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Abstract

The popularity of digital video is increasing rapidly. To help usersnavigate li-
braries of video, algorithms that automatically index video basedon content are needed.
One approad is to extract text appearing in video. Such text often givesan indication
of a scene'ssemartic cortent. This is a more di cult problem than recognition of doc-
ument imagesdue to the unconstrained nature of general-purposevideo. Text can have
arbitrary color, size,and orientation. Backgrounds may be complex and changing.

Most work sofar has maderestrictive assumptionsabout the nature of text occur-
ring in video. Sudh work is therefore not applicable to unconstrained, general-purpose
video. Also, most work so far has focusedonly on detecting the spatial extent of text
in individual video frames. But text occurring in video usually persistsfor seweral sec-
onds. This constitutes a text evert that should be entered only oncein the video index.
Therefore it is also necessaryto determine the temporal extent of text events. This is
a non-trivial problem becausetext may move, rotate, grow, shrink, or otherwise change
over time. Sud text e ects are common in television programs and commercials to
attract viewer attention, but have sofar beenignored in the literature.

This thesis discusseshe problems involved in extracting caption text from un-
constrained, general-purpose MPEG-1 video. These problems include localizing text in
individual video frames, binarizing text, and tracking text asit movesand changesover
time. Solutions are proposedfor eat of these problems and compared with existing

work found in the literature.
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Chapter 1

Intro duction

1.1 Motiv ation for intelligen t video indexing

The popularity of digital video is growing at an explosive rate. Hundreds of
television stations are now broadcastover digital cable every day. Digital Versatile Discs
(DVDs) are quickly replacing analog video tape as the preferred medium for viewing
movies at home. Inexpensiwe video capture cards and plummeting data storagecostsare
allowing userswith even modest workstations to corvert home movies to digital form.
Surveillance camerasare everywhere, capturing video for detection of suspiciousactivit y.
Streaming video clips are becomingincreasingly popular on the Internet.

The rapid rise in quartities of digital video carries enormouspromise. Given such
huge amounts of video data available, it is quite probable that a video clip that a user
wants to seeexists somewherein digital form. One can imagine large video databases
available on the Internet that would give usersaccessto vast quartities of video data
from their home personal computers.

But asquartities of available video data grow, it will becomeincreasingly di cult
for usersto locate speci ¢ video clips of interest. It is analogousto the proverbial problem
of nding aneedlein an ever-growing haystack of video data. Seart enginesare required

that can automatically identify relevant video clips basedon a user's query.
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Howewer, the current state-of-the-art in video seard technology is quite limited.
The video seart enginesof Lycos and Altavista exemplify the current technology avail-
able on the Internet. Lycos[5]] requireshumansto manually index ead video by identi-
fying keywords that describe its content. User queriesare matched against this keyword
index to nd relevant video clips. This approad is clearly intractable for large, growing
video libraries becauseof the large amourt of e ort required to create video indices by
hand. Also, the quality of the seart engineis directly limited by the quality and scope
of the manually-created index. It is impossiblefor the human indexer to identify all
possiblekeywords that describe a given video sequence.

Altavista's video seard engine [2] attempts to index videos contained in World
Wide Web pagesautomatically. Words near a video in a web page are assumedto
describe the content of the video and are usedasits keywords. This approad eliminates
the dependenceon human indexers, but the assumption that words appearing near a
video are appropriate keywords is not true in general. This can causeirrelevant words
to be placed into the keyword index, and decreaseseart result quality. Altavista's
approach cannot be used unlessa textual description is available. It is therefore not
applicable to general-purposevideo.

Clearly, better video seard technologiesare required. Algorithms must be de-
veloped that can automatically extract semariic information from video using content
alone. Given an arbitrary video sequence,such algorithms would determine as much
information as possible, such as genre (sitcom, movie, sports program, etc.), Iming
location characteristics (indoor or outdoor, time of day, weather conditions, etc.), iden-

tity of important objects, identity of people(politicians, movie stars, sitcom characters,



3
etc.), and human activity and interaction (running, laughing, talking, arguing, etc.).
This wealth of information could be usedto better identify video sequencesf interest
to a user.

Automatically extracting this information from unconstrained video is very chal-
lenging. Solving the underlying computer vision and arti cial intelligence problems will

undoubtedly occupy thesereseartn communities for many years.

1.2 Motiv ation for extracting text from video

In addition to the features mentioned above, text appearing in a video sequence
can provide useful semariic information. Text occurring in video naturally gives clues
to the video's content. Words have well-de ned, unambiguous meanings. If the text in a
video sequencecan be extracted, it can provide natural, meaningful keywords indicating
the video's content.

Text occurring in video can be classi ed as caption text or scenetext. Caption
text is arti cially superimposedon the video at the time of editing. Caption text usually
underscoresor summarizesthe video's cortent. This makes caption text particularly
useful for building a keyword index. Figure 1.1 presers someexamplesof caption text.

Senetext naturally occursin the eld of view of the cameraduring video capture.
Figure 1.2 preserts examplesof scengext occurring in video frames. Scenetext occurring

on signs, banners, etc. givesnatural indications asto the content of a video sequence.



R RV ESTA R

DN

5\
FRO KA TH ES UN ‘.\
#

- dca

-9 3
(e)

Fig. 1.1. Examplesof caption text indicating the semartic corntent of video.
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Fig. 1.2. Examplesof scenetext indicating the semariic content of video.



1.3 Dierences between video text extraction and document OCR

Optical character recognition (OCR) of document images has been studied ex-
tensively for decades[35]. Tednology has ewlved to nearly solve the documert OCR
problem. Recognition accuracy rates higher than 99% are now acdhievable.

Howewer, extraction of text from video preseris unique challengesover OCR of
document images. Document images are usually scannedat high resolutions of 300
dots per inch or higher. In contrast, video frames are usually digitized at much lower
resolutions, typically 640 4800r 320 240 pixels for an ertire frame. In addition, lossy
compressionschemesare usually applied to digital video to keep storage requiremerts
reasonable.Video frames therefore su er from color bleeding, loss of contrast, blocking
artifacts, and other noisethat signi cantly increaseghe di cult y of accurately extracting
text.

Many characteristics of the text in a documert image are known a priori. For
example, the text color in a documert is nearly always black, and the badkground is
known to be uniform white. There is high cortrast betweenthe badkground color and
the text color. The orientation of the text can be assumedto be horizontal, or can
easily be inferred by analyzing the structure of the documert. In cortrast, text in video
can have arbitrary and non-uniform stroke color. The badkground may be non-uniform,
complex, and changing from frame to frame. The cortrast betweenthe badground and
foreground may be low. Text size,location, and orientation are unconstrained.

The temporal nature of video intro ducesa new dimensioninto the text extraction

problem. Text in video usually persistsfor at least seweral secondsto give human viewers
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the necessarytime to readit. Sometext events remain unchangedduring their lifetimes.
Others, like movie credits, move in a simple, rigid, linear fashion. Still others, like scene
text and stylized caption text, move and change in complex ways. Text can grow or
shrink, or character spacingcan increaseor decrease.Text color can change over time.
Text canrotate and changeorientation. Text can morph from onefont to another. Text
strings can break apart or join together. Special e ects or a moving cameracan cause
changing text perspective.

The problem of text extraction from video is therefore signi cantly more di cult
than the documert image OCR problem. It is possibleto simplify the problem by making
a priori assumptionsabout the type of video, or to extract only certain types of text.
Howewer, in a general-purposevideo indexing application, it is important to be able to
extract as much text as possible. Therefore text extraction systemsmust be applicable
to general-purpose video data and must be able to handle as many types of text as

possible.

1.4 Problem statement and scope of this thesis

This thesis discussegshe extraction of unconstrained caption text from general-
purposevideo. In particular, it addresseshe extraction of typesof text that have largely
beenignored by the work in the literature to date. Thesetypesof caption text include
moving text, rotating text, growing text, shrinking text, text of arbitrary orientation, and
text of arbitrary size. The focus of this work is on extraction of caption text, although
much of the work could be applied to extracting scenetext aswell.

Text extraction from video can be divided into the following subproblems:
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Detection: The text detection problem involveslocating regionsin a video frame

that contain text.

Lo calization: Text localization groupsthe text regionsidenti ed by the detection
stageinto text instances. The output of a good localization algorithm is a set of

tight bounding boxesaround ead text instance.

Tracking: The text tracking problem involves following a text evert asit moves
or changesover time. Together, the detection, localization, and tracking modules

determine the temporal and spatial locations and extents of text evens.

Binarization:  The text binarization problem involvesseparatingtext strokesfrom
the badkground in a localized text r(—:‘gion.1 The output of a binarization module
is a binary image, with pixels corresponding to text strokesmarked as one binary

level and badkground pixels marked as the other.

Recognition: The nal stageis the text recognition problem, in which the text
appearingin the binarized text imageis recognized.| do not discussthe recognition
problem in this thesis. It is assumedthat oncetext hasbeenbinarized, any of the
many commercialdocumert image OCR systemscould be usedfor the recognition

stage.

Iin previous publications (e.g. [3, 11]) we usedthe term sggmentation to refer to the binariza-
tion problem. We usedit in the context of segmeiting individual text pixels from badground
pixels. Unfortunately this term is used inconsistertly in the text extraction literature. Some
authors (e.g. [6]) usethis term to refer to the text region segmeiation problem. Others (e.qg.
[22]) useit to refer to the character segmemation problem, in which individual characters are
located. To avoid confusion, | will avoid the term segmentation in this thesis.
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This thesisdiscusseghe text detection, tracking, and binarization problems, and
preseris the results of work toward their solutions. Chapter 2 describesthe text detection
and localization problems. After a review of previous work in this area, two algorithms
are presened for detecting and localizing text in video frames. One of the algorithms
assumesthat text is horizontal and within a size range; the other removes both of
theserestrictions. A quartitativ e performanceevaluation is performedto comparethese
algorithms with others in the literature. In Chapter 3, the text tracking problem is
discussed.A tracking algorithm is preseried that tracks rigid text events using MPEG
motion vectors for speedand robustness. A secondtracking algorithm is preseried that
removesthe rigidity constraint, allowing for growing, shrinking, and rotating text to be
tracked. In Chapter 4, the binarization problem is discussed.A binarization algorithm
is preserted that makes few assumptions about the nature of the text. It is designed
to work with text of arbitrary color appearing against complex badkgrounds. Outputs
from this algorithm are comparedto outputs from another binarization algorithm in the
literature. Finally, conclusionsare drawn and areas for future work are identied in

Chapter 5.
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Chapter 2

Detection and localization of unconstrained caption text

2.1 Intro duction

A digital video is a sequenceof still images,displayed rapidly to give the illusion
of continuous motion. Locating text in video therefore begins with locating text in
images. This chapter considersthe problem of identifying text regionsin imagesand
video frames.

The processof identifying text regionscan be split into two subproblems: detec-
tion and localization. In the detection step, generalregionsof the frame are classi ed as
text or non-text. The sizeand shape of theseregionsdi er from algorithm to algorithm.
For example, somealgorithms classify8 8 pixel blocks, while others classify individual
scanlines. In the localization step, the results of detection are grouped together to form
one or more text instances. This is usually represened as a bounding box around eadh
text instance.

The remainder of the chapter discusseghe detection and localization problems.
In Section 2.2, | give a survey of related work in the literature to date. In Section 2.3,
| presert a fast algorithm for detecting and localizing horizontal caption text in MPEG
video. Section 2.4 extendsthis work to allow detection and localization of oriented text
and to improve accuracy Finally, the results of a performance evaluation of this and

other detection algorithms in the literature are preserted in Section 2.5.
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2.2 Review of prior text detection and localization work

This section reviews past work in locating text in individual imagesand video
frames. | have classi ed theseexisting algorithms into v e categoriesaccordingto their

basicunderlying approades. Each type of approadc is reviewed in the following sections.

2.2.1 Edge-based text localization

Text tends to have complex shapesand high contrast with the badkground. The
algorithms in this category exploit this by looking for edgesin the image. Alignment,
size, and orientation features of the edgesare usedto discriminate text regions from

other \edgy" portions of an image.

LeBourgeois[22] localizestext in complex grayscaleimages. After pre-processing,
imagegradierts are smearedin the horizontal direction. Connectedcomponerts are
found in the resulting imageto localize text regionsinto text lines. Text lines are
further segmeted into individual characters by locating valleys in the horizontal

and vertical projection pro les.

Sato et al [45] localize caption text in news broadcasts by looking for areas of
edge pixels that satisfy aspect ratio and other criteria. Text is assumedto be

light-colored, appear over a dark badkground, and have horizontal orientation.

Agnihotri and Dimitro va [1] detect horizontal white, yellow, and black caption
text in video frames. A pre-processingstep enhancesedgesand removes salt-and-
pepper noise. Edge pixels are found using a kernel and a xed threshold. Frame

regionswith very high edgedensity are consideredtoo noisy for text extraction and
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are disregarded. Connected componerts are found in the edge pixels of remain-
ing regions. Edge componerts are merged basedon size, spacing, and alignmert
heuristics to produce the localization result. This algorithm relies on many xed

thresholds. It appearstoo restrictive and fragile for usein general-purposevideo.

Garcia and Apostolidis [9] locate horizontal text in color images. Edge pixel mag-
nitudes and locations are determined in ead color plane. Text regionsare selected
by identifying areaswith high edgedensity and high variance of edgeorientation.

This prevens incorrect identi cation of regionswith \simple" edgesuncharacteris-
tic of text. Morphological operations are performedto remove singletonsand non-
horizontal regions. Localization is performed by nding connected componerts.
Candidate text regionsare joined together or split apart basedon the geometric

constraints of horizontal text.

Qi et al [43] extract captions from newsvideo sequences.Horizontal and vertical
edgemaps for a video frame are determined using a Sobel operator. Alignment
of edgesis analyzedto nd horizontally-oriented text instances. Sample results
shawn in the paper are quite noisy, suggestingthat the algorithm is unsuitable for

general-purposevideo.

2.2.2 Strok e-based text localization

Text is usually composedof strokesof uniform width and color. Algorithms in this

category look for pixel runs of similar color that may correspond to character strokes.
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The distinction betweenedge-and stroke-basedlocalization techniquesis similar to the

distinction betweenedge-and region-basedimage segmetation [18].

Ohya et al [38] threshold gray level imagesand localize text regionsby looking for
strokes of high cortrast, uniform width, and uniform gray level. An OCR stageis
usedto validate the detection. If alocalized region cannot be recognizedwith high

con dence by the OCR module, it is discarded.

Lee et al [24] locate vertical and horizontal runs of pixels in a quantized gray scale
image. Runs having high cortrast with neighboring pixels are assumedto lie on
the boundary of atext instance. Connectedsegmeis are mergedto form character
candidate regions. Post-processingremoves non-characters based on size, aspect
ratio, and cortrast heuristics. Specialconsiderationis givento di eren tiate \1" and
\I" charactersfrom solid non-text connectedcomponerts. The algorithm is tested

on imagesof identi cation numbers appearing on the sidesof railroad boxcars.

Lienhart [28] applies the split-and-merge image segmemation technique [14] to
locate text in video frames. Local color variancein the R'G'B' space[4]] is usedas
the homogenely criteria for segmemation. Segmetmed regionsare chosenbasedon
text-lik e size,spacing,and cortrast heuristics. Example detection results shavn in
the paper show many falsealarms. This is mitigated by a custom OCR module that
discardscandidate regionsthat cannot be recognizedwith a reasonablecon dence.
Inter-frame analysisis performedto eliminate regionsof noise persisting for just a

single frame.
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Shim et al [48, 49] proposea method to detect caption text in video frames. Regions
with homogeneousntensity areidenti ed, positive and negative imagesare formed
by double thresholding, and heuristics are applied to eliminate non-text regions.
Text is assumedto be either black or white. Inter-frame analysisis performed for

added robustness.

Gargi et al [10] describe an algorithm for locating horizontal text strings in video
frames. Their method looks for horizontal streaks of similar color that may corre-
spond to character strokes. Size and aspect ratio heuristics are applied to reduce

falsealarms.

2.2.3 Local texture-based localization

Algorithms in this category examine local texture featureswithin small regions
of an image. Text is assumedto have a distinct texture. If the texture features are

consistent with the characteristics of text, all pixels in the region are marked as text.

Wu et al [57] describe a schemefor nding text in images. Texture segmemation is
usedto locate potential text regions. Edge detection is then applied to nd candi-
date text strokes,which are mergedto form text regions. Their algorithm is tested

against a dataset of imageswith text appearing on relatively simple badkgrounds.

Schaar-Mitrea et al [46] proposean algorithm to nd overlaid text and graphics
in video frames. Blocks of size4 4 pixels are examined. The number of pixels

within the block having similar gray levels is courted. If this cournt is greater
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than a threshold, and if the dynamic range of the block is found to be lessthan a

threshold or greater than another threshold, the block is classi ed as text.

Wong [56] locate text in the luminance plane of a video frame. A 1 21 pixel
window is passedover the image, and the di erence betweenthe maximum and
minimum gradients within the window are determined. Gradient zero-crossings
are found and the meanand variance betweenzero-crossingsare computed. Pixels
under the window are marked astext if the gradiernt di erence is high, the variance
is low, and the mean is within a reasonablerange. Thesetext lines are merged

together into localized text regions.

2.2.4 Color clustering-based localization

Algorithms in this category try to simplify image cortent by performing color
clustering. The assumptionis that text pixels and the badkground will fall into separate

color clusters. Features of the clustered image are examinedto locate text regions.

Jain and Yu [17] preseris a method to locate text in pseudo-colorimageson the
web, full color images,and color video frames. Quantization and color clustering
are performedin the RGB color space. It is assumedthat the largest color clusteris
the badkground (non-text) region and the other clustersrepresen text. Connected
componerts in the foreground colors are found and are grouped together into text
lines using alignment, spacing,and projection pro le heuristics. The examplevideo

images shown in the paper are relatively simple, yet the algorithm inexplicably
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missessewveral prominent text instances. It is not clear that the assumption that

all badkground pixels are clustered together is true for unconstrained video.

Mariano [31] performs simultaneous detection and binarization of horizontal text
regionsby performing color clustering on individual scanlines. Streakson adjacert
scanlinesbelongingto the samecolor cluster are assumedto be character strokes.
The algorithm fails if text is even slightly oriented o of horizontal. It givesgood

results for horizontal text, but its large computation cost makesit prohibitiv e.

2.2.5 Neural-net work based localization

Someresearters have applied neural networks to the problem of detection and

localization of text regions. Two sample papers are mertioned here.

Jeonget al [19] apply neural networks to nd text captionsin Korean newsbroad-
casts. Detection is performed on sub-sampledimagesin a hierarchical fashion
to detect text of dierent sizes. Character spacing, text line spacing, horizontal

alignment, and aspect ratio heuristics are applied in post-processing.

Li et al [27] apply wavelets and a neural network to nd text. A window of 16

16 pixels is passedover the image. The wavelet transform of the pixels under
the window is taken, and momerts of it are usedas input into a neural network
classier. If the classier indicates a text region, all pixels under the window
are marked astext. A horizontal bounding box is determined for ead connected
componert of text pixels. This processis repeated on dierent scalesto allow

detection of text of di erent sizes.
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2.2.6 Observ ations on text detection literature to date

Unfortunately, it is dicult to determine the performance of detection and lo-
calization algorithms preseried in the literature just by reading the papers. Many of
the \exp erimental results" sectionsof the above papers consist simply of the proposed
algorithm applied to a few sampleimages. It is impossibleto know whether the sample
outputs represen the typical performanceof the algorithm, or if carefully-selectedresult
imageshave beenpreseried. None of the above papers perform a comparative perfor-
mance evaluation. Somepresert an absolute quartitativ e performance evaluation, but
becauseno standard test dataset has beenadopted, it is impossibleto compare them.
To addressthis issue, we have carried out a performance evaluation of seweral of the
most promising algorithms [5]. This evaluation is discussedin detail in Section2.5.

Basedon this evaluation and information presered in the papers, | obsene the
following about the work in the literature to date. Many algorithms make a priori
assumptionsabout the text to be extracted (e.g. strong restrictions on text color, size,
location, etc.). This makesthem unsuitable for use on general-purpose, unconstrained
video. Other algorithms work well on imageswith relatively simple badkgrounds, but
give high false alarm rates when applied to compleximages. Most algorithms have high
computation costs. No algorithm so far detects oriented (non-horizontal) text.

The obsenation that di erent algorithms make di erent assumptionsabout the
nature of text in video sparked the idea that outputs of multiple algorithms could be

conmbined to give a more accurate output than any individual algorithm. Pleasesee[4]
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and [11] for a discussionof our work in this area. Detection algorithm fusion is not
further discussedin this thesis.

In the next section, a computationally-e cien t algorithm is presened that uses
the DCT coe cien ts of MPEG video frames to detect text. In Section 2.4, another
DCT-based algorithm is preseried that can detect text with non-horizortal orientation.
In Section 2.5, these algorithms are compared with others in the literature using a

guartitativ e performanceealuation.

2.3 Algorithm A: A DCT-based algorithm for caption text detection

2.3.1 Chaddha94

Chaddha [6] proposedthe following simple algorithm for discriminating text re-
gions from non-text regionsin documern images. First, the block-wise Discrete Cosine
Transform (DCT) is performed on the image. A block size of 8x8 pixels was used. In
ead block, the sum of the absolute values of a subsetof DCT coe cien ts is computed
to give an energy value for the block. The optimal subsetof DCT coe cien ts were em-
pirically determinedto becoe cients 3,4,5,11,12,13,19, 20, 21,43, 44,45,51,52, 53,
59, 60, and 61, in row-major order. This energyis a simple measureof local texture. If
the energyis greater than a threshold, the block is declaredto contain text. Otherwise,
it is marked as a non-text block.

Chaddha's application was detecting text regions in JPEG-compressedimages
of documerts. In a performancecomparisonwith detection schemesusing other image

features,the DCT-based method wasfound to give the most accurateresults. It wasalso
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found to bethe most computationally e cien t. Explicitly performingthe DCT transform
is not required becausehe coe cien ts are already available in JPEG-compressedmages.

The method usesa xed threshold parameter. This is possiblein a documert
image application becauseit is known a priori that the non-text regions are relatively
smooth and have low texture energy There is a wide gap betweenthe texture energy of
non-text blocks and text blocks in documert images. The algorithm is therefore not very
sensitive to the threshold value. An optimal threshold empirically determined on one
documen image dataset is likely to give good results on another dataset of document

images.

2.3.2 Application to video frames

| applied the DCT-based text detection approac described above to intra-coded
() framesof MPEG-1 video sequencesLike JPEG images,|-frames are encaled using
the block-wise DCT transform, sothe DCT coe cien ts are available in the bit stream.

Detecting text in broadcast video frames is much more dicult than in images
of documerts. In unconstrained video frames, non-text regions may be quite complex
and have high texture energy The gap betweenthe texture energyof text and non-text
blocks is small.

Experimentation showved that the DCT text detection method gave acceptable
results on video frames once an appropriate threshold was chosen. Unfortunately, the
optimal threshold value varied widely from frame to frame. Figure 2.1 illustrates this

sensitivity to the choice of threshold. Two samplevideo framesare shovn in images(a)
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and (b). The optimal threshold for ead image was determined empirically by exhaus-
tively testing all possiblethresholds and choosing the one that minimized the di erence
betweenprecisionand recall (seeSection 2.5 for details on the evaluation criteria). The
optimal thresholdswerefound to be 310for image (a) and 102for image (b). Acceptable
results are produced when the optimal thresholds are used, as shovn in images(c) and
(f). But the lower threshold produced many false alarms for image (a), and the higher
threshold causedmany missedtext blocks when applied to image (b). Further, evenin

the outputs obtained using the optimal thresholds, a high false alarm rate is obsened.

2.3.3 Region-gro wing to increase detection accuracy

| obsenedthat the blocks with the highestDCT texture energyin a frame usually
belong to text regions. Also, at least one block in ead text region has very high en-
ergy. Theseobsenations inspired a region-graving schemethat decreaseshe algorithm's
relianceon xed thresholds.

Region growing is carried out in the following manner. First, blocks with DCT
energyabove somethreshold Ty, are marked astext. A threshold variable T is initialized
to Tp. Then the following is performed iteratively. T is decremened by some step
value T. Blocks with thresholds above T are marked as text if at least one of their
8-neighbors has already beenmarked astext in an earlier iteration. Iteration continues
until T readhessomelow threshold T|. By experimentation, | found T, = 150, T, = 30,
and T = 10 worked well.

Region-graving improves detection accuracy in two ways. First, it suppresses

false alarms, becauseregions may only grow around \seed" blocks of high energy that
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Fig. 2.1. Text block detection by thresholding DCT coe cien t energies. (a) and (b):
Two samplevideo frames. (c) and (d): Results of detection with threshold at 310. (e)
and (f): Results of detection with threshold at 102.
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are very probably text. Second,fewer missed-detectblocks are obsened becauselower

thresholds are reached during iteration.

2.3.4 Heuristic ltering

Heuristics are applied to reduce blocks incorrectly identi ed astext. Since hori-
zontal text orientation is assumed,it is reasonablethat a text instance should be more
than 8 pixels wide. Therefore, candidate text blocks with neither a left nor a right text
block neighbor are marked as non-text. Candidate text blocks without any 8-neighbors
are also discardedas noise.

| obsenedthat many falsealarms are due to steepluminance\cli s" in the image.
The clis are edgeswhosegradiens are sohigh that they causevery high DCT energies.
This e ect is visible in Figure 2.1(e), in which blocks along the boundary betweenthe
blue badkground and the scenehave been incorrectly marked as text. The following
heuristic is usedto remove sudc false alarms. A block marked as text is chedked if its
coe cien t energyis above somethreshold T.. Then, the averageof the DC coe cien tsl
of the three blocks to the left are computed. Similar averagesare found for the three
blocks to the left, top, and bottom. If the absolutedi erence betweenthe averagesto the
left and right are greater than somethreshold T, or if the absolute di erence between
the averagesto the top and bottom are greater than Ty, then the block's high DCT

energyis probably due to animagecli. The block is marked as non-text. Empirically,

| determined that T, = 100and Ty = 300 give good results.

IThe DC coe cien t of a block is its rst DCT coe cien t. It indicates the averageintensity
of the pixels in the block.
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2.3.5 Text box localization

Localization is performedby nding connectedcomponerts of detectedtext blocks.
Bounding text boxes are found around ead connectedcomponert. Spatial heuristics
are then applied to remove boxes corresponding to non-text regions. Boxes with non-

horizontal aspect ratios are discarded.

2.3.6 Results and Discussion

In this section| presen output of this algorithm applied to samplevideo frames.
A quartitativ e evaluation of this algorithm is presened in Section2.5. All framesshown
in this section were extracted from MPEG-1 videos with spatial resolution of 320
240 pixels. Videos were captured from a variety of television channels, including CNN
and foreign news broadcasts. Note that the foreign news broadcastsare a challenging
dataset for detection algorithms, becauseof their lower quality and cortrast. Refer to
Section 2.5.1 for further details about our video dataset.

Figure 2.2 preseris examplelocalization results on a variety of video frames. The
algorithm can detect text of di erent scripts, as demonstrated by image (a). It is even
able to detect the very low-corntrast \SCOLA" text appearing in images(a), (b), and
(c). There are somefalse alarms along the top edgeof image (d). These false alarms
are causedby noise along this edgedue to imperfect video capture. The algorithm is
able to detect the text in a very small font sizein image (e), although the localized text
rectangleis a bit loose. Somesmall false alarms appear in image (f), but thesecould be

easily suppressedby adding a minimum text box size heuristic.
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Fig. 2.2. Output of Algorithm A on video frameswith caption text.
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Although my focusis on caption text, the algorithm correctly detects somescene
text aswell. Figure 2.3 shows this. In image (a), the scenetext instance \Swiss Bank"
hasbeenproperly localized. But the low-corntrast scenetext instancesin images(b) and
(c) have beenmissed. Note that in all three frames, all caption text has beendetected,
and there are no false alarms.

Figure 2.4 demonstrates sometypical failures of the detection and localization
algorithm. The algorithm exhibits two false alarms in image (a). The texture of the
plant in this caseis similar to that of text. Image (b) demonstratesa more se\ere case
of falsealarms. The high texture energy of the crowd scenehas causedthe algorithm to
nd the ertire frame as one large text box. This could be solved by raising the T, and
T, thresholds. This example demonstratesthat, while the region-graving thresholding
scdheme reducesthe sensitivity to xed thresholds, it doesnot eliminate the sensitivity
ertirely. Images(c) and (d) show two examplesof text misseddue to limitations of the
algorithm. The text regionin image (c) is not localized properly becauseit violates the
assumptionof horizontal text. The text in image(d) causedi cult y becauseof its large
stroke width. A consequenceof using an 8 8 pixel block sizeis that the text stroke
width must be lessthan about 8 pixels for proper detection. This explains the incorrect
localization obsened in image (d), wherethe character strokesare about 20 pixels wide.

I have shown that Algorithm A performs well on a variety of text instancesin
a variety of types of video. Another advantage to this algorithm is its relatively low
computation cost. In fact, the algorithm requiresonly the DCT coe cien ts of a video

frame. Sincethe DCT coe cien ts of I-frames are immediately available in the MPEG bit



Fig. 2.3. Output of Algorithm A on video frameswith caption text.
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stream, the video le neednot be fully decompressedMy unoptimized implementation
runs at a real-time rate of over 30 I-frames per secondon an SGI Octane workstation.
In some applications, it may be sucient to perform text detection on just I-
frames, sincethey occur relatively frequertly in the MPEG stream (usually about three
times a second)and text events tend to persist for at least sewral seconds.To process
predictive (P- and B-) frames, it is necessaryto reconstruct the DCT coe cien ts after
motion compensation. The simple approac used in my implemenation completely
decades ead frame, then usesa fast DCT algorithm [47] to compute the coe cien ts.
This is a naive implemertation, but it still achievesa speedof 10 framesper second. For
faster performanceit is possibleto perform motion vector compensation directly in the

frequency domain [32].

2.4 Algorithm B: An algorithm for detecting caption text of arbitrary

size and orien tation

In the previous section, an e cien t DCT-based text detection and localization
algorithm (Algorithm A) was preserned. While it gave good results on many video
frames, | also noted the algorithm's limitations. It is unable to detect text having non-
horizontal orientation. It relieson xed energythresholdsthat causemany false alarms
in somescenes. It is unable to detect text with large stroke widths. In this section,

modi cations to the above algorithm are presened that circumvert theselimitations.
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2.4.1 Choice of DCT coecien ts

Algorithm A usedthe coe cien ts found to be optimal by Chaddha [6]. Howewer,
Chaddha's application was documert images,and a dataset of just v eimageswas used
for the optimization. The coe cien ts found in this manner may not be optimal for
general-purposevideo frames.

Unfortunately, nding the optimal coe cien ts is non-trivial. An exhaustive seard

P6a 64
i=1

would require trying all conbinations of between 1 and 64 coe cien ts, or
1.8 1049 possibilities. An alternativ e is suggestedn [6]. The averageabsolute value of
ead coe cien t for both text and non-text blocks is determined. Coe cien ts are sorted
by the di erence betweentext and non-text sums. Coe cien ts are then added one-by-
onein the sorted order until the optimal choice of coe cien ts is found. This procedure
requirestrying at most 64 combinations of coe cien ts.

| performedthe optimization in this manner using 9,329frames of video from our
ground-truthed dataset described in Section 2.5. This represens a much larger dataset
than in Chaddha's optimization. His dataset had 4,800 blocks total; | used 9,122,279
blocks (539,94 1text blocks, 8,582,338non-text blocks). Figure 2.5 comparesthe average
absolute value of eat coe cient for text and non-text blocks. Using the procedure

described above, the optimal coe cien ts were determinedto bel, 2, 3, 4,5, 8, 9, 10, 11,

12,16, 17,18, 19, 24, 25, 26, 32, and 40, in row-major order.

2.4.2 Detection of text blocks

The above coe cien t choice optimization was performed for horizontal text. Be-

causethe 2-D Discrete Cosine Transform is separable,transposing the matrix of pixel
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values of a block in the spatial domain corresponds with the transposeof the DCT co-
e cien t matrix aswell. It follows that vertical text can be detectedby rst taking the
transposeof a block's DCT coe cien t matrix, and then using the samecoe cien ts de-
termined during the optimization for horizontal text. | have obsened that text oriented
between horizontal and vertical has a conbination of horizontal and vertical DCT text
energy

These obsenations motivate the following method for detecting text blocks. For
eat DCT block, the horizontal text texture energy TTE}, is computed by summing the
coe cien ts listed above. Similarly, the vertical text texture energy TTE,, is computed
by transposing the DCT coe cien t matrix, and then summing the above coe cien ts.
Instead of thresholding individual blocks, horizontal and vertical groups of three blocks
are examined. This encouragesblocks with high TTE} to grow into horizontal text
boxes, and blocks with high TTE, to grow vertically. This is accomplishedin the
following way. The average of the TTE}, values for a block and its two horizontal
neighbors is computed. This is addedto the averageof the TTE,, for the block and its
vertical neighbors. If the total is greater than a threshold, the block is marked as text.

That is, the block at row i and column j in an image is marked as text if

TTERG;] 1)+ TTE2(|;1)+ TTER®; ] + 1) N
TTE (i 1))+ TTE\(;j)+ TTE(i + 1)) o T
3
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2.4.3 Choice of threshold

Next we consider how to choosethe threshold T. As mertioned earlier, while
using a xed threshold may be possiblefor documert images,| found that the optimal
threshold varies widely from one video sequenceto the next. Algorithm A employed
a region-graving scheme that reduced the reliance on the thresholds. Howewver, xed
thresholds were still used, and this causedpoor results on somevideo frames.

In informal experimentation, | have obsened that the optimal threshold is fairly
uniform acrossall frames of the samevideo sequence.Also, di erent video sequence®f
the samegeneraltype have similar optimal thresholds. This suggeststhat the optimal
threshold depends on general characteristics of the video that could be computed or
known a priori . For example, perhapsone threshold is best suited for news broadcasts,
while another is better for commercials. The genre of video may be known a priori,
or an algorithm could be usedto automatically determine the genre (e.g. [15]). | also
obsened that low-level image features could also be usedto predict optimal threshold.
Speci cally, | hypothesizedthat video contrast could be used.

This hypothesiswastested as follows. First, the optimal threshold for ead video
sequencein our dataset was determined by exhaustively trying all possiblethresholds
within a reasonablerange (again accordingto the experimental protocol and evaluation
criteria discussedn Section2.5). The averagecortrast per frame for ead video sequence
was also computed. The cortrast measureusedwas the di erence betweenthe highest

and lowest gray level in the luminance plane of a frame.
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Figure 2.6 plots the optimal threshold versusthe average frame contrast. The
gure indicates that there is a strong linear correlation between cortrast and ideal
threshold. The best-t line that minimizes least-square-errorwas found to be about
T(c) = 238c 20185 for a given average corntrast c. This result suggeststhat it is
possibleto predict a good threshold basedonly on the generalcharacteristics of a video
sequence.

Note that this analysiswascarried out on arelatively small dataset of 11 sequences
and 11000framestotal. More experimentation would be necessarnio determinethat this
simple linear relationship holds for a larger dataset. Also, the optimal threshold may be
better correlated with video sequencefeatures other than averageframe cortrast. For
the work in this thesis, however, we use only corirast to predict the threshold. The

threshold for ead sequencdas computed using the T(c) expressiongiven above.

2.4.4 Hierarc hical subsampling to detect dieren t sizes of text

It was noted earlier that Algorithm A is unable to detect text with stroke width
larger than the DCT block size. This problem can be circumvented by analyzing a
subsampledversion of the frame. For example, text with strokesup to 16 pixels wide
can be detectedin a frame subsampledto half the original size.

Subsampling is incorporated into the algorithm as follows. The text block de-
tection algorithm is applied to the image. Then, the image is subsampledto half its
dimensions,and the 8 8 block classi cation algorithm is applied again. A block at this
level correspondsto four blocks in the original image. For ead block classi ed astext in

the subsampledimage, the corresponding four blocks in the original image are marked
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astext. Subsamplingis continued iterativ ely until somelower bound on the frame di-
mensionsis reaced. | have obsenedthat proceedingto a resolution of 160 120ensures
that text of all reasonablesizesis found. This correspondsto two hierarchical levels for
an original frame sizeof 320 240 and three levels for a frame sizeof 640 480.

My presen implementation usesa naive approad to the subsampling. The origi-

nal imageis converted to the spatial domain, subsampled,and then the DCT transform
is taken. A much more e cien t approad is to perform subsamplingdirectly in the DCT

domain. A method for doing this is described in [8].

2.4.5 Localization of text with arbitrary orien tation

Once blocks of a frame have beenclassi ed astext or non-text, we wish to group
the blocks into text instances. This is done by determining tightly- tting bounding
rectanglesfor eat text instance. In the caseof oriented text, the bounding rectangle
should be oriented at the appropriate angle. As was noted in Section 2.2, no work sofar
in the literature has consideredthe problem of localizing non-horizortal text.

We proposean iterativ e greedy algorithm for separating text instancesand de-
termining tight bounding boxes around them. First, connectedcomponert analysisis
performed on the blocks marked astext. Orthogonal bounding rectanglesare computed
for each componernt. Then, the bounding rectanglesare iterativ ely re ned by moving,
changing size,and changing orientation. Each iteration of the greedyalgorithm attempts

to increasethe criteria

G=P (1 Pp)
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where P; is the percenage of the detectedtext pixels that lie underneath the rectangle,
and Pp; is the percertage of the rectangle's area covering non-text pixels. During ead
iteration, ead bounding rectangle is visited. One of the following actions is taken,

accordingto which producesthe maximum G:

Rectangleis left unchanged

Rectangle height is incremerted or decremetted by one block

Rectanglewidth is incremerted or decremeried by one block

Rectangleis moved one block to the left or right

Rectangleis moved one block up or down

Rectangleis rotated by 15 degreesclockwise or counter-clockwise

Once all rectangleshave beenvisited during an iteration, overlapping rectangles
are mergedtogether if doing so doesnot lower the overall value of G.

The iteration corntinuesuntil corvergence. Simple heuristics can then be applied
to discard non-text regions basedon rectangle dimensions. In my implementation, we
discard rectangleswhoselength or width is lessthan 8 pixels. Very few text instances
are lessthan this size, and ewen if presen, it is doubtful that an OCR module could

recognizethem accurately.

2.4.6 Results

Figure 2.7 preseris sample results of the algorithm applied to 320 240 pixel

MPEG-1 video frames captured from television channels. The rectanglessuperimposed
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on the video framesindicate the results of the text localization. Image (a) demonstrates
the algorithm's e ectivenesson simple, horizontal caption text. Note that the algorithm
works on a variety of language scripts. Images (b), (c), and (d) shov examples of
detection of both horizontal text and text oriented at di erent angles. Image(c) includes
sometext missedby the algorithm. This text is lessthan 8 pixels tall and thus was

discardedby our size heuristic.

2.5 Performance Evaluation

As noted in section2.2, there have beenno quartitativ e, comparative performance
evaluations of text detection algorithms presened in the literature. In this section, |
preser the results of a quartitativ e evaluation of the above two algorithms and four

others from the literature. We have preseried a similar evaluation in [5].

2.5.1 Video datasets

Two datasetswereusedin the evaluation. Dataset A contained mostly static cap-
tion text typical of newsbroadcasts. Dataset B consistedof commercialsthat included

moving, rotating, growing, and shrinking text. Details of the datasetsare as follows:

Dataset A consistedof 15 MPEG-1 video sequencewith 320 240 pixel resolu-
tion. There wereatotal of 10299frames(about 175megalytes of data). There were
156 caption text everts and 144 scenetext ewerts in the video data. The dataset
represerted a wide variety of video captured from television broadcast channels.
Video clips included newscastsfrom Turkey, United Arab Emirates, Japan, and

Germany, CNN's The World Today program, CNN's BusinessUnusual program,
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Fig. 2.7. Examples of detected text of various orientations.
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ABC's World News Tonight, and commercials from various channels. This di-
versecollection of video contained a wide variety of text fonts, colors, placemerts,

languages,and scripts.

Dataset B consistedof 1 MPEG-1 video sequencewith 320 240 pixel resolution.
There wereatotal of 916frames(about 26 megalytes of video data), and 25 caption
text events. The datasetconsistedof portions of commercialscaptured from various
television channels. A wide variety of text sizesand colors was included in the
dataset. All captions were in English. In addition to static text, text ewerts

undergoing rotation and size changeswere included.

Video sequencedor both datasets were captured at 30 frames per second by
either a CosmoCompressmotion-JPEG hardware compressionboard on an SGI Indy
workstation, or by an ICE motion-JPEG hardware compressionboard on an SGI O2
workstation. The movies were converted to MPEG-1 using SGI's dmcorvert software
encaler. The compressedbit rate was 4.15 megabits per second. The group of pictures
(GOP) size(i.e. distance betweenadjacert I-frames) was 12 frames.

Dataset A was ground-truthed by Jin Hyeong Park, Vladimir Mariano, Sameer
Antani, and me using the VIiPER tool from the University of Maryland [7]. Dataset B
was ground-truthed my me. In ead frame, tight bounding rectangleswere drawn around

any text regions(regardlessof whether the text could actually be read).
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2.5.2 Evaluation criteria

It is not obvious how to designa good evaluation criteria for text detection and
localization algorithms. Most evaluations preserted in the literature (e.g.[17]) give eval-
uation results as a single percertage called \accuracy.” This indicates the percertage of
text instancesdetected by the algorithm. Howewer, this accuracy statistic is misleading,
becauseit does not capture the false alarm rate. For example, using this evaluation
strategy, an algorithm that simply placestext boxes around the entire area of ewvery
frame would achieve 100% accuracy It is also not clear how to decide whether an al-
gorithm has detected a text event or not. For example, has the algorithm detected the
text in Figure 2.4(d)? It has marked parts of the text, but not all of it. Unfortunately
thesedetails are rarely speci ed in papersin the literature. From communications with
authors, it appearsthat usually a human's subjective judgment is usedto determine
whether the algorithm reasonablydetected a given text instance or not.

We desirean evaluation criteria that rewards algorithms for tightly localizing text
events. Algorithms should be penalizedfor failing to detect text or for detecting only a
portion of text. They should also be penalizedfor false alarms, or for looselocalization
of text. Further, the criteria should be objective and automatically computable by a
program.

We perform a pixel-by-pixel match of the ground truth against the output of a
localization algorithm. A pixel is counted as a correct detect if it is marked as text in
the ground truth and in the algorithm's output. A false alarm appearsin the algorithm

output but not the ground truth. A missal detect appearsin the ground truth but not
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the algorithm output. To perform the evaluation, the number of correct detect, false
alarm, and missed detect pixels are courted. The results are expressedas recall and

precision, where:

corr ect detects
correct detects+ missed detects

Recall

correct detects

Precision =
correct detects+ f alse alarms

Intuitiv ely, recall expresseghe ability of an algorithm to detect text. A recall of
100% indicates that the algorithm found all text in the dataset. Precisionis a measure
of the tightness of the localization. A precision of 100% indicates that the algorithm's
output exhibited no false alarm pixels. Note that there is a trade-o betweenrecall and
precision. For example, an algorithm's parameters can be adjusted to increaserecall,
but this will generally causeprecisionto decrease.

The relative importance of recall and precision depends on the application. For
this evaluation, | will assumethat recall and precision are equally important. Therefore
I will compare algorithms at the point where parameters have beenadjusted suc that

recall and precision are equal.

2.5.3 Exp erimen tal proto col

Algorithms A and B presered in this chapter were evaluated along with four
other promising algorithms from the literature. This included the work of Gargi et
al [10], LeBourgeois[22], Mariano et al [31], and Mitrea et al [46]. Sourcecode provided

by the authors was usedfor the Gargi and Mariano algorithms. The LeBourgeoisand
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Mitrea algorithms wereimplemented by Ryan Keener, Alb ert Roberts, and me basedon
the algorithm descriptionsin the papers.

The evaluation was carried out as follows. Each algorithm requires one or more
xed parameters. The parameters were optimized on Dataset A by varying ead pa-
rameter over a reasonablerange. For eat combination of parameters, the evaluation
was performed on the full 10299frames. The combination of parametersthat gave the
highest recall and precision under the constraint recall = precision was declared opti-
mal. The recall and precision obtained using this set of parameter values were usedto
represen the performanceof the algorithm.

Our ground truth contains localization data for both caption and scenetext.
Sincethe focus of this thesisis caption text, algorithms weretested only on caption text.
Algorithm output was ignored for regions marked as scenetext in the ground truth.
Therefore algorithms were neither penalized nor rewarded for missing or nding scene

text.

2.5.4 Results

Table 2.1 presents the results of the evaluation for Dataset A. It is obsened that
Algorithm B exhibits the best performance,followed very closely by Algorithm A. The
Mariano algorithm was next best, followed closely by the Mitrea algorithm.

Table 2.2 preseris the evaluation results for Dataset B. Two sets of recall and
precision statistics are given. The evaluation was rst performed using the parameter
valuesdetermined as optimal over Dataset A. Theseresults are shown in the secondand

third columns of Table 2.2. The parameter valuesfor eat algorithm were then varied
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to nd the optimal parameter setsfor Dataset B. Theseresults are shavn in the fourth
and fth columnsof the table. Note that Mariano's algorithm wasnot included in these
runs, becauseour dataset violated its assumptionthat all text is perfectly horizontal.

It is obsened that Algorithm B gives by far the best performance on Dataset
B, with an optimal precision and recall of 74%. Further, the results indicate that the
optimal parametersfor Algorithm B on Dataset A are very closeto optimal on Dataset
B. This suggestshat Algorithm B is relatively insensitive to the value of its parameters.
The LeBourgeois,Mitrea, and Gargi algorithms exhibit optimal precision and recalls of
around 49%, about 25 percertage points lower than those of Algorithm B. The results
also suggestthat thesealgorithms are more sensitive to the values of their parameters.
Algorithm A gives poor performanceon this dataset. This is becausemuch of the text
in Dataset B is relatively large, violating Algorithm A's assumptionthat the text sizeis
comparableto the 8 8 pixel block size.

| obsene that Algorithm B hasshawvn the best performanceon both datasets. It
performs slightly better than other algorithms in the literature on a dataset cortaining
mostly static, horizontal text. It performs signi cantly better than other algorithms
on a dataset including non-horizortal text that rotates, changessize, and moves over
time. This is an encouragingobsenation, becauseit demonstratesthat it is possibleto
designtext detection algorithms that make fewer assumptionsabout text in video while
maintaining the accuracytypical of algorithms found in the literature. It is hoped that
in the future, other researters will attempt to reducethe restrictions their algorithms

place on the typesof text that can be detected.
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The results of the quartitativ e performance evaluation indicate that precision

and recall of state-of-the-art detection and localization algorithms are quite low. It is
disappointing to seeprecision and recall values under 50%, when we would like values
closeto 100%. This highlights the needfor further researd in designing more accurate
algorithms that can detect and localize text in general-purposevideo. Howeer, there
are two caveats to our performance evaluation that should be kept in mind. First,
our evaluation criteria is very strict. An algorithm must generateoutput that exactly
matchesthe ground truth in order to adcieve perfect precision and recall. In an actual
application, it probably doesnot matter if a localization algorithm's output iso by a
few pixels. Second,our dataset is extremely challenging. The ground truth has been
marked with all caption events that could be detected by a human, even if they could

not be read. Sudc text may not even be useful to an application.



Table 2.1.

Table 2.2.

Algorithm Recall | Precision
Algorithm A 46% 45%
Algorithm B 46% 48%
Gargi 29% 30%
LeBourgeois 33% 34%
Mariano 40% 39%
Mitrea 37% 37%
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Detection/lo calization algorithm performance for caption text on Dataset
A. Dataset A contains mostly horizontal, static text everts.

Algorithm Preset parameter set | Optimal parameter set
Recall | Precision | Recall Precision
Algorithm A | 36% 36% 36% 36%
Algorithm B | 73% 75% 74% 74%
Gargi 37% 62% 46% 48%
LeBourgeois | 25% 73% 49% 49%
Mitrea 37% 58% 47% 48%

Detection/lo calization algorithm performance for caption text on Dataset
B. Dataset B includes text that moves, rotates, grows, and shrinks over time. Results
are shown both for when the parameterswere set to valuesfound optimal for Dataset
A, and when set to those found optimal for Dataset B.
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Chapter 3

Text trac king

3.1 Intro duction

Text in video persistsfor multiple frames. A typical text event lasts for at least
a secondto allow human viewers adequatetime to read it. At the NTSC frame rate of
about 30 frames per second,even a one-secondtext event appearsin 30 video frames.
The text evert may remain stationary, in which casethe spatial location of the text is the
samein all frames. It may exhibit a slow, linear motion, astypied by scrolling movie
credits. Or it may move quickly in a complex trajectory, it may change size or shape,
it may undergo perspective distortion, it may rotate, or it may exhibit a combination of
thesebehaviors. Figure 3.1 showns examplesof text events and their behaviors over time.

A tracker is necessaryto follow text asit moves. A text tracker could have several

purposesin a video indexing system:

Determination  of text events: We would like to build an index of the text
occurring in video for cortent-based retrieval purposes. The index would not in-
clude entries for individual frames, but instead for ead text eventthat appears,
persists for sometime, and then disappears. That is, we would like to nd the
temporal location and extert of a text ewert, as well as the spatial location and
extert in ead frame. The tracker can be usedto combine the localizedtext regions

of individual framesinto text ewverts.
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Verication of text localization: Sinceit is assumedthat text persists for
multiple frames, a region localized as text in one frame but not in neighboring
frames indicates that it is a false alarm and should be discarded. Assuming all
text is stationary, a candidate region could be discardedif no region exists at the
samelocation in the neighboring frames. But this would fail for moving text. A
text tracker is required to verify that motion in the localization output is consisten

with motion in the video.

Human-assisted text event indexing: State-of-the-art text detection algo-
rithms may not perform well on certain datasets (e.g. very noisy video data). In
thesecases,a human operator could mark a text regionin the rst frame in which
it appears. The tracker could then automatically determine the location of the

text in subsequeh frames.

This chapter considersthe text tracking problem. In Section 3.2, prior work
related to text tracking is preserted. Then, two algorithms represening two di erent
approadiesto text detection are described. In Section 3.3, | describe a fast algorithm for
tracking rigid text events exhibiting linear motion in MPEG video. This algorithm can
operate independertly to support an operator-assistedenvironment as described above.
In Section 3.4, an algorithm is presered for tracking text whose size, position, and
orientation may be changing over time. This algorithm requirestight integration with a

text detection algorithm, like those presened in Chapter 2.
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3.2 Review of prior work

While there has beena signi cant amount of work on the extraction of text in
imagesand video frames, very little text detection work is found in the literature that
considersthe temporal nature of video. This section surveysthe few approacesthat do
include temporal analysis.

Shim et al [48, 49] usesa simple inter-frame analysis technique to reduce false
alarms. Individual framesare rst processedy nding regionswith homogeneousnten-
sity, forming positive and negative imagesby double thresholding, and applying heuristics
to remove non-text regions. Then, the candidate text regionsin groups of v e adjacent
frames are considered. Text is assumedto be stationary. A candidate text region is
discardedif regionsof similar position, intensity, and shape do not appear in the other
four frames. Note that this approad would incorrectly discard moving text regions.

Lienhart [29, 28] takes a similar approad, but allows text motion. Individual
framesare segmeted using properties of local color histograms and choosingtext candi-
date regions using heuristics. Temporal analysisis usedto re ne detection results. For
eah potential text region detected in a frame, the text candidate regionsin the next
frame are searded for one of identical size, color, and shape. If such an areais not
found, the regionis discardedas non-text. This approac assumedext remainsrigid. It
also requiresthat text detection is applied to eat frame, soit is not applicable to the
operator-assistedapplication mentioned above.

Li and Doermann [25, 26] describe a simple algorithm for tracking rigid, moving

text in video. A simple pixel-level template matching schemeis used. It is assumedthat
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the text is moving with constart velocity. A record is kept of this velocity. Given the
known location of atext regionin aframe, its location in the next frameis predicted using
this velocity. A simple least-squared-errorseard is performed around a neighborhood
of the predicted location to nd the preciselocation. Note that the pattern matching
is performed on both text pixels and badkground pixels alike. This can be problematic
when text occurs on complex badkgrounds, or when text moves over badkgrounds of
di erent gray level intensity. This approad also fails for text exhibiting a non-linear
velocity.

A recert extensionto Li and Doermann's work [27] adds a post-processingstep
to correct tracking results in the casethat text grows or shrinks very slightly from frame
to frame. The text region is enlarged, and a Canny edge detector is applied to nd
character edges. A tight bounding rectangle is found around these characters, and is
usedasthe nal tracking result. The authors found that this extensionfailed for text
moving over complex badkgrounds. To overcomethis problem, the least-squared-error
value computed during the neighborhood seard is monitored. If a spike in the error
occurs, it is assumedthat the text is moving over a complex badkground, and the post-
processingstep is disabled. Once tracking begins, their tracker cortinues until the end
of the video sequence. They do not considerthe problem of determining when a text
event has disappeared, or when a text evernt endsand another begins. Their algorithm
simply follows some\edgy" region in the video; it doesnot ensurethat it is following

the sametext from frame to frame.



51

3.3 Metho d for trac king rigid text using MPEG motion vectors

As discussedin the previous section, Li and Doermann's work represens the
state-of-the-art in text tracking. Unfortunately, this approac has sewral limitations.
First, it assumesthat text moves with constart velocity in a linear trajectory. This
assumption could be relaxed by using a more sophisticated trajectory model; howewer,
even this would fail for random, erratic motion. Another approac would be to remove
the predictive stage altogether and increasethe size of the template seardr window.
Unfortunately this increasesthe computation cost prohibitiv ely. A least-squared-error
seart foranm ntext regionoveraw w pixel seard window requiresm n w?2 pixel
comparisons. Thereforeit becomesvery expensiwe to increasethe searth window because
the seart operation is of order O(WZ). A secondlimitation of their algorithm is that it
comparesall pixels within the localized text region, including badkground pixels. This
can causethe algorithm to track the badkground instead of the text if the badground
changesor if text movesover badkgrounds of di erent intensities.

In this section, | presen an algorithm for e cien tly tracking rigid text in MPEG
video. | use the motion vectors presen in the MPEG-compressedvideo bit stream
to predict text motion with very little computation cost to the tracker. In e ect, the
computation cost has already beenpaid by the MPEG encaer. This idea was inspired
by papers by Nakajima et al [36], who used motion vectorsto detect moving objects in

MPEG video, and by Pilu [40], who usedthem to detect cameramotion.



52

3.3.1 Review of MPEG motion vectors

A brief overview of motion compensationin the MPEG-1 video coding standard
is preseried here. The readeris referred to [34] for a detailed treatment of the standard.

The MPEG video standard usesmotion compensationto reducetemporal redun-
dancy in the compressedvideo stream. MPEG de nes three typesof frames: intra-coded
() frames, predictive (P) frames, and bidirectional predictive (B) frames. An I-frame is
self-conained in that it hasall the information required to reconstruct the frame. P- and
B-frames are split into non-overlapping 16 16 pixel regions called macroblacks Each
macroblock in a P-frame includes a motion vector indicating an x and y pixel displace-
ment from the last I- or P-frame. It alsoincludes DCT error correction coe cien ts. To
reconstruct a given P-frame macroblock, the MPEG decader beginswith the 16 16 pixel
areapointed to by the motion vector, and addsthe IDCT of the correction coe cien ts.
A B-frame is similar to a P-frame exceptthat it caninclude both a motion vector to the
previous I- or P- frame and a motion vector to the next I- or P- frame. Reconstruction
of B-framesis accomplishedby averagingthe two macroblocks pointed to by the motion

vectors and adding the error correction.

3.3.2 Motion prediction using MPEG motion vectors

At rst it may seemtrivial to apply MPEG motion vectors to the problem of
tracking text in video. Unfortunately, MPEG motion vectors are usually too noisy for
direct usein a tracker. This is explained by the following obsenation. Given a region
of one frame, a tracker wishesto nd the preciselocation of that region in the next

frame. On the other hand, the goal of the MPEG encdader is to achieve minimal coding
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requiremerts in a minimum amount of time. MPEG encaers are willing to trade o
motion vector accuracyfor a decreasean the encaling time.

Figure 3.2 illustrates typical motion vectors found in MPEG video. Three con-
secutive P-frames of an MPEG encaded video are shown in (a). The video contains
upward-scrolling text. Graphical represenations of the macroblock boundariesand mo-
tion vectorsfound in the MPEG bit stream for thesethree framesare shavn in (b). The
white grid indicates the macroblock boundaries. Macroblocks marked with an \X" are
I-coded macroblocks, meaning that they are self-coriained and do not require motion
compensation. For macroblocks that are motion-compensated, the motion vectors are
drawn from the macroblock certer to the certer of the region usedfor motion compen-
sation in the last frame. Macroblocks drawn with neither an \X" nor a vector have a
motion vector of length zero. It is obsened in this gure that many of the macroblocks
corresponding to the text have motion vectors that accurately indicate the text's mo-
tion. Howewer, someof the motion vectors point in random directions. In particular, |
obsened that macroblocks cortaining few edgestend to have incorrect motion vectors.
Macroblocks containing strong edgestend to be reliable.

My algorithm dealswith theseissuesas follows. Given a localized text regionin
oneframe, seard the next frame for all macroblocks whosemotion vectors point back to
any part of the text region. Extract the motion vectors from thesemacroblocks. Seweral
constraints are then applied to the motion vectorsto determine those that are likely to
be reliable. Very small motion vectors (lessthan 2 pixels in magnitude) are probably
noisy and are removed from consideration. Motion vectors from relatively featureless

macroblocks are also discarded, becausethey are not likely to be accurate. This is



Fig. 3.2. MPEG motion vectors indicate object motion but are noisy. (a): Three consecutive P-framesin an MPEG-1 video.
(b): The samethree frames overlaid with graphical represenations of the macroblock boundariesand motion vectors.
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determined by applying a Sobel edge detector on eath macroblock, and eliminating
macroblocks that cortain lessthan four edgepixels.

The magnitude and direction of the remaining motion vectors are then clustered.
It is assumedthat the largest cluster correspondsto the approximate motion of the text
block. Note that this clustering processimplicitly ignores noisy motion vectors. The
vectors in this cluster are then averagedto yield a single motion vector for the text
region.

It is clear that a text event cannot be tracked in an I-frame in this way, because
I-frames do not contain motion vectors. Fortunately, I-frames are relatively rare in an
MPEG stream. Typically I-frames occur only onceevery ten or twelve frames. Tracking
through an I-frame is handled by averagingthe motion vectors determined for the region

in the frame beforethe I-frame and the frame after.

3.3.3 Renemen t using gradien t-based corresp ondence

| have found that the motion vector determined using the simple processabove
is generally of very high quality. In fact, for many text evens it is possibleto track a
moving text region using the MPEG motion vectors alone. Howewver, any small errors
made in the tracking from one frame to the next propagate through the ertire lifetime
of the text event. For a long video sequencethe tracking location is usually inaccurate
by seweral pixels after tracking text through seeral secondsof video.

| therefore employ a least-squared-error correspondence seard around a very

small neighborhood of the location predicted by the MPEG motion vector analysis.
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Instead of comparing pixel gray levels directly, asin Li & Doermann's method, | per-
form the correspondenceseard only on edge pixels (pixels with high gradient). This
encouragesthe algorithm to match only on the text pixels and not on the badkground
pixels. Matching on edgesimplies that the text can move acrossbadkgrounds of di erent
colors without a ecting tracking reliabilit y.

MPEG encaers generally use a seard window of 32 pixels in ead direction
during motion compensation seardes[34]. This createsa large computation cost and
accourts for the slow performance of MPEG encaling. The tracker algorithm so far,
howewer, is able to take advantage of this wide seart window \for free." Unlike Li &
Doermann's algorithm, this algorithm makes no assumptions about the trajectory of
text, and therefore can handle a greater variety of text motion. Assuming a 32 pixel
seart window during MPEG encdling, a text event would have to move at a speed
greater than 32 pixels per frame in order for the tracking algorithm to fail. Text moving
this fast is very unlikely, asit would travel from one edgeof a 320 240 pixel video to
the other edgein a third of a second.

Unfortunately, successfuliseof motion vectorsis highly dependen on the MPEG
encader usedto encade the video. It is possible,for example, to encale a video using

only I-frames,1

or using a very small searty window during motion compensation. To
handle these cases, alsoinclude a simple tra jectory-based prediction similar to Li and
Doermann'salgorithm. A recordof the current tra jectory of the text regionis kept. After

performing the motion vector-basedtracking approad described above, text motion is

INote that MPEG videosare rarely encaded in this manner, becausebypassingmotion com-
pensation signi cantly increasesthe MPEG le size.
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separately predicted using the past trajectory. A least-square-errorseard is performed
around a neighborhood of the predicted location. The lowest error of this seart is
comparedto the lowest error found during the motion vector-basedseart. Of thesetwo

choices,the location with the lowest error is chosen.

3.3.4 Text entering or leaving the video

Text in video sometimesscrollson or o the screen,such that in someframesonly
a portion of the text evert is visible. | include special casesn the algorithm for handling
this type of motion. Text exiting the frame is the easiercase. The motion determination
stepsdiscussedabove are applied only on the portion of the text event that is visible. If
the computed motion indicates that the text evert is exiting the frame, the tracked text
box is clipped at the video frame boundary.

Text scrolling into the video is more di cult, becausethe spatial extent of the
text ewvent is not known. For example, in the operator-assistedindexing application
described above, the human may mark the visible portion of a text ewvent occurring
on the edgeof the frame. In subsequen frames, the tracker determinesthat the text
event is moving towards the certer of the frame. We would like the tracker to be able to
automatically resizethe tracking box asmore text enters the frame. This caseis handled
in the following way. The number of edgepixels occurring in the known text region is
counted and usedas a texture measure. When the tracker detectsthat the tracking box
is moving from the edgeof the frame towards the certer, the number of edgepixels in
the region near the edgeis also courted. If the density of edgesbetweenthe two regions

is comparable,the tracking box is expandedto accommalate the incoming text.
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3.3.5 Results

In this section, | present the results of running the algorithm on a variety of
video sequencesExcept for \p oster.mpg", all video sequencesave a spatial resolution
of 320 240 pixels and a frame rate of 30 frames per second. They were captured
using the ICE hardware JPEG compressionmodule on an SGI O2 and corverted to
MPEG-1 format using SGI's dmcorvert utilit y. \P oster.mpg" was captured at 15frames
per seconddirectly to MPEG-1 format using a hand-held camera connectedto a Sun
ULTRA-1 workstation equipped with a SunVideo hardware MPEG compressioncard.
Text regionswere marked by hand in the rst frame of eath sequenceand the algorithm
automatically tracked the regionsfor the remainder of the sequence.

Figure 3.3 shows tracking results on typical moving caption text events in a com-
mercial video sequence Note that the tracking corntin ued successfullythrough the sudden
change in badkground. Figure 3.4 shaws the algorithm tracking caption text scrolling
horizontally. Text is entering and exiting the frame. The algorithm doesa good job of
determining the bounding boxes on incoming text using the texture similarity method
described in Section 3.3.4, although the left boundary of the \HO WLIN' WOLF" text
event is somewhatloose. Figure 3.5illustrates tracker performanceon vertically-scrolling
text in an Arabic script. Note that tracking text in this script is challenging becausethe
text has fewer edgesthan text in Latin script.

Although the tracking algorithm was designedfor caption text, | have found that
it works for quasi-rigid scenetext ewvents as well. Figure 3.6 demonstratesthis. The

algorithm tracks successfullydespite the changing text sizedue to cameramotion. The
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algorithm's robustnessto erratic, fast motion is demonstrated in Figure 3.7. A tracker

assuminga simple linear trajectory model would fail in this case.

3.4 Shape-based metho d for trac king unconstrained caption text

The work presened in the last section focusedon tracking rigid text. Howewer,
caption text ewvents can change over time. Text can grow, shrink, or rotate. In this
section, | describe a method for tracking text that changesin theseways over time.

Instead of a stand-alone tracking algorithm, | proposetightly coupling the de-
tection and tracking modules. The detection and localization algorithm identi es text
instancesin ead frame. It is the responsibility of the tracker to determine which text
instances(if any) in adjacert framescorrespond to the sametext evert.

Two text instancesbelongto the sametext event if the content of the text is the
same,regardlessof changesin size,location, etc. Thereforeit follows that although some
characteristics of a text event may change over time, the basic shape of the characters
remains constart. This property can be exploited to determine whether two text boxes
correspond to the sametext evert.

| proposeanalyzing two consecutiwe framesat a time. First, the text box localiza-
tion algorithm describedin Section2.4 is applied to ead frame. Oriented text instances
are made horizontal by applying a simple rotation transformation. A text binarization
algorithm is next applied on ead text instance. My implemertation usesthe binariza-
tion algorithm preseried in Chapter 4, although another binarization algorithm could

be substituted.
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Fig. 3.5. Tracking algorithm applied to \t4.mpg" video sequencewith vertically-scrolling caption text.
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Fig. 3.6. Tracking algorithm applied to scenetext in \foxsports.mpg" video sequence.
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Fig. 3.7. Tracking algorithm applied to scenetext with erratic motion in \p oster.mpg" video sequence.
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Connectedcomponert analysisis performed on the binarized text to locate indi-

vidual characters. The contour of ead connectedcomponert is traversedand stored as
a chain code [12]. Each chain code is then parameterizedastwo 1-D functions (t) and

r(t), using the usual de nitions

® = tan y() Yo

X(t) Xp

q
(x(1)  xg)%+ (y(1) yo)?

r(t)

where (x(t);y(t)) is a point on the cortour, and (Xq;Yp) is some referencepoint for
the connectedcomponert. To smooth out noiseintroduced by imprecise binarization, a

low-pass Iter is then applied to both functions by corvolving with a Gaussian:

s(D) () G(1)

rs(t) r(t) G(t)

| found empirically that = 0:1 for the Gaussianfunction worked well.

The resulting smoothed functions ¢(t) and rg(t) represen a signature of the
shape of a given character. From this shape, feature points are extracted. | use the
points of maximum curvature (critical points) asthe features. Zhu & Chirlian's critical
point detection algorithm [58] was usedin my implemenation. The result is a set of
points P for ead localized text box, indicating the coordinates of eat feature point
with respect to the upper-left corner of the text box. The coordinates of P are then

normalized by text rectangle height and width to give valuesbetweenO and 1.
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To decidewhether two text boxes A and B in two adjacert framesbelongto the
sametext evert, the normalized feature point setsP, and Pg are examined. For eah
point p; in Pp, the point 0j in Pg having the smallest Euclidean distance from p; is
identi ed. The sum of the distancesover all i is calculated. Then the processis repeated

in the reversedirection. More formally:

D(A;B) = X min dist pi g+ X min dist Pi: G
i p !
wheredist (r; s) is the Euclidean distance betweenpoints r and s.

The resulting value D(A; B) for two text boxes A and B is a measure of the
di erence between the shapes of the two text instances. A low value indicates that
A and B likely contain the sametext, and hencebelong to the sametext event. A
high D (A; B) value indicates that they probably contain dierent text. Therefore, the
two text boxes are declaredto belongto the sametext ewvent if D(A; B) is belov some
threshold Tp .

Figures 3.8 and 3.9illustrate the processof determining critical point featuresand
comparing them betweenframes. In Figure 3.8, the imagesin (a) shav two consecutive
framesfrom a video sequencewith growing text. The proposedalgorithm is applied to
these frames to determine whether they contain the sametext evert. The frames are
binarized, as shown in (b). Note that due to imperfect binarization, there are a few
small connectedcomponerts that do not correspond to characters. In (c), the contour
of ead character has beenfound, and critical points have beenidenti ed. The diagram

in D shows the normalized feature points of both the rst frame (small, greensquares)
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overlaid on those of the secondframe (larger, blue squares). Vectors are drawn between
ead feature point in ead frame and its nearestneighbor in the other frame. It is obsened
that the lines betweenfeature points are, in general,relatively short, causinga low value
for the shape di erence D(A; B). This is expected becausethe text regionsin this case
correspond to the sametext evert. Most of the longer vectorsin the diagram are caused
by the non-character connected componerts introduced by the imperfect binarization
algorithm.

Figure 3.9is similar, but shows two adjacert framesthat have text boxesthat do
not correspond to the sametext event. The binarization and feature point extraction
steps are preseried in images(b) and (c), respectively. The normalized feature points
for both framesare preseried in image(d). We obsene qualitativ ely that the vectorsare
longer and appear more random than those in Figure 3.8(d). This causesthe D(A; B)
shape di erence metric to be high, indicating that the two text boxesare from di erent

text ewveris.

3.4.1 Results

Experimentation was performed to investigate the proposedmethod's accuracy
A dataset of 27 video sequencesgad corntaining one caption text event, was captured
from television commercials. The data was captured in the same manner described in
Section 2.5.1. There were a total of 1005framesin the dataset. A variety of growing,
shrinking, moving, and rotating text events were included. The text in ead frame
was localized manually by me, again using the VIPER ground-truth tool [7]. The 27

individual video sequencesvere combined into a single video sequenceby appending
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Fig. 3.8. Text feature point extraction and comparisonfor two consecutiwe video frames
containing the sametext evert.
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Fig. 3.9. Text feature point extraction and comparisonfor two consecutiwe video frames
containing dierent text everts.
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together randomly-selectedgroups of adjacert frames of random lengths from the video
sequences.The result was a single 1005frame video sequencewith 111text events.

The evaluation was carried out as follows. The algorithm was run on the 1005-
frame video sequence For ead pair of consecutiwe frames,the algorithm decidedwhether
the text in the two frames belongedto the sametext event or not. If the algorithm
correctly determined that the text belongedto the sametext event, a correct detect was
recorded. If the algorithm incorrectly concludedthat the two framesshareda text evert,
a missal detect was tallied. If the algorithm incorrectly concludedthat the two frames
had di erent text everts, a false alarm wasrecorded. Precision and recall statistics were
then computed using the de nitions presered in Section 2.5.2.

Figure 3.10 preserts the results of the experimentation as an ROC curve. Each
point on the curve shaws the precisionand recall achieved for one value of threshold T .
It is obsened from the ROC curve that very good precision and recall can be achieved.
The optimal threshold value dependson the needsof the application. For example,for an
application in which precisionand recall are equally important, a threshold of Tp = 0:55
is optimal, at which precisionand recall are both 97.5%. In a video indexing application,
howewer, it is likely that a high recall would be more important than a high precision.
This is becaussit is very important that all text events are entered at least onceinto the
index. While it is preferablethat ead event is erntered exactly once, duplicate entries
are not harmful. It is obsened from the ROC curve that it is possibleto obtain a recall
of 100%with a precision of 96%at Tp = 400.

Figure 3.11showns samplequalitativ e results of the combined text detection, local-

ization, and tracking steps. Images(a) through (h) show eight consecutive framesfrom
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a commercial featuring rotating, shrinking, and growing text, and the boxeslocalized by
our algorithm. The tracking algorithm concludedthat the text boxesin images(a), (b),
(c) and (d) correspond to the sametext evert. Similarly the algorithm determined that
images(f) through (h) belongto a separatetext evert. Image (e) confusedthe algorithm
somewhatdue to the overlapping text. The tracking algorithm concludedthat image (e)
belongedto its own, one-frametext evert.
Figure 3.12 demonstratesthe algorithm's e ectiv enesson text occurring against
complex, unconstrained badkgrounds. The tracking algorithm correctly identi ed the
text in image (a) asonetext evert, and the text occurring in images(b) through (f) as

another text evert.
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Fig. 3.11. Sampleresults of combined text detection and tracking on growing, shrinking, and rotating text.
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(d) (e) (f)

Fig. 3.12. Sample results of conbined text detection and tracking on growing text
against an unconstrained background.
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Chapter 4

Binarization of caption text

4.1 Intro duction

Binarization is the processof separating character strokes from the badkground.
That is, given a localizedregion of the color video frame known to cortain text, binariza-
tion producesa binary image of the text. The detection problem studied in Chapter 2
concernsclassifyingvideo frame regionsastext or badkground; the binarization problem
concernsclassifying individual pixels astext or badkground.

Binarization is necessaryto bridge the gap betweenlocalization and recognition.
The ewventual goal of a text extraction system is to recognizethe text appearing in
video. Optical character recognition (OCR) in the context of documernt imageshasbeen
extensiwvely studied [35]. If possible,we would like to apply these extensiwely-studied,
highly-re ned OCR algorithms to the text-in-video extraction problem. Howewer, most
recognition algorithms expect imagesresenbling documerts, with text strokesin black
ink against a white badkground. In cortrast, text occurring in video can be of any color
and can appear against complex badkgrounds. It is the responsibility of a binarization
algorithm to corvert the complicatedtext regionsoccurring in video framesto the simple

binary imagesrequired by OCR.
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4.2 Challenges of binarization of video frames

Binarization of text hasbeenstudied in the documen image analysisdomain. In
most applications, imagesof documerts are obtained by a grayscaleoptical scanner. The
original documert usually hastext in black ink appearing against a white badkground.
Noiseintroducedduring the scanningprocessmay causethe grayscaleimageto have more
than two gray levels. Howewer, the histogram of the grayscale image is still strongly
bimodal, with one peak corresponding to text pixels and the other corresponding to
badkground pixels. Thresholding (either locally or globally) can be performed at a well-
chosengray level in the valley of the two peaksto give accurate binarization results.
Many techniques have beenstudied for nding the ideal threshold (e.g. [21, 55, 44)).

Figure 4.1 illustrates this binarization processfor a documernt image. The his-
togram for the fragment of a documert imagein (a) is shown in (b). The strong peak at
about 225 correspondsto badkground pixels, while the weaker peaksaround 75 and 125
correspondsto text pixels. A threshold at 160 givesgood binarization results, as shavn
in image (c).

It may seemthat a similar technique can be applied to the binarization of caption
text. Like text in documerts, caption text in video is usually designedto be easily
readable by human viewers. Contrast with the badkground appears high. Text stroke
color usually appearsrelatively uniform. It seemsogical that simple thresholding could
be applicable to video frames.

Unfortunately, | have found that it usually is not. Upon closerexamination, it is

found that text stroke color actually varies widely, even when it appearsuniform to the
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Fig. 4.1. Histogram-basedthresholding of a document image. (a): A portion of a
documert image, (b): Its histogram, (c): Results of thresholding at gray level 160.

human eye. Becausethe badkground in a video frame is unconstrained, the samecolors
making up a text stroke may also occur in badkground objects. Figure 4.2 illustrates

these problems with the sample video frame shavn in (a). A localized text region is
shown in (b), and its histogram is presenred in (c). The histogram is bimodal with a
valley at about gray level 75. But thresholding at this gray level givesthe poor results
in (d). This is becausethe peaksof the histogram are due to variation in badground

color instead of the separation betweentext and non-text pixels. The binarization was
repeated at a higher threshold (gray level 130), but this also led to the disappointing

results in (e). Even the result of double thresholding, shavn in (f), failed to give good

results. In fact, any histogram-basedthresholding schemewill fail in this case,because
many pixels in the text strokessharethe samecolor as pixels in the background.

The challengesof text binarization in video are summarizedas follows:

Low resolution: Video framesaretypically captured at resolutionsof 320 240o0r

640 480pixels. In corntrast, documert imagesare typically digitized at resolutions
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(a) (b)
| |
(d)
| |
(e)
© . |
(c) (f)

Fig. 4.2.  Histogram-based thresholding gives poor results on unconstrained video
frames. (a): original video frame; (b): localized text region; (c): histogram of text
region; (d), (e): results of thresholding on gray levels 75 and 130, respectively; (f):
result of double thresholding at gray levels 100 and 175.
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of 300dots perinch or greater. For example,a lowercaseletter \e" in the document
imagein Figure 4.1(a) is about 21 pixels wide and 26 pixelstall. A lowercaseletter
\e" in the localizedvideo text box in Figure 4.2(b) is just 9 pixels wide and 8 pixels

tall.

Unkno wn text color. Text can have arbitrary color.

Unconstrained background: The badkground canhave colorssimilar to the text
color. The badkground may include streaksthat appear very similar to character

strokes.

Color bleeding: Lossyvideo compressionmay causecolorsto run together. This

blurs the edgesbetweentext strokesand badkground pixels.

Low contrast: Low bit-rate video compressioncan causelossof cortrast between

character strokes and the badground.

4.3 Review of prior binarization work

This section summarizessome of the past approacesto binarization of text in
imagesand video frames. | have classi ed these algorithms into four main approaces
to binarization: global thresholding, local thresholding, color clustering, and neural net-

works. The algorithms belongingto ead approac are now discussed.

4.3.1 Global thresholding

Global thresholding is a commonapproad. Algorithms in this categorydetermine

some grayscale threshold, and apply it to all pixels in a localized text region. The
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methods di er in the strategy for choosing the threshold, and in the preprocessingand

post-processingsteps.

Wu et al [57] binarize text found in web pageimagesby smoothing the grayscale
imageand then thresholding at the valleyson either end of the grayscalehistogram.
This allows for both light text and dark text to be binarized. The algorithm does
not determine whether the text is lighter or darker but instead generatestwo

outputs, onefor eat case.

LeBourgeois[22] assumeghat the dominant portion of the image histogram is the
badkground. The global threshold is found by an entropy-maximizing scheme[55].
A post-processingstage splits characters inadvertently connectedby the thresh-

olding. Characters are assumedto be of a xed font size.

Satoet al [45] apply lters designedto detect vertical, horizontal, and diagonal line
elemerts to localizedtext regionsin videosof newscasts.The union of the outputs
of all Iters is taken. Final binarization is performed by thresholding at a xed,

pre-setthreshold. It is assumedthat text is white.

Messeldi and Modena[33] presert a systemfor extracting text from book covers
with plain badgrounds. They usea simple global thresholding schemeat the tails

of eath side of the histogram. Their method considersbinarization of oriented text.

Agnihotri and Dimitro va [1] binarize caption text appearingin video. They process
only the red plane of an image, under the assumptionthat text of interest is white,

yellow, or black. Thresholding is performed at the average pixel value of the
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localized text region. The averageof the pixels on the border of the text regionis

also computed and assumedto approximate the badckground color.

Global thresholding has beenfound to be useful in someapplications. However,
as discussedin Section 4.2, global thresholding is not able to perform well on caption

text occurring in general-purpose,unconstrained video.

4.3.2 Local thresholding

Local thresholding passesa small window over a localizedtext region. A threshold
is computed basedon the pixels underneath the window. The pixel at the certer of the

window is then binarized basedon this threshold.

Ohya et al [38] usea combined detection/binarization stageto extract characters
from sceneimages. Text is assumedto be either black or white. Regionsof the
image with bimodal histogramsare assumedto betext regions. Local thresholding
is performed on these regions using the threshold selection algorithm described

in [39]. Shape and size heuristics are applied to Iter out non-text strokes.

Lee and Kankanhalli [23] also use a conmbined detection/binarization stage. After
quantizing the gray levels in the image, detection is performed by searding for
strokeswith uniform gray level. Each potential character is thresholded using the
gray level of its boundary. Post-processingremoves componerts with suspicious

aspect ratios, cortrast, and Il ratios.

Winger et al [54] usea modi ed form of Niblack's Multiple and Variable Thresh-

olding scheme [37], which employs variable thresholds basedon mean local pixel
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intensity. After calculating the variance, the modi ed sthemeusesa di erent mul-
tiplier and exponert. Our implementation of the method (by Ryan Keener) did
not produce good results. Subsequeh correspondencewith the author suggested
that good results are possibleonly when algorithm parametersare manually tuned

to appropriate valuesfor a given image.

Shim [48, 49| thresholds ead character stroke componert box individually by ana-
lyzing the grayscalehistogram. The threshold is selectedusing the iterative method

described in [44].

4.3.3 Color clustering

Most of the work discussedso far operatesonly on the luminance plane of images
and video frames. The algorithms in this section incorporate color information. It is
assumedhat the strokesin atext instancehad uniform color, although in the compressed
video stream color bleedingand quantization may have intro ducednoise. Color clustering

can then be applied to group together pixels of nearly the samecolor.

Garcia et al [9] quartizes and clusters color pixels in localized text regionsin the
HSV color space. It is assumedthat after clustering, all text pixels will correspond
to a single cluster. That cluster is identi ed by choosingthe cluster with the most

periodic vertical pro le.

Wong et al [56] continue to perform color clustering on localized text regionsuntil

two clusters are obtained. The two clusters are assumedto correspond with text
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pixels and badkground pixels. My experimertation with color clustering has indi-
cated that this assumption rarely holds due to complex badkgrounds that contain

colors similar to the text color.

Mariano et al [31] performs text region detection and binarization in one step.
Color clustering in the L*a*b* color space[42 is performed on individual scan
lines of a video frame. The patterns of clusters occurring in neighboring scanlines
are analyzedto nd regularly-spacedstreaks corresponding to text strokes. It is

assumedthat text is precisely horizontal.

Color clustering seemsto be a promising approadc. Unfortunately, the compu-
tation demandsof color clustering seemto be prohibitiv e on today's systems. An im-
plemenrtation of Mariano's algorithm obtained from the author and optimized for speed
by me required about 50 minutes to processa 1-secondvideo clip on an SGI Octane

workstation.

4.3.4 Neural Networks

Somework hasapplied neural networks to the problem of video text binarization.
For example, Shin et al. [50] perform detection and binarization in one step by applying
a support vector madiine (SVM) to classify ead pixel astext or non-text. The features
used as input to the SVM are the grayscale pixel valuesin a local neighborhood. A

hierarchical strategy is employed to handle text of various sizes.



84

4.3.5 No binarization

A nal approad is to skip the binarization step altogether. There has been
recert interest in OCR algorithms that operate directly on grayscale images without
binarization [35]. Proponerts of this systemsay that information is inherertly lost in the
binarization process.Lienhart [28, 30] describesa custom OCR packagefor recognizing
text in video frameswithout binarization. Unfortunately it doesnot work well when text
appearsagainst complexbadkgrounds. The accuracyof their grayscaleOCR padkagewas
unable to compete against the accuracy typical of commercial OCR padages. As the
state-of-the-art in grayscaleimage recognition improves, circumverting the binarization

stagemay be a viable option.

4.3.6 Remarks on the state-of-the-art

From this survey of recert approadesto the binarization of text in video, | obsene
the following. Most existing binarization approatesmake assumptionsthat are valid for
documernt imagesbut not for text appearing in general-purposevideo. Many approades
usesimple histogram thresholding methods which assumethat the badground is simple.
They create noisy binarizations when applied to text occurring on complex badkgrounds.
Somealgorithms work only for text of a certain color, etc. which sewerely limits their
usefulnessfor general-purposevideo.

In contrast, | obsene that most of thesetext binarization algorithms do not take
advantage of reasonableassumptionsabout text in video that canimprove performance.
It can be assumedthat text in video usually persistsfor more than one frame. Multiple

framescanbeintegrated to give better binarization results. Charactersin atext instance
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usually have uniform stroke width and color. Characters are evenly-spaced,aligned, and
have roughly uniform size. Reasonableupper and lower bounds exist on the size of text
characters possiblein a video frame.

In the following section, a binarization algorithm is presened that takesadvantage
of these additional assumptions. Unlik e previous work, it is designedto work well with
text appearing against complex badgrounds, and does not make a priori assumptions

about text color.

4.4 An algorithm for text binarization in video frames

An algorithm is now presered for binarization of text in video. Each step is
explainedin detail in the following sections. Figure 4.3 illustrates ead of the stepson a

samplevideo frame.

44,1 Temporal integration

There are seeral motivations for analyzing more than one frame during the bina-
rization process.Lossy video compressionmethods intro duce noise, but the noisevaries
from frame to frame. Simple temporal averaging can reduce such noise. Temporal in-
tegration is also helpful for badkground removal. Caption text often remains stationary
while the badkground behind it changesor moves. Or the text may move, causingthe
badkground behind the text to change. In either case,temporal averaging can be used
to smooth out the badkground.

| have deweloped a text tracking module (discussedin Chapter 3) to determine

the pixel-accurate location of a text event in ead frame. During temporal integration,
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(a)Video frame with localizedtext regions

| the |

(b) Temporal, resolution, and cortrast enhancemeh is applied on ead text box. The
inverseof ead text box is obtained. (x4.4.2)

|_the |

(c) Logical level thresholding is applied to both polarities of ead text box. (x4.4.3)

Fig. 4.3. Stepsof the binarization algorithm (continued on next page).
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(d) Connectedcomponerts are found. Heuristics are applied to remove
non-character-like componerts. (x4.4.4)

(e) Alignment and size of componerts are usedto choosethe polarity for ead text
region. (x4.4.5)

(f) Final segmemation result.

Figure 4.3 (contin ued)
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the region location in ead frame identi ed by the tracker are averaged. Note that this
assumedghat the text remainsrigid asit moves. If it doesnot remain rigid, the temporal
averaging procedurewill blur the text strokesin addition to the badkground. To prevent
this, the con dence of the text tracker is monitored. If the con dence falls below a
threshold, it is likely that the text is changing over time, and temporal averaging is
disabled for processingthe text instance.

Figure 4.4 shans an example of temporal averaging applied to a localized text
region. Image (a) shows a sampleframe from a sequenceof 60 frameshaving a stationary
text event appearing on a moving badkground. Images(b) and (c) show the localized
text region from two frames in the sequence. Note that the complex badkground is
quite prominent in both images. Image (d) shows the result after performing temporal
averaging on the text region over its 60-frame lifetime. The background complexity has
beenreduced,and the cortrast of the text againstthe badkground hasbeensubstartially

improved.

4.4.2 Resolution and contrast enhancemen t

A simple linear interpolation step is usedto double the resolution of the image.
Although this resolution enhancemen step cannot truly recreatelot resolution, | have
found that ewven simple linear interpolation improves the binarization results. More
sophisticated resolution enhancemeh schemescould be investigated. For example,there
has been some work in using motion information in video to improve resolution [52].

This approad could be applied to resolution enhancemenh of moving text.
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(b)

(©)

(a) (d)

Fig. 4.4. Temporal averaging reducesbadkground noise and improves cortrast. (a):
sample frame from a video sequenceyb) and (c): localizedtext regionin two frames of
the sequence(d): result of temporal averaging.

The cortrast betweenthe text and the badkground in a localizedtext region may
be quite low. To improve the cortrast, simple grayscale histogram stretching [12] is

performed.

4.4.3 Logical level thresholding

Somedocumert analysis work has consideredthe problem of binarizing text oc-
curring in noisy documert images. This problem sharessimilarities with our problem of
extracting text occurring against complex badkgrounds. Kamel and Zhao [20] evaluate
sewen binarization techniques on noisy bank ched images. Their novel method, logical
level thresholding, was shown to perform the best.

Logical level thresholding works as follows. A maximum stroke width W is as-
sumed. Then for ewvery pixel p in the grayscaleimage, the eight pixels P; at radius W

and anglesi7r with i = 0;1;:::;7 from p are considered. The local averageavg; of the
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(2W + 1) (2W + 1) neighborhood around eat P; is computed. Pixel p is declaredto be
text if for somej = 0;1,2;3, all of avg; , avgj +1) modg: aVY(j +4) modg: @Nd aVYj +5) mods
are greater than p by somethreshold T.

The algorithm's strength over other binarization techniquesis that it enforcesre-
strictions on uniformit y of stroke grayscalelevel, uniformity of stroke width, and bounds
on stroke width. This leadsto lessnoisein the binarized output.

| applied the algorithm to binarization of localizedtext regionsin video frames.
After the temporal averaging, resolution enhancemeh and contrast stretching steps
described above, the imageregionis converted to the L*a*b* color space[42]. This color
spacemimics the human visual system's perception of luminance and color, sothat text
that appearsto be high-cortrast by a human has numerically high cortrast in L*a*b*
space. Logical level thresholding is then applied on the luminance plane. Logical level
thresholding requires two parameters, the maximum stroke width W and the cortrast
threshold T. However | obsenedthat the algorithm's performanceis relatively insensitive
to the choice of parameters. In my implementation, | use T = 5, which is a good
compromise between allowing binarization of low-cortrast text and preverting noise.
My choice of stroke width W is proportional to the size of the input video frame. For a
frame resolution of 320 240, W = 10 works well. This doesnot limit the algorithm's
practical ability to binarize text of di erent sizes,becausea stroke width of 10 pixels
correspondsto text that nearly lls the video frame.

Logical level thresholding requires that the text stroke color is darker than the
badkground. In our application this is not an acceptableassumption becausewe wish to

extract text of any color. | tried to modify the logical level algorithm to allow strokes
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darker and lighter than the badkground by modifying the thresholding step. Unfortu-
nately, this relaxesthe restriction of stroke color consistencyand createsnoise. Instead,
| assumethat all text strokes within a localized text region are either lighter than or
darker than the badkground. Logical level thresholding is then applied to both the orig-
inal region and its inverseto producetwo independert binarized outputs. The choice of

correct polarity is delayed until step 4.4.5.

4.4.4 Character candidate Itering

Connectedcomponert analysisis performedon both output imagesof logical level
thresholding. Theseconnectedcomponerts are either characters or noise. Heuristics are

applied to presene characters while removing noise. These heuristics are:

Minim um character size: Componerts having height lessthan 5 pixels or area
lessthan 12 pixels are removed. Connected componerts this small are unlikely to
be characters. Even if they are characters, it would probably not be possiblefor
the OCR module to recognizethem. Note that a minimum character width is not

enforcedbecauselowercase\l" characters are often only one pixel wide.

Asp ect ratio bounds: A componert whoseaspect ratio }%‘é—tﬂ—t is very large or

very small is discarded. Thesecomponertis are often horizontal or vertical lines, or

other noise. We currently usethe range [0:1; 1.0] as acceptableaspect ratios.

4.45 Choice of binarization polarit y

As noted earlier, the logical level thresholding was applied on both the original

localized text region and its inverse. In one of the polarities, the text is lighter than the
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badkground; in the other, it is darker. Logical level thresholding applied to the dark-text
imagewill result in a binarization of the text. When applied to the light-text image, the
algorithm will attempt to binarize the badkground. The correct binarization will have
connectedcomponerts with spacing,size,and alignment consisten with text characters.
The incorrect binarization hasirregular componerts due to its attempt to binarize the
badkground.

My algorithm chooseghe correct binarization by analyzing se\eral statistics about
the connectedcomponerts in ead binarization polarity. A voting strategy is used. For
ead statistic, a vote is cast for the binarization that demonstratesthe more text-lik e
quality. The binarization with the most votesis chosenasthe nal binarization output.

The criteria usedin my implementation are:

Heigh t similarit y: Low standard deviation of connectedcomponert heights

Width similarit y: Low standard deviation of connectedcomponernt widths

Spacing consistency: Low standard deviation of horizontal distance between

adjacert componert certers

Horizon tal alignmen t: High number of pairs of componerts whose bottoms

shareroughly the samevertical scanline

Character-lik e aspect ratio: Low di erence betweenaveragecomponen aspect

ratio and 1.0

Clean spacing: Low number of pixels that occur within the bounding box of

more than one connectedcomponert
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Perio dicit y of vertical pro jection: The even spacingof text characters should
causethe vertical projection to be roughly periodic. The more periodic of the two

polarities is chosenusing the method preseried in [9]

Note that the number of votes for the winner is a con dence measure. In most
cases,| have obsened that the voting results in a clear majority, indicating a high
con dence that the correct binarization was chosen. A close vote indicates a lower
con dence. In thesecases,jt may be appropriate to passboth binarizations to the OCR
module, and choosethe one with the higher recognition con dence. A closevote may

alsoindicate that the localized region doesnot actually contain text.

45 Results

Figure 4.5 presents results of the binarization algorithm on localizedtext boxesin
sample video frames. For comparative purposes,the outputs from my implemertation
of the binarization method proposedby Agnihotri et al [1] are also preseried. This algo-
rithm was selectedfor comparisonbecauset is the most recert completetext extraction
systemfound in the literature designedfor general-purposevideo.

Column (a) in Figure 4.5 shows the localized text regions used as input to the
binarization algorithms. Column (b) presens the output of Agnihotri's binarization
method. Column (c) presens the output of my method. It is obsened that the bi-
narizations produced by my algorithm are signi cantly cleanerthan those produced by
Agnihotri. This is especially apparert in the middle row of imagesin the gure. This is

an example of how Agnihotri's method su ers from the inherent problems with global
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thresholding discussedin Section 4.2. Also, the algorithm's assumption that the badk-
ground color can be determined by averaging the pixels on the border of the localized
text region is violated in this case. The badkground color varies from very dark in the
lower-left corner of the text region, to bright in the upper-right corner.

Figure 4.6 showvs some examplesof the binarization algorithms applied on very
challenging video frames. These exampleshighlight someof the problems with my bi-
narization algorithm. The rst row of images shaws the output of the binarization
algorithms on Arabic caption text. The output of my algorithm, shown in column (c),
hasgiven reasonablebinarizations for three of the text boxes, but it hasfailed to binarize
the top text box accurately. The problem is that the algorithm has selectedthe incorrect
binarization polarity for this text box. This can be explained by reviewing the polarity
selectioncriteria described in Section4.4.5. Many of the criteria assumethat connected
componerts in the binarization correspond to text characters. This assumption is not
compatible with the Arabic script in this example, in which characters are connected
together. | concludethat my polarity selection criteria will give accurate results only
for scripts with separatedcharacters. Alternativ e selectioncriteria could be devisedto
handle other scripts. Agnihotri's algorithm doesnot su er from this restriction, and has
chosenthe correct polarities. However, their binarization is still quite noisy.

The secondrow of imagesin Figure 4.6 shavs the algorithms applied to very small
text. The averagecharacter sizeof this text is about 8 pixels high by 5 pixels wide, with
a sub-pixel stroke width. Agnihotri's algorithm generatesillegible binarization in this
case. My binarization algorithm's results are reasonable,but are still probably not clean

enoughto be accurately recognizedby a standard OCR module. Binarizing text of suc
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Fig. 4.5. Binarization results for sample video frames. (a): localized text regions; (b): output of binarization algorithm by

(o]
Agnihotri et al [1]; (c): output of my binarization algorithm. o1
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a small sizeis extremely challenging, and further researt will be necessaryto dewvelop
algorithms that can do it accurately.

The third row of imagesin Figure 4.6 preserns the results of binarization on text
with very low contrast with the badkground. Agnihotri's algorithm incorrectly chooses
the polarity of the text, and attempts to binarization the shadowvs behind the characters.
The incorrect selectionof polarity is due to their assumptionthat the badkground color
can be determined by averaging the pixels along the text region border. The cortrast
between badkground and foreground is so low that this assumption fails in this case.
My algorithm producesbetter results, but there is still much noisethat would probably
causerecognition to fail. Binarization of low-corntrast text is another areathat requires

further researd.



(@) (b) (c)

Fig. 4.6. Binarization results for very challenging video frames. (a): localizedtext regions;(b): output of binarization algorithm
by Agnihotri et al [1]; (c): output of my binarization algorithm. <Q
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Chapter 5

Summary and Conclusions

This thesishasdiscussedhe extraction of text events from general-purposevideo.
Text appearing in video is one feature that givesinsight into a video's content. Auto-
matic extraction of text would therefore be usefulin video indexing applications. | have
discussedthe seweral sub-problemsof text extraction, including detection, localization,
tracking, and binarization. Theseare signi cantly harder than the corresponding prob-
lemsin documert analysis.

The detection and localization problems involve nding tight bounding boxes
around any text in a given frame. | have presered two detection and localization
algorithms. Algorithm A detects and localizes horizontal text of constrained size and
horizontal orientation. Algorithm B detects non-horizontal text and text of arbitrary
size. Both run directly on MPEG-compressedvideo bit streams. These algorithms
have been evaluated on challenging datasets against other algorithms preseried in the
literature. It was found that Algorithm B gave better results than other algorithms.

The tracking problem involveslocating text regionsasthey move or changeover
time. | have presened two tracking algorithms. The rst works on rigid text exhibiting
simple, linear motion. It usesMPEG motion vectors for speed and robustness. | have
alsopreseried atracking algorithm that handlestext everts that grow, shrink, and rotate

over time. This algorithm was experimentally evaluated on a challenging dataset.
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The binarization problem involves corverting a color image of a text string into

a binary image suitable for OCR. This is di cult becausethe badkground may be quite
complex and have colors similar to the text color. | have proposeda binarization algo-

rithm that works with arbitrary text color and badkground complexity.

5.1 Opp ortunities for future work

As with any researt), many dead endsand blind alleys were encourtered during
the work described in this thesis. | believe that many of these unsuccessfulideas were
good in theory, but | was unable to solve the necessarydetails neededto implement
them. In this section, | describe some of the avernues of the text extraction problems
that remain unexplored.

My evaluation of state-of-the-art detection and localization algorithms showed
that no algorithm could achieve greater than 50% recall and precision simultaneously
on a challenging dataset of general-purposevideo. For application in a video indexing
system, algorithms with better accuracyare needed.Current algorithms are confusedby
imageregionshaving texture similar to text. Researt is neededto explore other features
that can robustly distinguish betweentext and non-text regions. One possibility is to
conmbine the outputs of multiple detection and localization algorithms in an intelligent
way to producea single, better output. Another possibility is to usean OCR module to
assistin text localization. The con dence of an OCR module could be usedto discard
image regionsthat cannot be recognized.

| exploredthe idea of analyzing the shapeswithin a candidatetext regionto verify

that it contains text. For example, the frequency of cornersand edgesof the shapesin
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a region could be usedto remove very simple shapes unlikely to be text characters.
Unfortunately, some characters in some scripts have very simple shapes. | abandoned
this idea becausel was unwilling to imposeconstraints on the script of the text to be
detected. Howewer | believe the idea of analyzing shapeswithin a candidate text region
desenesfurther investigation.

The binarization algorithm preseried in this thesis works well with large font
sizes. Howewer, there is a signi cant amount of text in video that has very small size,
sometimeswith stroke widths lessthan onepixel. Connectedcomponert labeling on such
small fonts often givesinaccurate results, causing my binarization algorithms to fail. |
explored the use of topographical analysis [24] to binarize small text. Unfortunately, |
found that such an approad was very susceptibleto noise. More resear® is neededinto
the accurate binarization of small text.

| have also tried to incorporate color featuresinto the binarization algorithm to
improve the results. It is desirableto considercolor during binarization becauseext may
have little cortrast with the badkground in the luminance image plane, but have high
contrast in a color plane. | tried using color clustering [16] to separatetext strokesfrom
the badckground. This approac worked well oncethe parametersof the color clustering
algorithm were manually adjusted for a giventext instance. Unfortunately, | wasunable
to nd a medanism for automatically setting theseparameters. More researd is needed
to nd away to incorporate color information into the binarization process.

In addition to growing, shrinking, and rotating text, other typesof \stylized" text
canbefound in general-purposevideo. For example,text canbreakinto pieces,or morph

betweenfonts, or undergo perspective distortion. The tracking algorithm preseried in
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this thesis works for someof these cases,but further researd is required to extend the
algorithm to handle more typesof stylized text.

The recognition problem hasnot beencoveredin this thesis. Seweral researtiers[57,
53, 13] have attempted recognition from imagesand video. Unfortunately, evenwith con-
straints on the video dataset and application-speci ¢ text dictionaries available a priori,
recognition accuracy has beenlow. More researt is neededto design OCR modules

gearedspeci cally for the unique challengesof text in video.
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