outputs represent the typical performanceof the algorithm, or if carefully-selectedresult

imageshave been presented. None of the above papers perform a comparative perfor-

mance evaluation. Somepresent an absolute quantitativ e performanceevaluation, but

becauseno standard test dataset has been adopted, it is impossibleto compare them.

To addressthis issue, we have carried out a performance evaluation of several of the

most promising algorithms [5]. This evaluation is discussedin detail in Section 2.5.

Basedon this evaluation and information presented in the papers, I observe the

following about the work in the literature to date. Many algorithms make a priori

assumptionsabout the text to be extracted (e.g. strong restrictions on text color, size,

location, etc.). This makes them unsuitable for use on general-purpose,unconstrained

video. Other algorithms work well on imageswith relatively simple backgrounds, but

give high falsealarm rates when applied to complex images. Most algorithms have high

computation costs. No algorithm so far detects oriented (non-horizontal) text.

The observation that di�eren t algorithms make di�eren t assumptionsabout the

nature of text in video sparked the idea that outputs of multiple algorithms could be

combined to give a more accurate output than any individual algorithm. Pleasesee[4]
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and [11] for a discussionof our work in this area. Detection algorithm fusion is not

further discussedin this thesis.

In the next section, a computationally-e�cien t algorithm is presented that uses

the DCT coe�cien ts of MPEG video frames to detect text. In Section 2.4, another

DCT-based algorithm is presented that can detect text with non-horizontal orientation.

In Section 2.5, these algorithms are compared with others in the literature using a

quantitativ e performanceevaluation.

2.3 Algorithm A: A DCT-based algorithm for caption text detection

2.3.1 Chaddha94

Chaddha [6] proposedthe following simple algorithm for discriminating text re-

gions from non-text regions in document images. First, the block-wise Discrete Cosine

Transform (DCT) is performed on the image. A block size of 8x8 pixels was used. In

each block, the sum of the absolute valuesof a subsetof DCT coe�cien ts is computed

to give an energyvalue for the block. The optimal subsetof DCT coe�cien ts were em-

pirically determined to be coe�cien ts 3, 4, 5, 11, 12, 13, 19, 20, 21, 43, 44, 45, 51, 52, 53,

59, 60, and 61, in row-major order. This energy is a simple measureof local texture. If

the energy is greater than a threshold, the block is declaredto contain text. Otherwise,

it is marked as a non-text block.

Chaddha's application was detecting text regions in JPEG-compressedimages

of documents. In a performancecomparison with detection schemesusing other image

features,the DCT-basedmethod wasfound to give the most accurateresults. It wasalso
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found to bethe most computationally e�cien t. Explicitly performing the DCT transform

is not required becausethe coe�cien ts arealready available in JPEG-compressedimages.

The method usesa �xed threshold parameter. This is possible in a document

image application becauseit is known a priori that the non-text regions are relatively

smooth and have low texture energy. There is a wide gap betweenthe texture energyof

non-text blocks and text blocks in document images. The algorithm is thereforenot very

sensitive to the threshold value. An optimal threshold empirically determined on one

document image dataset is likely to give good results on another dataset of document

images.

2.3.2 Application to video frames

I applied the DCT-based text detection approach described above to intra-coded

(I) frames of MPEG-1 video sequences.Like JPEG images,I-frames are encoded using

the block-wise DCT transform, so the DCT coe�cien ts are available in the bit stream.

Detecting text in broadcast video frames is much more di�cult than in images

of documents. In unconstrained video frames, non-text regions may be quite complex

and have high texture energy. The gap betweenthe texture energyof text and non-text

blocks is small.

Experimentation showed that the DCT text detection method gave acceptable

results on video frames once an appropriate threshold was chosen. Unfortunately, the

optimal threshold value varied widely from frame to frame. Figure 2.1 illustrates this

sensitivity to the choice of threshold. Two samplevideo framesare shown in images(a)
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and (b). The optimal threshold for each image was determined empirically by exhaus-

tiv ely testing all possiblethresholds and choosing the one that minimized the di�erence

betweenprecisionand recall (seeSection 2.5 for details on the evaluation criteria). The

optimal thresholdswerefound to be 310for image(a) and 102for image(b). Acceptable

results are produced when the optimal thresholds are used,as shown in images(c) and

(f ). But the lower threshold produced many false alarms for image (a), and the higher

threshold causedmany missedtext blocks when applied to image (b). Further, even in

the outputs obtained using the optimal thresholds, a high falsealarm rate is observed.

2.3.3 Region-gro wing to increase detection accuracy

I observed that the blocks with the highest DCT texture energyin a frame usually

belong to text regions. Also, at least one block in each text region has very high en-

ergy. Theseobservations inspired a region-growing schemethat decreasesthe algorithm's

reliance on �xed thresholds.

Region growing is carried out in the following manner. First, blocks with DCT

energyabove somethreshold Th are marked astext. A threshold variable T is initialized

to Th. Then the following is performed iterativ ely. T is decremented by some step

value � T. Blocks with thresholds above T are marked as text if at least one of their

8-neighbors has already beenmarked as text in an earlier iteration. Iteration continues

until T reachessomelow threshold Tl . By experimentation, I found Th = 150, Tl = 30,

and � T = 10 worked well.

Region-growing improves detection accuracy in two ways. First, it suppresses

false alarms, becauseregions may only grow around \seed" blocks of high energy that
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(a) (b)

(c) Thr eshold = 310 (d) Thr eshold = 310

(e) Thr eshold = 102 (f ) Thr eshold = 102

Fig. 2.1. Text block detection by thresholding DCT coe�cien t energies. (a) and (b):
Two samplevideo frames. (c) and (d): Results of detection with threshold at 310. (e)
and (f ): Results of detection with threshold at 102.
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are very probably text. Second,fewer missed-detectblocks are observed becauselower

thresholds are reached during iteration.

2.3.4 Heuristic �ltering

Heuristics are applied to reduceblocks incorrectly identi�ed as text. Sincehori-

zontal text orientation is assumed,it is reasonablethat a text instance should be more

than 8 pixels wide. Therefore, candidate text blocks with neither a left nor a right text

block neighbor are marked as non-text. Candidate text blocks without any 8-neighbors

are also discardedas noise.

I observed that many falsealarms are due to steepluminance \cli�s" in the image.

The cli�s are edgeswhosegradients are sohigh that they causevery high DCT energies.

This e�ect is visible in Figure 2.1(e), in which blocks along the boundary between the

blue background and the scenehave been incorrectly marked as text. The following

heuristic is used to remove such false alarms. A block marked as text is checked if its

coe�cien t energy is above somethreshold Tc. Then, the averageof the DC coe�cien ts1

of the three blocks to the left are computed. Similar averagesare found for the three

blocks to the left, top, and bottom. If the absolutedi�erence betweenthe averagesto the

left and right are greater than somethreshold Td, or if the absolute di�erence between

the averagesto the top and bottom are greater than Td, then the block's high DCT

energy is probably due to an image cli�. The block is marked as non-text. Empirically ,

I determined that Tc = 100 and Td = 300 give good results.

1The DC coe�cien t of a block is its �rst DCT coe�cien t. It indicates the averageintensity
of the pixels in the block.
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2.3.5 Text box lo calization

Localization is performedby �nding connectedcomponents of detectedtext blocks.

Bounding text boxes are found around each connected component. Spatial heuristics

are then applied to remove boxes corresponding to non-text regions. Boxes with non-

horizontal aspect ratios are discarded.

2.3.6 Results and Discussion

In this section I present output of this algorithm applied to samplevideo frames.

A quantitativ e evaluation of this algorithm is presented in Section2.5. All framesshown

in this section were extracted from MPEG-1 videos with spatial resolution of 320 �

240 pixels. Videos were captured from a variety of television channels, including CNN

and foreign news broadcasts. Note that the foreign news broadcastsare a challenging

dataset for detection algorithms, becauseof their lower quality and contrast. Refer to

Section 2.5.1 for further details about our video dataset.

Figure 2.2 presents examplelocalization results on a variety of video frames. The

algorithm can detect text of di�eren t scripts, as demonstrated by image (a). It is even

able to detect the very low-contrast \SCOLA" text appearing in images(a), (b), and

(c). There are somefalse alarms along the top edgeof image (d). These false alarms

are causedby noise along this edgedue to imperfect video capture. The algorithm is

able to detect the text in a very small font sizein image (e), although the localized text

rectangle is a bit loose. Somesmall falsealarms appear in image (f ), but thesecould be

easily suppressedby adding a minimum text box sizeheuristic.
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(a) (b)

(c) (d)

(e) (f )

Fig. 2.2. Output of Algorithm A on video frameswith caption text.
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Although my focus is on caption text, the algorithm correctly detectssomescene

text as well. Figure 2.3 shows this. In image (a), the scenetext instance \Swiss Bank"

hasbeenproperly localized. But the low-contrast scenetext instancesin images(b) and

(c) have beenmissed. Note that in all three frames, all caption text has beendetected,

and there are no false alarms.

Figure 2.4 demonstrates some typical failures of the detection and localization

algorithm. The algorithm exhibits two false alarms in image (a). The texture of the

plant in this caseis similar to that of text. Image (b) demonstratesa more severe case

of falsealarms. The high texture energyof the crowd scenehas causedthe algorithm to

�nd the entire frame as one large text box. This could be solved by raising the Th and

Tl thresholds. This example demonstratesthat, while the region-growing thresholding

scheme reducesthe sensitivity to �xed thresholds, it does not eliminate the sensitivity

entirely. Images(c) and (d) show two examplesof text misseddue to limitations of the

algorithm. The text region in image (c) is not localized properly becauseit violates the

assumptionof horizontal text. The text in image(d) causesdi�cult y becauseof its large

stroke width. A consequenceof using an 8 � 8 pixel block size is that the text stroke

width must be lessthan about 8 pixels for proper detection. This explains the incorrect

localization observed in image(d), where the character strokesare about 20 pixels wide.

I have shown that Algorithm A performs well on a variety of text instances in

a variety of types of video. Another advantage to this algorithm is its relatively low

computation cost. In fact, the algorithm requires only the DCT coe�cien ts of a video

frame. Sincethe DCT coe�cien ts of I-frames are immediately available in the MPEG bit
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(a) (b)

(c)

Fig. 2.3. Output of Algorithm A on video frameswith caption text.



27

(a) (b)

(c) (d)

Fig. 2.4. Examples of poor-quality detection results from Algorithm A.
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stream, the video �le neednot be fully decompressed.My unoptimized implementation

runs at a real-time rate of over 30 I-frames per secondon an SGI Octane workstation.

In some applications, it may be su�cien t to perform text detection on just I-

frames,sincethey occur relatively frequently in the MPEG stream (usually about three

times a second)and text events tend to persist for at least several seconds.To process

predictive (P- and B-) frames, it is necessaryto reconstruct the DCT coe�cien ts after

motion compensation. The simple approach used in my implementation completely

decodes each frame, then usesa fast DCT algorithm [47] to compute the coe�cien ts.

This is a naive implementation, but it still achievesa speedof 10 framesper second.For

faster performanceit is possibleto perform motion vector compensation directly in the

frequencydomain [32].

2.4 Algorithm B: An algorithm for detecting caption text of arbitrary

size and orien tation

In the previous section, an e�cien t DCT-based text detection and localization

algorithm (Algorithm A) was presented. While it gave good results on many video

frames, I also noted the algorithm's limitations. It is unable to detect text having non-

horizontal orientation. It relies on �xed energy thresholds that causemany falsealarms

in some scenes. It is unable to detect text with large stroke widths. In this section,

modi�cations to the above algorithm are presented that circumvent theselimitations.
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2.4.1 Choice of DCT coe�cien ts

Algorithm A usedthe coe�cien ts found to be optimal by Chaddha [6]. However,

Chaddha's application was document images,and a dataset of just �v e imageswas used

for the optimization. The coe�cien ts found in this manner may not be optimal for

general-purposevideo frames.

Unfortunately, �nding the optimal coe�cien ts is non-trivial. An exhaustivesearch

would require trying all combinations of between1 and 64 coe�cien ts, or
P 64

i=1
� 64

i
�

�

1:8 � 1019 possibilities. An alternative is suggestedin [6]. The averageabsolutevalue of

each coe�cien t for both text and non-text blocks is determined. Coe�cien ts are sorted

by the di�erence between text and non-text sums. Coe�cien ts are then added one-by-

one in the sorted order until the optimal choice of coe�cien ts is found. This procedure

requires trying at most 64 combinations of coe�cien ts.

I performed the optimization in this manner using 9,329framesof video from our

ground-truthed dataset described in Section 2.5. This represents a much larger dataset

than in Chaddha's optimization. His dataset had 4,800 blocks total; I used 9,122,279

blocks (539,941text blocks, 8,582,338non-text blocks). Figure 2.5 comparesthe average

absolute value of each coe�cien t for text and non-text blocks. Using the procedure

described above, the optimal coe�cien ts weredetermined to be 1, 2, 3, 4, 5, 8, 9, 10, 11,

12, 16, 17, 18, 19, 24, 25, 26, 32, and 40, in row-major order.

2.4.2 Detection of text blo cks

The above coe�cien t choice optimization was performed for horizontal text. Be-

causethe 2-D Discrete Cosine Transform is separable,transposing the matrix of pixel
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valuesof a block in the spatial domain corresponds with the transposeof the DCT co-

e�cien t matrix as well. It follows that vertical text can be detected by �rst taking the

transposeof a block's DCT coe�cien t matrix, and then using the samecoe�cien ts de-

termined during the optimization for horizontal text. I have observed that text oriented

betweenhorizontal and vertical has a combination of horizontal and vertical DCT text

energy.

Theseobservations motivate the following method for detecting text blocks. For

each DCT block, the horizontal text texture energyTTEh is computed by summing the

coe�cien ts listed above. Similarly, the vertical text texture energy TTEv is computed

by transposing the DCT coe�cien t matrix, and then summing the above coe�cien ts.

Instead of thresholding individual blocks, horizontal and vertical groups of three blocks

are examined. This encouragesblocks with high TTEh to grow into horizontal text

boxes, and blocks with high TTEv to grow vertically. This is accomplished in the

following way. The average of the TTEh values for a block and its two horizontal

neighbors is computed. This is added to the averageof the TTEv for the block and its

vertical neighbors. If the total is greater than a threshold, the block is marked as text.

That is, the block at row i and column j in an image is marked as text if

TTEh(i; j � 1) + TTEh(i; j ) + TTEh(i; j + 1)
3

+

TTEv(i � 1; j ) + TTEv(i; j ) + TTEv(i + 1; j )
3

> T
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2.4.3 Choice of threshold

Next we consider how to choose the threshold T. As mentioned earlier, while

using a �xed threshold may be possiblefor document images,I found that the optimal

threshold varies widely from one video sequenceto the next. Algorithm A employed

a region-growing scheme that reduced the reliance on the thresholds. However, �xed

thresholds were still used,and this causedpoor results on somevideo frames.

In informal experimentation, I have observed that the optimal threshold is fairly

uniform acrossall framesof the samevideo sequence.Also, di�eren t video sequencesof

the samegeneral type have similar optimal thresholds. This suggeststhat the optimal

threshold depends on general characteristics of the video that could be computed or

known a priori . For example,perhapsone threshold is best suited for newsbroadcasts,

while another is better for commercials. The genre of video may be known a priori ,

or an algorithm could be used to automatically determine the genre (e.g. [15]). I also

observed that low-level image features could also be used to predict optimal threshold.

Speci�cally , I hypothesizedthat video contrast could be used.

This hypothesiswas tested as follows. First, the optimal threshold for each video

sequencein our dataset was determined by exhaustively trying all possible thresholds

within a reasonablerange (again according to the experimental protocol and evaluation

criteria discussedin Section2.5). The averagecontrast per frame for each video sequence

was also computed. The contrast measureusedwas the di�erence between the highest

and lowest gray level in the luminance plane of a frame.
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Figure 2.6 plots the optimal threshold versus the average frame contrast. The

�gure indicates that there is a strong linear correlation between contrast and ideal

threshold. The best-�t line that minimizes least-square-errorwas found to be about

T(c) = 23:8c � 2018:5 for a given average contrast c. This result suggeststhat it is

possibleto predict a good threshold basedonly on the generalcharacteristics of a video

sequence.

Note that this analysiswascarried out on a relatively small datasetof 11sequences

and 11000framestotal. More experimentation would benecessaryto determine that this

simple linear relationship holds for a larger dataset. Also, the optimal threshold may be

better correlated with video sequencefeatures other than averageframe contrast. For

the work in this thesis, however, we use only contrast to predict the threshold. The

threshold for each sequenceis computed using the T(c) expressiongiven above.

2.4.4 Hierarc hical subsampling to detect di�eren t sizes of text

It was noted earlier that Algorithm A is unable to detect text with stroke width

larger than the DCT block size. This problem can be circumvented by analyzing a

subsampledversion of the frame. For example, text with strokes up to 16 pixels wide

can be detected in a frame subsampledto half the original size.

Subsampling is incorporated into the algorithm as follows. The text block de-

tection algorithm is applied to the image. Then, the image is subsampledto half its

dimensions,and the 8� 8 block classi�cation algorithm is applied again. A block at this

level correspondsto four blocks in the original image. For each block classi�ed as text in

the subsampledimage, the corresponding four blocks in the original image are marked
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as text. Subsampling is continued iterativ ely until somelower bound on the frame di-

mensionsis reached. I have observed that proceedingto a resolution of 160� 120ensures

that text of all reasonablesizesis found. This corresponds to two hierarchical levels for

an original frame sizeof 320� 240 and three levels for a frame sizeof 640� 480.

My present implementation usesa naive approach to the subsampling. The origi-

nal image is converted to the spatial domain, subsampled,and then the DCT transform

is taken. A much more e�cien t approach is to perform subsamplingdirectly in the DCT

domain. A method for doing this is described in [8].

2.4.5 Lo calization of text with arbitrary orien tation

Once blocks of a frame have beenclassi�ed as text or non-text, we wish to group

the blocks into text instances. This is done by determining tightly-�tting bounding

rectangles for each text instance. In the caseof oriented text, the bounding rectangle

should be oriented at the appropriate angle. As was noted in Section2.2, no work so far

in the literature has consideredthe problem of localizing non-horizontal text.

We proposean iterativ e greedy algorithm for separating text instancesand de-

termining tight bounding boxes around them. First, connectedcomponent analysis is

performed on the blocks marked as text. Orthogonal bounding rectanglesare computed

for each component. Then, the bounding rectanglesare iterativ ely re�ned by moving,

changing size,and changing orientation. Each iteration of the greedyalgorithm attempts

to increasethe criteria

G = Pt � (1 � Pnt )
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where Pt is the percentage of the detected text pixels that lie underneath the rectangle,

and Pnt is the percentage of the rectangle's area covering non-text pixels. During each

iteration, each bounding rectangle is visited. One of the following actions is taken,

according to which producesthe maximum G:

� Rectangle is left unchanged

� Rectangleheight is incremented or decremented by one block

� Rectanglewidth is incremented or decremented by one block

� Rectangle is moved one block to the left or right

� Rectangle is moved one block up or down

� Rectangle is rotated by 15 degreesclockwise or counter-clockwise

Once all rectangleshave beenvisited during an iteration, overlapping rectangles

are mergedtogether if doing so doesnot lower the overall value of G.

The iteration continues until convergence.Simple heuristics can then be applied

to discard non-text regions basedon rectangle dimensions. In my implementation, we

discard rectangleswhoselength or width is lessthan 8 pixels. Very few text instances

are less than this size, and even if present, it is doubtful that an OCR module could

recognizethem accurately.

2.4.6 Results

Figure 2.7 presents sample results of the algorithm applied to 320 � 240 pixel

MPEG-1 video frames captured from television channels. The rectanglessuperimposed
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on the video framesindicate the results of the text localization. Image (a) demonstrates

the algorithm's e�ectiv enesson simple, horizontal caption text. Note that the algorithm

works on a variety of language scripts. Images (b), (c), and (d) show examples of

detection of both horizontal text and text oriented at di�eren t angles. Image(c) includes

some text missed by the algorithm. This text is less than 8 pixels tall and thus was

discardedby our sizeheuristic.

2.5 Performance Evaluation

As noted in section2.2, there have beenno quantitativ e, comparative performance

evaluations of text detection algorithms presented in the literature. In this section, I

present the results of a quantitativ e evaluation of the above two algorithms and four

others from the literature. We have presented a similar evaluation in [5].

2.5.1 Video datasets

Two datasetswereusedin the evaluation. Dataset A contained mostly static cap-

tion text typical of newsbroadcasts. Dataset B consistedof commercialsthat included

moving, rotating, growing, and shrinking text. Details of the datasetsare as follows:

� Dataset A consistedof 15 MPEG-1 video sequenceswith 320� 240 pixel resolu-

tion. There werea total of 10299frames(about 175megabytes of data). There were

156 caption text events and 144 scenetext events in the video data. The dataset

represented a wide variety of video captured from television broadcast channels.

Video clips included newscastsfrom Turkey, United Arab Emirates, Japan, and

Germany, CNN's The World Today program, CNN's BusinessUnusual program,
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(a) (b)

(d) (e)

Fig. 2.7. Examples of detected text of various orientations.
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ABC's World News Tonight, and commercials from various channels. This di-

versecollection of video contained a wide variety of text fonts, colors, placements,

languages,and scripts.

� Dataset B consistedof 1 MPEG-1 video sequencewith 320� 240pixel resolution.

There werea total of 916frames(about 26megabytes of video data), and 25caption

text events. The datasetconsistedof portions of commercialscaptured from various

television channels. A wide variety of text sizesand colors was included in the

dataset. All captions were in English. In addition to static text, text events

undergoing rotation and sizechangeswere included.

Video sequencesfor both datasets were captured at 30 frames per second by

either a CosmoCompressmotion-JPEG hardware compressionboard on an SGI Indy

workstation, or by an ICE motion-JPEG hardware compressionboard on an SGI O2

workstation. The movies were converted to MPEG-1 using SGI's dmconvert software

encoder. The compressedbit rate was 4.15 megabits per second.The group of pictures

(GOP) size(i.e. distance betweenadjacent I-frames) was 12 frames.

Dataset A was ground-truthed by Jin Hyeong Park, Vladimir Mariano, Sameer

Antani, and me using the ViPER tool from the University of Maryland [7]. Dataset B

wasground-truthed my me. In each frame, tight bounding rectanglesweredrawn around

any text regions(regardlessof whether the text could actually be read).
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2.5.2 Evaluation criteria

It is not obvious how to designa good evaluation criteria for text detection and

localization algorithms. Most evaluations presented in the literature (e.g. [17]) give eval-

uation results as a single percentage called \accuracy." This indicates the percentage of

text instancesdetectedby the algorithm. However, this accuracystatistic is misleading,

becauseit does not capture the false alarm rate. For example, using this evaluation

strategy, an algorithm that simply places text boxes around the entire area of every

frame would achieve 100% accuracy. It is also not clear how to decide whether an al-

gorithm has detected a text event or not. For example, has the algorithm detected the

text in Figure 2.4(d)? It has marked parts of the text, but not all of it. Unfortunately

thesedetails are rarely speci�ed in papers in the literature. From communications with

authors, it appears that usually a human's subjective judgment is used to determine

whether the algorithm reasonablydetected a given text instance or not.

We desirean evaluation criteria that rewards algorithms for tightly localizing text

events. Algorithms should be penalizedfor failing to detect text or for detecting only a

portion of text. They should also be penalizedfor false alarms, or for looselocalization

of text. Further, the criteria should be objective and automatically computable by a

program.

We perform a pixel-by-pixel match of the ground truth against the output of a

localization algorithm. A pixel is counted as a correct detect if it is marked as text in

the ground truth and in the algorithm's output. A false alarm appearsin the algorithm

output but not the ground truth. A missed detect appears in the ground truth but not
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the algorithm output. To perform the evaluation, the number of correct detect, false

alarm, and missed detect pixels are counted. The results are expressedas recall and

precision, where:

Recall =
corr ect detects

corr ect detects+ missed detects

Pr ecision =
corr ect detects

corr ect detects+ f alse alarms

Intuitiv ely, recall expressesthe abilit y of an algorithm to detect text. A recall of

100%indicates that the algorithm found all text in the dataset. Precision is a measure

of the tightness of the localization. A precision of 100% indicates that the algorithm's

output exhibited no falsealarm pixels. Note that there is a trade-o� betweenrecall and

precision. For example, an algorithm's parameters can be adjusted to increaserecall,

but this will generally causeprecision to decrease.

The relative importance of recall and precision dependson the application. For

this evaluation, I will assumethat recall and precision are equally important. Therefore

I will comparealgorithms at the point where parametershave beenadjusted such that

recall and precision are equal.

2.5.3 Exp erimen tal proto col

Algorithms A and B presented in this chapter were evaluated along with four

other promising algorithms from the literature. This included the work of Gargi et

al [10], LeBourgeois[22], Mariano et al [31], and Mitrea et al [46]. Sourcecode provided

by the authors was used for the Gargi and Mariano algorithms. The LeBourgeoisand
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Mitrea algorithms were implemented by Ryan Keener,Alb ert Roberts, and me basedon

the algorithm descriptions in the papers.

The evaluation was carried out as follows. Each algorithm requires one or more

�xed parameters. The parameters were optimized on Dataset A by varying each pa-

rameter over a reasonablerange. For each combination of parameters, the evaluation

was performed on the full 10299frames. The combination of parameters that gave the

highest recall and precision under the constraint r ecall = precision was declaredopti-

mal. The recall and precision obtained using this set of parameter valueswere used to

represent the performanceof the algorithm.

Our ground truth contains localization data for both caption and scenetext.

Sincethe focusof this thesis is caption text, algorithms weretested only on caption text.

Algorithm output was ignored for regions marked as scenetext in the ground truth.

Therefore algorithms were neither penalized nor rewarded for missing or �nding scene

text.

2.5.4 Results

Table 2.1 presents the results of the evaluation for Dataset A. It is observed that

Algorithm B exhibits the best performance,followed very closely by Algorithm A. The

Mariano algorithm was next best, followed closelyby the Mitrea algorithm.

Table 2.2 presents the evaluation results for Dataset B. Two sets of recall and

precision statistics are given. The evaluation was �rst performed using the parameter

valuesdetermined asoptimal over Dataset A. Theseresults are shown in the secondand

third columns of Table 2.2. The parameter values for each algorithm were then varied
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to �nd the optimal parameter sets for Dataset B. Theseresults are shown in the fourth

and �fth columns of the table. Note that Mariano's algorithm was not included in these

runs, becauseour dataset violated its assumption that all text is perfectly horizontal.

It is observed that Algorithm B gives by far the best performance on Dataset

B, with an optimal precision and recall of 74%. Further, the results indicate that the

optimal parametersfor Algorithm B on Dataset A are very closeto optimal on Dataset

B. This suggeststhat Algorithm B is relatively insensitive to the value of its parameters.

The LeBourgeois,Mitrea, and Gargi algorithms exhibit optimal precision and recalls of

around 49%, about 25 percentage points lower than those of Algorithm B. The results

also suggestthat thesealgorithms are more sensitive to the valuesof their parameters.

Algorithm A gives poor performanceon this dataset. This is becausemuch of the text

in Dataset B is relatively large, violating Algorithm A's assumption that the text sizeis

comparableto the 8 � 8 pixel block size.

I observe that Algorithm B has shown the best performanceon both datasets. It

performs slightly better than other algorithms in the literature on a dataset containing

mostly static, horizontal text. It performs signi�cantly better than other algorithms

on a dataset including non-horizontal text that rotates, changessize, and moves over

time. This is an encouragingobservation, becauseit demonstratesthat it is possibleto

designtext detection algorithms that make fewer assumptionsabout text in video while

maintaining the accuracy typical of algorithms found in the literature. It is hoped that

in the future, other researchers will attempt to reduce the restrictions their algorithms

place on the typesof text that can be detected.
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The results of the quantitativ e performance evaluation indicate that precision

and recall of state-of-the-art detection and localization algorithms are quite low. It is

disappointing to seeprecision and recall values under 50%, when we would like values

closeto 100%. This highlights the needfor further research in designingmore accurate

algorithms that can detect and localize text in general-purposevideo. However, there

are two caveats to our performance evaluation that should be kept in mind. First,

our evaluation criteria is very strict. An algorithm must generateoutput that exactly

matches the ground truth in order to achieve perfect precision and recall. In an actual

application, it probably does not matter if a localization algorithm's output is o� by a

few pixels. Second,our dataset is extremely challenging. The ground truth has been

marked with all caption events that could be detected by a human, even if they could

not be read. Such text may not even be useful to an application.
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Algorithm Recall Precision
Algorithm A 46% 45%
Algorithm B 46% 48%
Gargi 29% 30%
LeBourgeois 33% 34%
Mariano 40% 39%
Mitrea 37% 37%

Table 2.1. Detection/lo calization algorithm performance for caption text on Dataset
A. Dataset A contains mostly horizontal, static text events.

Algorithm Preset parameter set Optimal parameter set
Recall Precision Recall Precision

Algorithm A 36% 36% 36% 36%
Algorithm B 73% 75% 74% 74%
Gargi 37% 62% 46% 48%
LeBourgeois 25% 73% 49% 49%
Mitrea 37% 58% 47% 48%

Table 2.2. Detection/lo calization algorithm performance for caption text on Dataset
B. Dataset B includes text that moves, rotates, grows, and shrinks over time. Results
are shown both for when the parameters were set to values found optimal for Dataset
A, and when set to those found optimal for Dataset B.
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Chapter 3

Text trac king

3.1 In tro duction

Text in video persists for multiple frames. A typical text event lasts for at least

a secondto allow human viewers adequatetime to read it. At the NTSC frame rate of

about 30 frames per second,even a one-secondtext event appears in 30 video frames.

The text event may remain stationary, in which casethe spatial location of the text is the

samein all frames. It may exhibit a slow, linear motion, as typi�ed by scrolling movie

credits. Or it may move quickly in a complex tra jectory, it may change size or shape,

it may undergo perspective distortion, it may rotate, or it may exhibit a combination of

thesebehaviors. Figure 3.1 shows examplesof text events and their behaviors over time.

A tracker is necessaryto follow text as it moves. A text tracker could have several

purposesin a video indexing system:

� Determination of text events: We would like to build an index of the text

occurring in video for content-based retrieval purposes. The index would not in-

clude entries for individual frames, but instead for each text event that appears,

persists for some time, and then disappears. That is, we would like to �nd the

temporal location and extent of a text event, as well as the spatial location and

extent in each frame. The tracker can be usedto combine the localizedtext regions

of individual frames into text events.
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(a)

(b)

(c)

Fig. 3.1. Examples of caption text behavior over time. (a): Stationary text, (b): Scrolling rigid text exhibiting simple, linear
motion, (c): Text changing sizewith time.
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� Veri�cation of text lo calization: Since it is assumedthat text persists for

multiple frames, a region localized as text in one frame but not in neighboring

frames indicates that it is a false alarm and should be discarded. Assuming all

text is stationary, a candidate region could be discarded if no region exists at the

samelocation in the neighboring frames. But this would fail for moving text. A

text tracker is required to verify that motion in the localization output is consistent

with motion in the video.

� Human-assisted text event indexing: State-of-the-art text detection algo-

rithms may not perform well on certain datasets (e.g. very noisy video data). In

thesecases,a human operator could mark a text region in the �rst frame in which

it appears. The tracker could then automatically determine the location of the

text in subsequent frames.

This chapter considers the text tracking problem. In Section 3.2, prior work

related to text tracking is presented. Then, two algorithms representing two di�eren t

approachesto text detection are described. In Section3.3, I describe a fast algorithm for

tracking rigid text events exhibiting linear motion in MPEG video. This algorithm can

operate independently to support an operator-assistedenvironment as described above.

In Section 3.4, an algorithm is presented for tracking text whose size, position, and

orientation may be changing over time. This algorithm requires tight integration with a

text detection algorithm, like those presented in Chapter 2.
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3.2 Review of prior work

While there has been a signi�cant amount of work on the extraction of text in

imagesand video frames, very little text detection work is found in the literature that

considersthe temporal nature of video. This sectionsurveysthe few approachesthat do

include temporal analysis.

Shim et al [48, 49] usesa simple inter-frame analysis technique to reduce false

alarms. Individual framesare �rst processedby �nding regionswith homogeneousinten-

sity, forming positiveand negative imagesby double thresholding, and applying heuristics

to remove non-text regions. Then, the candidate text regions in groups of �v e adjacent

frames are considered. Text is assumedto be stationary. A candidate text region is

discarded if regionsof similar position, intensity, and shape do not appear in the other

four frames. Note that this approach would incorrectly discard moving text regions.

Lienhart [29, 28] takes a similar approach, but allows text motion. Individual

framesare segmented using properties of local color histogramsand choosing text candi-

date regionsusing heuristics. Temporal analysis is used to re�ne detection results. For

each potential text region detected in a frame, the text candidate regions in the next

frame are searched for one of identical size, color, and shape. If such an area is not

found, the region is discardedas non-text. This approach assumestext remains rigid. It

also requires that text detection is applied to each frame, so it is not applicable to the

operator-assistedapplication mentioned above.

Li and Doermann [25, 26] describe a simple algorithm for tracking rigid, moving

text in video. A simple pixel-level template matching schemeis used. It is assumedthat
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the text is moving with constant velocity. A record is kept of this velocity. Given the

known location of a text region in a frame, its location in the next frame is predicted using

this velocity. A simple least-squared-errorsearch is performed around a neighborhood

of the predicted location to �nd the precise location. Note that the pattern matching

is performed on both text pixels and background pixels alike. This can be problematic

when text occurs on complex backgrounds, or when text moves over backgrounds of

di�eren t gray level intensity. This approach also fails for text exhibiting a non-linear

velocity.

A recent extension to Li and Doermann's work [27] adds a post-processingstep

to correct tracking results in the casethat text grows or shrinks very slightly from frame

to frame. The text region is enlarged, and a Canny edge detector is applied to �nd

character edges. A tight bounding rectangle is found around these characters, and is

used as the �nal tracking result. The authors found that this extension failed for text

moving over complex backgrounds. To overcome this problem, the least-squared-error

value computed during the neighborhood search is monitored. If a spike in the error

occurs, it is assumedthat the text is moving over a complex background, and the post-

processingstep is disabled. Once tracking begins, their tracker continues until the end

of the video sequence.They do not consider the problem of determining when a text

event has disappeared,or when a text event endsand another begins. Their algorithm

simply follows some\edgy" region in the video; it does not ensure that it is following

the sametext from frame to frame.
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3.3 Metho d for trac king rigid text using MPEG motion vectors

As discussedin the previous section, Li and Doermann's work represents the

state-of-the-art in text tracking. Unfortunately, this approach has several limitations.

First, it assumesthat text moves with constant velocity in a linear tra jectory. This

assumption could be relaxed by using a more sophisticated tra jectory model; however,

even this would fail for random, erratic motion. Another approach would be to remove

the predictive stage altogether and increase the size of the template search window.

Unfortunately this increasesthe computation cost prohibitiv ely. A least-squared-error

search for an m� n text region over a w� w pixel search window requiresm� n � w2 pixel

comparisons.Therefore it becomesvery expensive to increasethe search window because

the search operation is of order O(w2). A secondlimitation of their algorithm is that it

comparesall pixels within the localized text region, including background pixels. This

can causethe algorithm to track the background instead of the text if the background

changesor if text movesover backgrounds of di�eren t intensities.

In this section, I present an algorithm for e�cien tly tracking rigid text in MPEG

video. I use the motion vectors present in the MPEG-compressedvideo bit stream

to predict text motion with very little computation cost to the tracker. In e�ect, the

computation cost has already beenpaid by the MPEG encoder. This idea was inspired

by papers by Nakajima et al [36], who usedmotion vectors to detect moving objects in

MPEG video, and by Pilu [40], who usedthem to detect cameramotion.
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3.3.1 Review of MPEG motion vectors

A brief overview of motion compensation in the MPEG-1 video coding standard

is presented here. The reader is referred to [34] for a detailed treatment of the standard.

The MPEG video standard usesmotion compensation to reducetemporal redun-

dancy in the compressedvideo stream. MPEG de�nes three typesof frames: intra-coded

(I) frames,predictive (P) frames,and bidirectional predictive (B) frames. An I-frame is

self-contained in that it hasall the information required to reconstruct the frame. P- and

B-frames are split into non-overlapping 16 � 16 pixel regions called macroblocks. Each

macroblock in a P-frame includes a motion vector indicating an x and y pixel displace-

ment from the last I- or P-frame. It also includes DCT error correction coe�cien ts. To

reconstruct a given P-frame macroblock, the MPEG decoder beginswith the 16� 16 pixel

area pointed to by the motion vector, and adds the IDCT of the correction coe�cien ts.

A B-frame is similar to a P-frame except that it can include both a motion vector to the

previous I- or P- frame and a motion vector to the next I- or P- frame. Reconstruction

of B-frames is accomplishedby averaging the two macroblocks pointed to by the motion

vectors and adding the error correction.

3.3.2 Motion prediction using MPEG motion vectors

At �rst it may seemtrivial to apply MPEG motion vectors to the problem of

tracking text in video. Unfortunately, MPEG motion vectors are usually too noisy for

direct use in a tracker. This is explained by the following observation. Given a region

of one frame, a tracker wishes to �nd the precise location of that region in the next

frame. On the other hand, the goal of the MPEG encoder is to achieve minimal coding
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requirements in a minimum amount of time. MPEG encoders are willing to trade o�

motion vector accuracy for a decreasein the encoding time.

Figure 3.2 illustrates typical motion vectors found in MPEG video. Three con-

secutive P-frames of an MPEG encoded video are shown in (a). The video contains

upward-scrolling text. Graphical representations of the macroblock boundariesand mo-

tion vectors found in the MPEG bit stream for thesethree framesare shown in (b). The

white grid indicates the macroblock boundaries. Macroblocks marked with an \X" are

I-coded macroblocks, meaning that they are self-contained and do not require motion

compensation. For macroblocks that are motion-compensated, the motion vectors are

drawn from the macroblock center to the center of the region usedfor motion compen-

sation in the last frame. Macroblocks drawn with neither an \X" nor a vector have a

motion vector of length zero. It is observed in this �gure that many of the macroblocks

corresponding to the text have motion vectors that accurately indicate the text's mo-

tion. However, someof the motion vectors point in random directions. In particular, I

observed that macroblocks containing few edgestend to have incorrect motion vectors.

Macroblocks containing strong edgestend to be reliable.

My algorithm dealswith these issuesas follows. Given a localized text region in

oneframe, search the next frame for all macroblocks whosemotion vectorspoint back to

any part of the text region. Extract the motion vectors from thesemacroblocks. Several

constraints are then applied to the motion vectors to determine those that are likely to

be reliable. Very small motion vectors (less than 2 pixels in magnitude) are probably

noisy and are removed from consideration. Motion vectors from relatively featureless

macroblocks are also discarded, becausethey are not likely to be accurate. This is
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(a)

(b)

Fig. 3.2. MPEG motion vectors indicate object motion but are noisy. (a): Three consecutive P-frames in an MPEG-1 video.
(b): The samethree framesoverlaid with graphical representations of the macroblock boundariesand motion vectors.
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determined by applying a Sobel edge detector on each macroblock, and eliminating

macroblocks that contain lessthan four edgepixels.

The magnitude and direction of the remaining motion vectors are then clustered.

It is assumedthat the largest cluster corresponds to the approximate motion of the text

block. Note that this clustering processimplicitly ignores noisy motion vectors. The

vectors in this cluster are then averaged to yield a single motion vector for the text

region.

It is clear that a text event cannot be tracked in an I-frame in this way, because

I-frames do not contain motion vectors. Fortunately, I-frames are relatively rare in an

MPEG stream. Typically I-frames occur only onceevery ten or twelve frames. Tracking

through an I-frame is handled by averaging the motion vectorsdetermined for the region

in the frame before the I-frame and the frame after.

3.3.3 Re�nemen t using gradien t-based corresp ondence

I have found that the motion vector determined using the simple processabove

is generally of very high quality. In fact, for many text events it is possibleto track a

moving text region using the MPEG motion vectors alone. However, any small errors

made in the tracking from one frame to the next propagate through the entire lifetime

of the text event. For a long video sequence,the tracking location is usually inaccurate

by several pixels after tracking text through several secondsof video.

I therefore employ a least-squared-error correspondence search around a very

small neighborhood of the location predicted by the MPEG motion vector analysis.
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Instead of comparing pixel gray levels directly, as in Li & Doermann's method, I per-

form the correspondencesearch only on edgepixels (pixels with high gradient). This

encouragesthe algorithm to match only on the text pixels and not on the background

pixels. Matching on edgesimplies that the text can move acrossbackgrounds of di�eren t

colors without a�ecting tracking reliabilit y.

MPEG encoders generally use a search window of 32 pixels in each direction

during motion compensation searches [34]. This createsa large computation cost and

accounts for the slow performance of MPEG encoding. The tracker algorithm so far,

however, is able to take advantage of this wide search window \for free." Unlike Li &

Doermann's algorithm, this algorithm makes no assumptions about the tra jectory of

text, and therefore can handle a greater variety of text motion. Assuming a 32 pixel

search window during MPEG encoding, a text event would have to move at a speed

greater than 32 pixels per frame in order for the tracking algorithm to fail. Text moving

this fast is very unlikely, as it would travel from one edgeof a 320� 240 pixel video to

the other edgein a third of a second.

Unfortunately, successfuluseof motion vectors is highly dependent on the MPEG

encoder used to encode the video. It is possible, for example, to encode a video using

only I-frames,1 or using a very small search window during motion compensation. To

handle thesecases,I also include a simple tra jectory-basedprediction similar to Li and

Doermann'salgorithm. A recordof the current tra jectory of the text region is kept. After

performing the motion vector-basedtracking approach described above, text motion is

1Note that MPEG videosare rarely encoded in this manner, becausebypassingmotion com-
pensation signi�can tly increasesthe MPEG �le size.
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separately predicted using the past tra jectory. A least-square-errorsearch is performed

around a neighborhood of the predicted location. The lowest error of this search is

comparedto the lowest error found during the motion vector-basedsearch. Of thesetwo

choices,the location with the lowest error is chosen.

3.3.4 Text entering or leaving the video

Text in video sometimesscrollson or o� the screen,such that in someframesonly

a portion of the text event is visible. I include special casesin the algorithm for handling

this type of motion. Text exiting the frame is the easiercase.The motion determination

stepsdiscussedabove are applied only on the portion of the text event that is visible. If

the computed motion indicates that the text event is exiting the frame, the tracked text

box is clipped at the video frame boundary.

Text scrolling into the video is more di�cult, becausethe spatial extent of the

text event is not known. For example, in the operator-assisted indexing application

described above, the human may mark the visible portion of a text event occurring

on the edgeof the frame. In subsequent frames, the tracker determines that the text

event is moving towards the center of the frame. We would like the tracker to be able to

automatically resizethe tracking box asmore text enters the frame. This caseis handled

in the following way. The number of edgepixels occurring in the known text region is

counted and usedas a texture measure.When the tracker detects that the tracking box

is moving from the edgeof the frame towards the center, the number of edgepixels in

the region near the edgeis also counted. If the density of edgesbetweenthe two regions

is comparable,the tracking box is expandedto accommodate the incoming text.
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3.3.5 Results

In this section, I present the results of running the algorithm on a variety of

video sequences.Except for \p oster.mpg", all video sequenceshave a spatial resolution

of 320 � 240 pixels and a frame rate of 30 frames per second. They were captured

using the ICE hardware JPEG compressionmodule on an SGI O2 and converted to

MPEG-1 format using SGI's dmconvert utilit y. \P oster.mpg" wascaptured at 15 frames

per seconddirectly to MPEG-1 format using a hand-held camera connected to a Sun

ULTRA-1 workstation equipped with a SunVideo hardware MPEG compressioncard.

Text regionsweremarked by hand in the �rst frame of each sequence,and the algorithm

automatically tracked the regionsfor the remainder of the sequence.

Figure 3.3 shows tracking results on typical moving caption text events in a com-

mercial video sequence.Note that the tracking continuedsuccessfullythrough the sudden

change in background. Figure 3.4 shows the algorithm tracking caption text scrolling

horizontally. Text is entering and exiting the frame. The algorithm doesa good job of

determining the bounding boxes on incoming text using the texture similarit y method

described in Section 3.3.4, although the left boundary of the \HO WLIN' WOLF" text

event is somewhatloose. Figure 3.5 illustrates tracker performanceon vertically-scrolling

text in an Arabic script. Note that tracking text in this script is challenging becausethe

text has fewer edgesthan text in Latin script.

Although the tracking algorithm was designedfor caption text, I have found that

it works for quasi-rigid scenetext events as well. Figure 3.6 demonstrates this. The

algorithm tracks successfullydespite the changing text sizedue to cameramotion. The
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algorithm's robustnessto erratic, fast motion is demonstrated in Figure 3.7. A tracker

assuminga simple linear tra jectory model would fail in this case.

3.4 Shape-based metho d for trac king unconstrained caption text

The work presented in the last section focusedon tracking rigid text. However,

caption text events can change over time. Text can grow, shrink, or rotate. In this

section, I describe a method for tracking text that changesin theseways over time.

Instead of a stand-alone tracking algorithm, I propose tightly coupling the de-

tection and tracking modules. The detection and localization algorithm identi�es text

instancesin each frame. It is the responsibilit y of the tracker to determine which text

instances(if any) in adjacent frames correspond to the sametext event.

Two text instancesbelong to the sametext event if the content of the text is the

same,regardlessof changesin size,location, etc. Therefore it follows that although some

characteristics of a text event may change over time, the basic shape of the characters

remains constant. This property can be exploited to determine whether two text boxes

correspond to the sametext event.

I proposeanalyzing two consecutive framesat a time. First, the text box localiza-

tion algorithm described in Section2.4 is applied to each frame. Oriented text instances

are made horizontal by applying a simple rotation transformation. A text binarization

algorithm is next applied on each text instance. My implementation usesthe binariza-

tion algorithm presented in Chapter 4, although another binarization algorithm could

be substituted.
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frame 21 frame 57 frame 93

frame 129 frame 165

Fig. 3.3. Tracking algorithm applied to \losethegray.mpg" video sequencewith a changing background.
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frame 1756 frame 1771 frame 1786 frame 1801

frame 1816 frame 1831 frame 1846 frame 1861

frame 1876 frame 1891 frame 1906 frame 1921

Fig. 3.4. Tracking algorithm applied to \scrolling7.mpg" video sequencewith horizontally-scrolling text entering and exiting the
frame.
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frame 16 frame 25 frame 34

frame 43 frame 52

Fig. 3.5. Tracking algorithm applied to \t4.mpg" video sequencewith vertically-scrolling caption text.
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frame 1156 frame 1162 frame 1165 frame 1168

frame 1171 frame 1192 frame 1195 frame 1198

frame 1201 frame 1204 frame 1207 frame 1210

Fig. 3.6. Tracking algorithm applied to scenetext in \fo xsports.mpg" video sequence.
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frame 637 frame 652 frame 667 frame 682

frame 697 frame 712 frame 727 frame 742

frame 757 frame 772 frame 787 frame 802

Fig. 3.7. Tracking algorithm applied to scenetext with erratic motion in \p oster.mpg" video sequence.
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Connectedcomponent analysis is performed on the binarized text to locate indi-

vidual characters. The contour of each connectedcomponent is traversedand stored as

a chain code [12]. Each chain code is then parameterizedas two 1-D functions � (t) and

r (t), using the usual de�nitions

� (t) = tan
�

y(t) � y0
x(t) � x0

�

r (t) =
q

(x(t) � x0)2 + (y(t) � y0)2

where (x(t); y(t)) is a point on the contour, and (x0; y0) is some referencepoint for

the connectedcomponent. To smooth out noise introduced by imprecisebinarization, a

low-pass�lter is then applied to both functions by convolving with a Gaussian:

� s(t) = � (t) � G(t)

rs(t) = r (t) � G(t)

I found empirically that � = 0:1 for the Gaussianfunction worked well.

The resulting smoothed functions � s(t) and rs(t) represent a signature of the

shape of a given character. From this shape, feature points are extracted. I use the

points of maximum curvature (critical points) as the features. Zhu & Chirlian's critical

point detection algorithm [58] was used in my implementation. The result is a set of

points P for each localized text box, indicating the coordinates of each feature point

with respect to the upper-left corner of the text box. The coordinates of P are then

normalized by text rectangle height and width to give valuesbetween0 and 1.
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To decidewhether two text boxes A and B in two adjacent frames belong to the

sametext event, the normalized feature point setsPA and PB are examined. For each

point pi in PA , the point qj in PB having the smallest Euclidean distance from pi is

identi�ed. The sum of the distancesover all i is calculated. Then the processis repeated

in the reversedirection. More formally:

D (A; B ) =
X

i

min
j

�
dist

�
pi ; qj

��
+

X

j

min
i

�
dist

�
pi ; qj

��

where dist (r; s) is the Euclidean distance betweenpoints r and s.

The resulting value D(A; B ) for two text boxes A and B is a measureof the

di�erence between the shapes of the two text instances. A low value indicates that

A and B likely contain the same text, and hence belong to the same text event. A

high D(A; B ) value indicates that they probably contain di�eren t text. Therefore, the

two text boxes are declared to belong to the sametext event if D (A; B ) is below some

threshold TD .

Figures3.8 and 3.9 illustrate the processof determining critical point featuresand

comparing them betweenframes. In Figure 3.8, the imagesin (a) show two consecutive

frames from a video sequencewith growing text. The proposedalgorithm is applied to

these frames to determine whether they contain the same text event. The frames are

binarized, as shown in (b). Note that due to imperfect binarization, there are a few

small connectedcomponents that do not correspond to characters. In (c), the contour

of each character has beenfound, and critical points have beenidenti�ed. The diagram

in D shows the normalized feature points of both the �rst frame (small, greensquares)



67

overlaid on those of the secondframe (larger, blue squares). Vectors are drawn between

each featurepoint in each frame and its nearestneighbor in the other frame. It is observed

that the lines betweenfeature points are, in general,relatively short, causinga low value

for the shape di�erence D(A; B ). This is expected becausethe text regions in this case

correspond to the sametext event. Most of the longer vectors in the diagram are caused

by the non-character connected components introduced by the imperfect binarization

algorithm.

Figure 3.9 is similar, but shows two adjacent framesthat have text boxesthat do

not correspond to the sametext event. The binarization and feature point extraction

steps are presented in images(b) and (c), respectively. The normalized feature points

for both framesare presented in image(d). We observe qualitativ ely that the vectorsare

longer and appear more random than those in Figure 3.8(d). This causesthe D(A; B )

shape di�erence metric to be high, indicating that the two text boxesare from di�eren t

text events.

3.4.1 Results

Experimentation was performed to investigate the proposedmethod's accuracy.

A dataset of 27 video sequences,each containing one caption text event, was captured

from television commercials. The data was captured in the samemanner described in

Section 2.5.1. There were a total of 1005 frames in the dataset. A variety of growing,

shrinking, moving, and rotating text events were included. The text in each frame

was localized manually by me, again using the ViPER ground-truth tool [7]. The 27

individual video sequenceswere combined into a single video sequenceby appending
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(a)

(b)

(c)

(d)

Fig. 3.8. Text feature point extraction and comparisonfor two consecutive video frames
containing the sametext event.
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(a)

(b)

(c)

(d)

Fig. 3.9. Text feature point extraction and comparisonfor two consecutive video frames
containing di�eren t text events.
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together randomly-selectedgroups of adjacent framesof random lengths from the video

sequences.The result was a single 1005frame video sequencewith 111 text events.

The evaluation was carried out as follows. The algorithm was run on the 1005-

frame video sequence.For each pair of consecutive frames,the algorithm decidedwhether

the text in the two frames belonged to the same text event or not. If the algorithm

correctly determined that the text belongedto the sametext event, a correct detect was

recorded. If the algorithm incorrectly concludedthat the two framesshareda text event,

a missed detect was tallied. If the algorithm incorrectly concluded that the two frames

had di�eren t text events, a false alarm was recorded. Precision and recall statistics were

then computed using the de�nitions presented in Section 2.5.2.

Figure 3.10 presents the results of the experimentation as an ROC curve. Each

point on the curve shows the precisionand recall achieved for onevalue of threshold TD .

It is observed from the ROC curve that very good precision and recall can be achieved.

The optimal threshold valuedependson the needsof the application. For example,for an

application in which precisionand recall are equally important, a threshold of TD = 0:55

is optimal, at which precisionand recall are both 97.5%. In a video indexing application,

however, it is likely that a high recall would be more important than a high precision.

This is becauseit is very important that all text events are entered at least onceinto the

index. While it is preferable that each event is entered exactly once, duplicate entries

are not harmful. It is observed from the ROC curve that it is possibleto obtain a recall

of 100%with a precision of 96% at TD = 400.

Figure 3.11shows samplequalitativ e results of the combined text detection, local-

ization, and tracking steps. Images(a) through (h) show eight consecutive frames from
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a commercial featuring rotating, shrinking, and growing text, and the boxeslocalizedby

our algorithm. The tracking algorithm concludedthat the text boxes in images(a), (b),

(c) and (d) correspond to the sametext event. Similarly the algorithm determined that

images(f ) through (h) belongto a separatetext event. Image(e) confusedthe algorithm

somewhatdue to the overlapping text. The tracking algorithm concludedthat image(e)

belongedto its own, one-frametext event.

Figure 3.12 demonstratesthe algorithm's e�ectiv enesson text occurring against

complex, unconstrained backgrounds. The tracking algorithm correctly identi�ed the

text in image (a) as one text event, and the text occurring in images(b) through (f ) as

another text event.
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Fig. 3.10. ROC curve of tracker performance.
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frame 1 frame 4 frame 6 frame 7

frame 10 frame 12 frame 17 frame 24

Fig. 3.11. Sampleresults of combined text detection and tracking on growing, shrinking, and rotating text.
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(a) (b) (c)

(d) (e) (f )

Fig. 3.12. Sample results of combined text detection and tracking on growing text
against an unconstrained background.
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Chapter 4

Binarization of caption text

4.1 In tro duction

Binarization is the processof separating character strokes from the background.

That is, given a localizedregion of the color video frame known to contain text, binariza-

tion producesa binary image of the text. The detection problem studied in Chapter 2

concernsclassifyingvideo frame regionsas text or background; the binarization problem

concernsclassifying individual pixels as text or background.

Binarization is necessaryto bridge the gap betweenlocalization and recognition.

The eventual goal of a text extraction system is to recognize the text appearing in

video. Optical character recognition (OCR) in the context of document imageshasbeen

extensively studied [35]. If possible, we would like to apply these extensively-studied,

highly-re�ned OCR algorithms to the text-in-video extraction problem. However, most

recognition algorithms expect imagesresembling documents, with text strokes in black

ink against a white background. In contrast, text occurring in video can be of any color

and can appear against complex backgrounds. It is the responsibilit y of a binarization

algorithm to convert the complicated text regionsoccurring in video framesto the simple

binary imagesrequired by OCR.
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4.2 Challenges of binarization of video frames

Binarization of text has beenstudied in the document imageanalysisdomain. In

most applications, imagesof documents are obtained by a grayscaleoptical scanner. The

original document usually has text in black ink appearing against a white background.

Noiseintroducedduring the scanningprocessmay causethe grayscaleimageto havemore

than two gray levels. However, the histogram of the grayscale image is still strongly

bimodal, with one peak corresponding to text pixels and the other corresponding to

background pixels. Thresholding (either locally or globally) can be performed at a well-

chosen gray level in the valley of the two peaks to give accurate binarization results.

Many techniques have beenstudied for �nding the ideal threshold (e.g. [21, 55, 44]).

Figure 4.1 illustrates this binarization processfor a document image. The his-

togram for the fragment of a document image in (a) is shown in (b). The strong peak at

about 225 corresponds to background pixels, while the weaker peaksaround 75 and 125

corresponds to text pixels. A threshold at 160 givesgood binarization results, as shown

in image (c).

It may seemthat a similar technique can be applied to the binarization of caption

text. Like text in documents, caption text in video is usually designed to be easily

readable by human viewers. Contrast with the background appears high. Text stroke

color usually appearsrelatively uniform. It seemslogical that simple thresholding could

be applicable to video frames.

Unfortunately, I have found that it usually is not. Upon closerexamination, it is

found that text stroke color actually varies widely, even when it appearsuniform to the
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Fig. 4.1. Histogram-based thresholding of a document image. (a): A portion of a
document image, (b): Its histogram, (c): Results of thresholding at gray level 160.

human eye. Becausethe background in a video frame is unconstrained, the samecolors

making up a text stroke may also occur in background objects. Figure 4.2 illustrates

these problems with the sample video frame shown in (a). A localized text region is

shown in (b), and its histogram is presented in (c). The histogram is bimodal with a

valley at about gray level 75. But thresholding at this gray level gives the poor results

in (d). This is becausethe peaksof the histogram are due to variation in background

color instead of the separation between text and non-text pixels. The binarization was

repeated at a higher threshold (gray level 130), but this also led to the disappointing

results in (e). Even the result of double thresholding, shown in (f ), failed to give good

results. In fact, any histogram-basedthresholding schemewill fail in this case,because

many pixels in the text strokesshare the samecolor as pixels in the background.

The challengesof text binarization in video are summarizedas follows:

� Low resolution: Video framesare typically captured at resolutionsof 320� 240or

640� 480pixels. In contrast, document imagesare typically digitized at resolutions
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Fig. 4.2. Histogram-based thresholding gives poor results on unconstrained video
frames. (a): original video frame; (b): localized text region; (c): histogram of text
region; (d), (e): results of thresholding on gray levels 75 and 130, respectively; (f ):
result of double thresholding at gray levels 100 and 175.
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of 300dots per inch or greater. For example,a lowercaseletter \e" in the document

imagein Figure 4.1(a) is about 21 pixels wide and 26 pixels tall. A lowercaseletter

\e" in the localizedvideo text box in Figure 4.2(b) is just 9 pixels wide and 8 pixels

tall.

� Unkno wn text color: Text can have arbitrary color.

� Unconstrained background: The background canhavecolorssimilar to the text

color. The background may include streaks that appear very similar to character

strokes.

� Color bleeding: Lossyvideo compressionmay causecolors to run together. This

blurs the edgesbetweentext strokesand background pixels.

� Low contrast: Low bit-rate video compressioncan causelossof contrast between

character strokesand the background.

4.3 Review of prior binarization work

This section summarizessomeof the past approaches to binarization of text in

imagesand video frames. I have classi�ed these algorithms into four main approaches

to binarization: global thresholding, local thresholding, color clustering, and neural net-

works. The algorithms belonging to each approach are now discussed.

4.3.1 Global thresholding

Global thresholding is a commonapproach. Algorithms in this categorydetermine

some grayscale threshold, and apply it to all pixels in a localized text region. The
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methods di�er in the strategy for choosing the threshold, and in the preprocessingand

post-processingsteps.

� Wu et al [57] binarize text found in web page imagesby smoothing the grayscale

imageand then thresholding at the valleyson either endof the grayscalehistogram.

This allows for both light text and dark text to be binarized. The algorithm does

not determine whether the text is lighter or darker but instead generatestwo

outputs, one for each case.

� LeBourgeois[22] assumesthat the dominant portion of the imagehistogram is the

background. The global threshold is found by an entropy-maximizing scheme[55].

A post-processingstage splits characters inadvertently connectedby the thresh-

olding. Characters are assumedto be of a �xed font size.

� Sato et al [45] apply �lters designedto detect vertical, horizontal, and diagonal line

elements to localized text regionsin videosof newscasts.The union of the outputs

of all �lters is taken. Final binarization is performed by thresholding at a �xed,

pre-set threshold. It is assumedthat text is white.

� Messelodi and Modena [33] present a system for extracting text from book covers

with plain backgrounds. They usea simple global thresholding schemeat the tails

of each sideof the histogram. Their method considersbinarization of oriented text.

� Agnihotri and Dimitro va [1] binarize caption text appearing in video. They process

only the red plane of an image,under the assumptionthat text of interest is white,

yellow, or black. Thresholding is performed at the average pixel value of the
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localized text region. The averageof the pixels on the border of the text region is

also computed and assumedto approximate the background color.

Global thresholding has beenfound to be useful in someapplications. However,

as discussedin Section 4.2, global thresholding is not able to perform well on caption

text occurring in general-purpose,unconstrained video.

4.3.2 Lo cal thresholding

Local thresholding passesa small window over a localizedtext region. A threshold

is computed basedon the pixels underneath the window. The pixel at the center of the

window is then binarized basedon this threshold.

� Ohya et al [38] usea combined detection/binarization stage to extract characters

from sceneimages. Text is assumedto be either black or white. Regionsof the

imagewith bimodal histogramsare assumedto be text regions. Local thresholding

is performed on these regions using the threshold selection algorithm described

in [39]. Shape and sizeheuristics are applied to �lter out non-text strokes.

� Lee and Kankanhalli [23] also usea combined detection/binarization stage. After

quantizing the gray levels in the image, detection is performed by searching for

strokeswith uniform gray level. Each potential character is thresholded using the

gray level of its boundary. Post-processingremoves components with suspicious

aspect ratios, contrast, and �ll ratios.

� Winger et al [54] usea modi�ed form of Niblack's Multiple and Variable Thresh-

olding scheme [37], which employs variable thresholds basedon mean local pixel
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intensity. After calculating the variance, the modi�ed schemeusesa di�eren t mul-

tiplier and exponent. Our implementation of the method (by Ryan Keener) did

not produce good results. Subsequent correspondencewith the author suggested

that good results are possibleonly when algorithm parametersare manually tuned

to appropriate valuesfor a given image.

� Shim [48, 49] thresholdseach character stroke component box individually by ana-

lyzing the grayscalehistogram. The threshold is selectedusing the iterativ e method

described in [44].

4.3.3 Color clustering

Most of the work discussedso far operatesonly on the luminance plane of images

and video frames. The algorithms in this section incorporate color information. It is

assumedthat the strokesin a text instancehad uniform color, although in the compressed

videostreamcolor bleedingand quantization may have introducednoise. Color clustering

can then be applied to group together pixels of nearly the samecolor.

� Garcia et al [9] quantizes and clusters color pixels in localized text regions in the

HSV color space.It is assumedthat after clustering, all text pixels will correspond

to a single cluster. That cluster is identi�ed by choosing the cluster with the most

periodic vertical pro�le.

� Wong et al [56] continue to perform color clustering on localized text regionsuntil

two clusters are obtained. The two clusters are assumedto correspond with text
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pixels and background pixels. My experimentation with color clustering has indi-

cated that this assumption rarely holds due to complex backgrounds that contain

colors similar to the text color.

� Mariano et al [31] performs text region detection and binarization in one step.

Color clustering in the L*a*b* color space[42] is performed on individual scan

lines of a video frame. The patterns of clusters occurring in neighboring scanlines

are analyzed to �nd regularly-spacedstreaks corresponding to text strokes. It is

assumedthat text is preciselyhorizontal.

Color clustering seemsto be a promising approach. Unfortunately, the compu-

tation demandsof color clustering seemto be prohibitiv e on today's systems. An im-

plementation of Mariano's algorithm obtained from the author and optimized for speed

by me required about 50 minutes to processa 1-secondvideo clip on an SGI Octane

workstation.

4.3.4 Neural Net works

Somework hasapplied neural networks to the problem of video text binarization.

For example,Shin et al. [50] perform detection and binarization in one step by applying

a support vector machine (SVM) to classify each pixel as text or non-text. The features

used as input to the SVM are the grayscale pixel values in a local neighborhood. A

hierarchical strategy is employed to handle text of various sizes.
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4.3.5 No binarization

A �nal approach is to skip the binarization step altogether. There has been

recent interest in OCR algorithms that operate directly on grayscale images without

binarization [35]. Proponents of this systemsay that information is inherently lost in the

binarization process.Lienhart [28, 30] describesa custom OCR packagefor recognizing

text in video frameswithout binarization. Unfortunately it doesnot work well when text

appearsagainst complexbackgrounds. The accuracyof their grayscaleOCR packagewas

unable to compete against the accuracy typical of commercial OCR packages. As the

state-of-the-art in grayscaleimage recognition improves,circumventing the binarization

stagemay be a viable option.

4.3.6 Remarks on the state-of-the-art

From this survey of recent approachesto the binarization of text in video, I observe

the following. Most existing binarization approachesmake assumptionsthat are valid for

document imagesbut not for text appearing in general-purposevideo. Many approaches

usesimple histogram thresholding methods which assumethat the background is simple.

They createnoisy binarizations when applied to text occurring on complexbackgrounds.

Somealgorithms work only for text of a certain color, etc. which severely limits their

usefulnessfor general-purposevideo.

In contrast, I observe that most of thesetext binarization algorithms do not take

advantage of reasonableassumptionsabout text in video that can improve performance.

It can be assumedthat text in video usually persistsfor more than one frame. Multiple

framescan be integrated to give better binarization results. Charactersin a text instance
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usually have uniform stroke width and color. Charactersare evenly-spaced,aligned, and

have roughly uniform size. Reasonableupper and lower bounds exist on the sizeof text

characters possiblein a video frame.

In the following section,a binarization algorithm is presented that takesadvantage

of theseadditional assumptions. Unlike previous work, it is designedto work well with

text appearing against complex backgrounds, and does not make a priori assumptions

about text color.

4.4 An algorithm for text binarization in video frames

An algorithm is now presented for binarization of text in video. Each step is

explained in detail in the following sections. Figure 4.3 illustrates each of the stepson a

samplevideo frame.

4.4.1 Temp oral in tegration

There are several motivations for analyzing more than oneframe during the bina-

rization process.Lossy video compressionmethods introduce noise,but the noisevaries

from frame to frame. Simple temporal averaging can reduce such noise. Temporal in-

tegration is also helpful for background removal. Caption text often remains stationary

while the background behind it changesor moves. Or the text may move, causing the

background behind the text to change. In either case,temporal averaging can be used

to smooth out the background.

I have developed a text tracking module (discussedin Chapter 3) to determine

the pixel-accurate location of a text event in each frame. During temporal integration,
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(a)Video frame with localized text regions

(b) Temporal, resolution, and contrast enhancement is applied on each text box. The
inverseof each text box is obtained. (x4.4.2)

(c) Logical level thresholding is applied to both polarities of each text box. (x4.4.3)

Fig. 4.3. Stepsof the binarization algorithm (continued on next page).
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(d) Connectedcomponents are found. Heuristics are applied to remove
non-character-like components. (x4.4.4)

(e) Alignment and sizeof components are usedto choosethe polarity for each text
region. (x4.4.5)

(f ) Final segmentation result.

Figure 4.3 (continued)
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the region location in each frame identi�ed by the tracker are averaged. Note that this

assumesthat the text remainsrigid asit moves. If it doesnot remain rigid, the temporal

averagingprocedurewill blur the text strokesin addition to the background. To prevent

this, the con�dence of the text tracker is monitored. If the con�dence falls below a

threshold, it is likely that the text is changing over time, and temporal averaging is

disabled for processingthe text instance.

Figure 4.4 shows an example of temporal averaging applied to a localized text

region. Image(a) shows a sampleframe from a sequenceof 60 frameshaving a stationary

text event appearing on a moving background. Images (b) and (c) show the localized

text region from two frames in the sequence. Note that the complex background is

quite prominent in both images. Image (d) shows the result after performing temporal

averaging on the text region over its 60-frame lifetime. The background complexity has

beenreduced,and the contrast of the text against the background hasbeensubstantially

improved.

4.4.2 Resolution and contrast enhancemen t

A simple linear interpolation step is used to double the resolution of the image.

Although this resolution enhancement step cannot truly recreate lot resolution, I have

found that even simple linear interpolation improves the binarization results. More

sophisticatedresolution enhancement schemescould be investigated. For example,there

has been some work in using motion information in video to improve resolution [52].

This approach could be applied to resolution enhancement of moving text.
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(b)

(c)

(a) (d)

Fig. 4.4. Temporal averaging reducesbackground noise and improves contrast. (a):
sample frame from a video sequence;(b) and (c): localized text region in two framesof
the sequence;(d): result of temporal averaging.

The contrast betweenthe text and the background in a localized text region may

be quite low. To improve the contrast, simple grayscale histogram stretching [12] is

performed.

4.4.3 Logical level thresholding

Somedocument analysis work has consideredthe problem of binarizing text oc-

curring in noisy document images. This problem sharessimilarities with our problem of

extracting text occurring against complex backgrounds. Kamel and Zhao [20] evaluate

seven binarization techniques on noisy bank check images. Their novel method, logical

level thresholding, was shown to perform the best.

Logical level thresholding works as follows. A maximum stroke width W is as-

sumed. Then for every pixel p in the grayscale image, the eight pixels Pi at radius W

and angles i�
4 with i = 0; 1; :::; 7 from p are considered. The local averageavgi of the
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(2W + 1)� (2W + 1) neighborhood around each Pi is computed. Pixel p is declaredto be

text if for somej = 0; 1; 2; 3, all of avgj , avg(j +1) mod8, avg(j +4) mod8, and avg(j +5) mod8

are greater than p by somethreshold T.

The algorithm's strength over other binarization techniques is that it enforcesre-

strictions on uniformit y of stroke grayscalelevel, uniformit y of stroke width, and bounds

on stroke width. This leadsto lessnoise in the binarized output.

I applied the algorithm to binarization of localized text regions in video frames.

After the temporal averaging, resolution enhancement, and contrast stretching steps

described above, the imageregion is converted to the L*a*b* color space[42]. This color

spacemimics the human visual system'sperception of luminance and color, so that text

that appears to be high-contrast by a human has numerically high contrast in L*a*b*

space. Logical level thresholding is then applied on the luminance plane. Logical level

thresholding requires two parameters, the maximum stroke width W and the contrast

threshold T. However I observedthat the algorithm's performanceis relatively insensitive

to the choice of parameters. In my implementation, I use T = 5, which is a good

compromise between allowing binarization of low-contrast text and preventing noise.

My choice of stroke width W is proportional to the sizeof the input video frame. For a

frame resolution of 320� 240, W = 10 works well. This does not limit the algorithm's

practical abilit y to binarize text of di�eren t sizes,becausea stroke width of 10 pixels

corresponds to text that nearly �lls the video frame.

Logical level thresholding requires that the text stroke color is darker than the

background. In our application this is not an acceptableassumptionbecausewe wish to

extract text of any color. I tried to modify the logical level algorithm to allow strokes
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darker and lighter than the background by modifying the thresholding step. Unfortu-

nately, this relaxesthe restriction of stroke color consistencyand createsnoise. Instead,

I assumethat all text strokes within a localized text region are either lighter than or

darker than the background. Logical level thresholding is then applied to both the orig-

inal region and its inverseto produce two independent binarized outputs. The choice of

correct polarity is delayed until step 4.4.5.

4.4.4 Character candidate �ltering

Connectedcomponent analysisis performedon both output imagesof logical level

thresholding. Theseconnectedcomponents are either characters or noise. Heuristics are

applied to preserve characters while removing noise. Theseheuristics are:

� Minim um character size: Components having height lessthan 5 pixels or area

lessthan 12 pixels are removed. Connectedcomponents this small are unlikely to

be characters. Even if they are characters, it would probably not be possiblefor

the OCR module to recognizethem. Note that a minimum character width is not

enforcedbecauselowercase\l" characters are often only one pixel wide.

� Asp ect ratio bounds: A component whoseaspect ratio width
height is very large or

very small is discarded. Thesecomponents are often horizontal or vertical lines, or

other noise. We currently usethe range [0:1; 1:0] as acceptableaspect ratios.

4.4.5 Choice of binarization polarit y

As noted earlier, the logical level thresholding was applied on both the original

localized text region and its inverse. In one of the polarities, the text is lighter than the
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background; in the other, it is darker. Logical level thresholding applied to the dark-text

imagewill result in a binarization of the text. When applied to the light-text image, the

algorithm will attempt to binarize the background. The correct binarization will have

connectedcomponents with spacing,size,and alignment consistent with text characters.

The incorrect binarization has irregular components due to its attempt to binarize the

background.

My algorithm choosesthe correct binarization by analyzingseveral statistics about

the connectedcomponents in each binarization polarity. A voting strategy is used. For

each statistic, a vote is cast for the binarization that demonstrates the more text-lik e

quality. The binarization with the most votes is chosenas the �nal binarization output.

The criteria usedin my implementation are:

� Heigh t similarit y: Low standard deviation of connectedcomponent heights

� Width similarit y: Low standard deviation of connectedcomponent widths

� Spacing consistency: Low standard deviation of horizontal distance between

adjacent component centers

� Horizon tal alignmen t: High number of pairs of components whose bottoms

shareroughly the samevertical scan line

� Character-lik e aspect ratio: Low di�erence betweenaveragecomponent aspect

ratio and 1.0

� Clean spacing: Low number of pixels that occur within the bounding box of

more than one connectedcomponent
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� Perio dicit y of vertical pro jection: The even spacingof text characters should

causethe vertical projection to be roughly periodic. The more periodic of the two

polarities is chosenusing the method presented in [9]

Note that the number of votes for the winner is a con�dence measure. In most

cases,I have observed that the voting results in a clear majorit y, indicating a high

con�dence that the correct binarization was chosen. A close vote indicates a lower

con�dence. In thesecases,it may be appropriate to passboth binarizations to the OCR

module, and choosethe one with the higher recognition con�dence. A closevote may

also indicate that the localized region doesnot actually contain text.

4.5 Results

Figure 4.5 presents results of the binarization algorithm on localizedtext boxesin

sample video frames. For comparative purposes,the outputs from my implementation

of the binarization method proposedby Agnihotri et al [1] are alsopresented. This algo-

rithm wasselectedfor comparisonbecauseit is the most recent complete text extraction

system found in the literature designedfor general-purposevideo.

Column (a) in Figure 4.5 shows the localized text regions used as input to the

binarization algorithms. Column (b) presents the output of Agnihotri's binarization

method. Column (c) presents the output of my method. It is observed that the bi-

narizations produced by my algorithm are signi�cantly cleaner than those produced by

Agnihotri. This is especially apparent in the middle row of imagesin the �gure. This is

an example of how Agnihotri's method su�ers from the inherent problems with global
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thresholding discussedin Section 4.2. Also, the algorithm's assumption that the back-

ground color can be determined by averaging the pixels on the border of the localized

text region is violated in this case. The background color varies from very dark in the

lower-left corner of the text region, to bright in the upper-right corner.

Figure 4.6 shows someexamplesof the binarization algorithms applied on very

challenging video frames. These exampleshighlight someof the problems with my bi-

narization algorithm. The �rst row of images shows the output of the binarization

algorithms on Arabic caption text. The output of my algorithm, shown in column (c),

hasgiven reasonablebinarizations for three of the text boxes,but it hasfailed to binarize

the top text box accurately. The problem is that the algorithm hasselectedthe incorrect

binarization polarity for this text box. This can be explained by reviewing the polarity

selectioncriteria described in Section 4.4.5. Many of the criteria assumethat connected

components in the binarization correspond to text characters. This assumption is not

compatible with the Arabic script in this example, in which characters are connected

together. I conclude that my polarity selection criteria will give accurate results only

for scripts with separatedcharacters. Alternativ e selection criteria could be devisedto

handle other scripts. Agnihotri's algorithm doesnot su�er from this restriction, and has

chosenthe correct polarities. However, their binarization is still quite noisy.

The secondrow of imagesin Figure 4.6 shows the algorithms applied to very small

text. The averagecharacter sizeof this text is about 8 pixels high by 5 pixels wide, with

a sub-pixel stroke width. Agnihotri's algorithm generatesillegible binarization in this

case.My binarization algorithm's results are reasonable,but are still probably not clean

enoughto be accurately recognizedby a standard OCR module. Binarizing text of such
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(a) (b) (c)

Fig. 4.5. Binarization results for sample video frames. (a): localized text regions; (b): output of binarization algorithm by
Agnihotri et al [1]; (c): output of my binarization algorithm.
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a small size is extremely challenging, and further research will be necessaryto develop

algorithms that can do it accurately.

The third row of imagesin Figure 4.6 presents the results of binarization on text

with very low contrast with the background. Agnihotri's algorithm incorrectly chooses

the polarity of the text, and attempts to binarization the shadows behind the characters.

The incorrect selectionof polarity is due to their assumption that the background color

can be determined by averaging the pixels along the text region border. The contrast

between background and foreground is so low that this assumption fails in this case.

My algorithm producesbetter results, but there is still much noisethat would probably

causerecognition to fail. Binarization of low-contrast text is another area that requires

further research.
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(a) (b) (c)

Fig. 4.6. Binarization results for very challenging video frames. (a): localized text regions;(b): output of binarization algorithm
by Agnihotri et al [1]; (c): output of my binarization algorithm.
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Chapter 5

Summary and Conclusions

This thesishasdiscussedthe extraction of text events from general-purposevideo.

Text appearing in video is one feature that gives insight into a video's content. Auto-

matic extraction of text would therefore be useful in video indexing applications. I have

discussedthe several sub-problemsof text extraction, including detection, localization,

tracking, and binarization. Theseare signi�cantly harder than the corresponding prob-

lems in document analysis.

The detection and localization problems involve �nding tight bounding boxes

around any text in a given frame. I have presented two detection and localization

algorithms. Algorithm A detects and localizeshorizontal text of constrained size and

horizontal orientation. Algorithm B detects non-horizontal text and text of arbitrary

size. Both run directly on MPEG-compressedvideo bit streams. These algorithms

have been evaluated on challenging datasets against other algorithms presented in the

literature. It was found that Algorithm B gave better results than other algorithms.

The tracking problem involves locating text regionsas they move or changeover

time. I have presented two tracking algorithms. The �rst works on rigid text exhibiting

simple, linear motion. It usesMPEG motion vectors for speed and robustness. I have

alsopresented a tracking algorithm that handlestext events that grow, shrink, and rotate

over time. This algorithm was experimentally evaluated on a challenging dataset.
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The binarization problem involves converting a color image of a text string into

a binary image suitable for OCR. This is di�cult becausethe background may be quite

complex and have colors similar to the text color. I have proposeda binarization algo-

rithm that works with arbitrary text color and background complexity.

5.1 Opp ortunities for future work

As with any research, many dead endsand blind alleys were encountered during

the work described in this thesis. I believe that many of these unsuccessfulideas were

good in theory, but I was unable to solve the necessarydetails neededto implement

them. In this section, I describe someof the avenues of the text extraction problems

that remain unexplored.

My evaluation of state-of-the-art detection and localization algorithms showed

that no algorithm could achieve greater than 50% recall and precision simultaneously

on a challenging dataset of general-purposevideo. For application in a video indexing

system,algorithms with better accuracyare needed.Current algorithms are confusedby

imageregionshaving texture similar to text. Research is neededto exploreother features

that can robustly distinguish between text and non-text regions. One possibility is to

combine the outputs of multiple detection and localization algorithms in an intelligent

way to producea single, better output. Another possibility is to usean OCR module to

assist in text localization. The con�dence of an OCR module could be used to discard

image regionsthat cannot be recognized.

I exploredthe idea of analyzing the shapeswithin a candidate text region to verify

that it contains text. For example, the frequency of cornersand edgesof the shapes in
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a region could be used to remove very simple shapes unlikely to be text characters.

Unfortunately, somecharacters in somescripts have very simple shapes. I abandoned

this idea becauseI was unwilling to imposeconstraints on the script of the text to be

detected. However I believe the idea of analyzing shapeswithin a candidate text region

deserves further investigation.

The binarization algorithm presented in this thesis works well with large font

sizes. However, there is a signi�cant amount of text in video that has very small size,

sometimeswith stroke widths lessthan onepixel. Connectedcomponent labeling on such

small fonts often gives inaccurate results, causing my binarization algorithms to fail. I

explored the use of topographical analysis [24] to binarize small text. Unfortunately, I

found that such an approach was very susceptibleto noise. More research is neededinto

the accurate binarization of small text.

I have also tried to incorporate color features into the binarization algorithm to

improve the results. It is desirableto considercolor during binarization becausetext may

have little contrast with the background in the luminance image plane, but have high

contrast in a color plane. I tried using color clustering [16] to separatetext strokesfrom

the background. This approach worked well oncethe parametersof the color clustering

algorithm weremanually adjusted for a given text instance. Unfortunately, I wasunable

to �nd a mechanism for automatically setting theseparameters. More research is needed

to �nd a way to incorporate color information into the binarization process.

In addition to growing, shrinking, and rotating text, other typesof \st ylized" text

canbe found in general-purposevideo. For example,text can break into pieces,or morph

between fonts, or undergo perspective distortion. The tracking algorithm presented in



101

this thesis works for someof thesecases,but further research is required to extend the

algorithm to handle more typesof stylized text.

The recognition problem hasnot beencoveredin this thesis. Several researchers[57,

53, 13] have attempted recognition from imagesand video. Unfortunately, even with con-

straints on the video dataset and application-speci�c text dictionaries available a priori ,

recognition accuracy has been low. More research is neededto design OCR modules

gearedspeci�cally for the unique challengesof text in video.
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