PART-BASED STATISTICAL MODELS FOR VISUAL
OBJECT CLASS RECOGNITION

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
David James Crandall

August 2008

(© 2008 David James Crandall
ALL RIGHTS RESERVED

PART-BASED STATISTICAL MODELS FOR VISUAL OBJECT CLASS
RECOGNITION
David James Crandall, Ph.D.

Cornell University 2008

Object class recognition is a central problem of computer vision with broad
potential application in image understanding, content-based retrieval, and surveil-
lance. Unlike traditional object recognition where the goal is to detect specific
objects, object class recognition aims to detect instances of broad object cate-
gories like cars, airplanes, bicycles, and people. This task is challenging because
members of an object class may vary widely in appearance; for example, the “car”
class includes many makes, models, styles and colors. In addition, class recognition
must cope with usual sources of visual variation including viewpoint, illumination,
and scale changes.

In this thesis we describe a family of part-based probabilistic models for object
class recognition. These models allow for efficient exact inference, unlike most
other approaches which rely on feature detection and approximating heuristics to
make inference tractable. The object models are hierarchical in nature, allowing
evidence at multiple image scales to be combined in making recognition decisions.
We show how the multiscale models can be augmented to incorporate local context
from the surrounding scene. We also present learning algorithms of various degrees
of supervision, including a weakly-supervised algorithm that requires only a set of
images known to contain the object. Experimental results demonstrate state-of-

the-art performance on challenging datasets of unconstrained consumer images.

BIOGRAPHICAL SKETCH

David Crandall received the M.S. and B.S. degrees in Computer Science and En-
gineering with highest honors from the Pennsylvania State University in 2001.
Before joining the Ph.D. program at Cornell University, he was a Senior Research

Scientist in the research labs of Eastman Kodak Company in Rochester, NY.

iii

To my parents, Ron and Sally.

v

ACKNOWLEDGEMENTS

Only a tiny fraction of the world’s population has the chance to pursue a
doctoral degree. I feel very lucky to have had this opportunity, and I am grateful
to all those who made it possible.

I would like to thank my advisor and champion, Dan Huttenlocher, for his
wholehearted support throughout the last five years. He has always been ready
with gentle guidance, honest feedback, and plenty of ideas. I thank Claire Cardie
for her suggestions on my research and on the drafts of this thesis. I am grateful
to my minor advisor, John Henderson, for enthusiastically helping to combine my
interests in computer science and Maya epigraphy. Pedro Felzenszwalb was like an
unofficial fourth committee member; most of the best ideas in this thesis originated
in one way or another from him.

Rangachar Kasturi, my master’s degree advisor at Penn State, introduced me
to computer vision in the first place. Without his kindness and encouragement I
would have never discovered the joy of research. I would like to thank my managers
and colleagues at Kodak for their support of my career and of my decision to return
to graduate school. Jiebo Luo, John Lacek, Bob Gray, and Ed Giorgianni stand
out in particular.

I am grateful to the faculty and staff of Cornell for the opportunity to study
at one of the world’s great universities. Every class I have taken here has been
amazing; for their commitment to teaching I thank Ken Birman, Claire Cardie,
Rebeca Franqui, John Henderson, Dan Huttenlocher, Dexter Kozen, Andrew My-
ers, Keshav Pingali, Mary Roldan, Jayavel Shanmugasundaram, and Eva Tardos
in particular.

The experiments discussed in this thesis required large amounts of compute

resources, typically involving dozens of machines and hundreds of gigabytes of data.

This would have all been impossible without the tireless efforts of the Computing
Facilities Support (CFS) group. In particular I thank Jodie Sprouse, who patiently
dealt with the overloaded processors, full disks, kernel panics, crashed file servers,
and all the other havoc that my programs inadvertently (yet frequently) created.

I am grateful for the financial support that I received throughout my gradu-
ate studies. This thesis is based upon work supported in part by the National
Science Foundation (NSF) under a Graduate Research Fellowship and grant IIS-
0629447, and by a grant from Eastman Kodak Company. Any opinions, findings,
and conclusions or recommendations expressed are those of the author and do not
necessarily reflect the views of the sponsoring institutions.

The last five years have not been without major hurdles and considerable angst;
I am grateful to everyone who helped me through. In particular I would like
to thank Dan Cosley, Jon Kleinberg, Xiangyang Lan, Yunpeng Li, Ritch Savin-
Williams, Casey Smith, and Sid Suri for many helpful discussions about computer
science, research, academia, and life. Saul Blanco was my mathematical tutor
whenever I had notation I couldn’t understand or a theorem that I couldn’t prove.
He was also a friend when I needed one most. Beth Howard cheerfully helped
me navigate through Cornell’s many administrative mazes. Shawna Crandall was
my link to the real world and the fun side of life; I don’t know where I would be
without her. Susan Crandall was my strength and inspiration more often than she
knows. One day, every child will be able to pursue an advanced degree — and it
will be because of her.

Finally I thank my parents, who mean more to me than words can possibly

express. I dedicate this thesis to you, my two heroes.

vi

TABLE OF CONTENTS

Biographical Sketcho o o oo
Dedication
Acknowledgements L
Table of Contents o
List of Tables
List of Figures. o
Introduction
1.1 Object category models L.
1.1.1 Deformable part-based object models
1.1.2 Statistical object models
1.1.3 Imference
1.1.4 Independence assumptions and graphical models
1.1.5 Inference: unified versus bottom-up
1.2 Learning L
1.3 Hierarchical scene context models
1.4 Experimental evaluations Lo oL
1.5 Outline of the thesis
Statistical part-based object models
2.1 Related work
2.1.1 Bag-of-partsmodels 0oL
2.1.2 Constellation models
2.1.3 Pictorial structures Lo
2.1.4 Patchwork of parts
2.1.5 Summary of related worko
22 kfans ...
2.2.1 Geometric Interpretation L.
2.2.2 Gaussian k-fanso oo L oL
2.2.3 Other graphical models
Efficient inference
3.1 Classification o
3.1.1 Efficient classification in Gaussian k-fans
3.2 Localization oL
3.2.1 Efficient localization in Gaussian k-fans
3.2.2 Anillustrated example,
3.2.3 Faster inference using branch-and-bound search
3.3 Sampling from the posterior 00000,

vii

18
19
19
20
21
22
23
24
26
27
30

Feature operators 50

4.1 Template-based part models 51
4.1.1 Efficient implementation for sparse label maps 54
4.1.2 Efficient Fourier transform-based method 55
4.1.3 Handling overlapping patches 56

4.2 Image gradient-based part models 58
4.2.1 Histograms of Oriented Gradients 29
4.2.2 Part-based object detection using HOG features 60

Learning the models 62

5.1 Weakly-supervised learning 64
5.1.1 Spatial model update equations 66
5.1.2 Appearance model update equation 68
5.1.3 Learning an initial model00 71

5.2 Partially-supervised learning 75

5.3 Fully-supervised learning 76

Hierarchical models of objects and scenes 78

6.1 Combined scene and object models 79

6.2 Scene appearance modelso Lo 82

6.3 Learning the combined models 83

Experimental results 85

7.1 Datasets e 86

7.2 Classification experiments 89
7.2.1 Experimental protocol Lo oL, 92
7.2.2 Scale-normalized classification 94
7.2.3 Scale invariant classification 96
7.2.4 Varying the number of parts 96
7.2.5 Multi-category classification 97
7.2.6 Running time oL oo 98
7.2.7 A caveat on the classification task 99

7.3 Part localization experiments 100

7.4 Object localization experiments 102
7.4.1 Experimental protocol Lo oL 104
742 Results. 106
7.4.3 Failuremodes 113

Summary and conclusions 122

Computing convolution and min-convolution 125

A1 Convolution 125
A.1.1 Frequency-based method 126
A.1.2 Separable kernels 127

viii

A.1.3 Gaussian kernel approximations .
A.2 Min-convolution

A.2.1 Connection with distance transform

A.2.2 Min-convolution in one dimension
A.2.3 Multidimensional min-convolution

ix

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

LIST OF TABLES

Summary of test imagesets.o
Classification performance on scale-normalized Caltech-4 images.

Classification performance on Caltech-4 with varying object scale. .
Classification performance by number of model parts..
Confusion matrices for multi-category classification on Caltech-4. .
Part localization results on Caltech-4.
Object-level localization results on the 2006 PASCAL VOC data.
Object-level localization results on the 2007 PASCAL VOC data.

96
97
98
99
103

. 108
. 109

1.1
1.2
1.3

14
2.1

3.1
3.2
3.3
3.4

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

LIST OF FIGURES

An example of the specific object recognition problem.
Some instances of the “airplane” object class.
Diagram of the part-based deformable models of Fischler and

Elschlager [36].
Result of feature detection on a sample image.

Some k-fans on six nodes.

A k-fan model for motorbikes, and a sample input image.
Ilustration of the efficient localization procedure for k-fan models.

Mlustration of cell partitioning
Geometric interpretation of the function ¢t;.

Graphical model of the combined scene and object models.

A random subset of images from the Caltech-4 dataset.
A random subset of images from the PASCAL 2006 VOC dataset. .
A random subset of images from the PASCAL 2007 VOC dataset. .
Some models learned by the weakly-supervised algorithm.
Sample part-level localization results.
Sample scene and object models learned under partial supervision.
Some correct bicycle localizations.
Some correct car localizations.
Some correct motorbike localizations..
Some sample false positives.
Some sample false negatives.
The 32 highest-probability airplane localizations.
The 32 highest-probability bicycle localizations.
The 32 highest-probability car localizations.
The 32 highest-probability cow localizations.
The 32 highest-probability motorbike localizations.
The 32 highest-probability television localizations.

xi

2

o}
11

CHAPTER 1
INTRODUCTION

Today’s computers perceive through simplistic input devices like keyboards and
mice, unable to sense the world around them as humans do. The possibilities of
wisually perceptive machines are particularly tantalizing: cars that avoid collisions,
photo albums that organize themselves, X-ray machines that detect cancer, search
engines that index Internet imagery, security guards that never tire. A key problem
in realizing these applications is recognizing the objects that appear in an image
or a video. The challenge is in the sheer number and diversity of objects in our
world: airplanes, televisions, bridges, dogs, mailboxes, colanders, vacuum cleaners

— just to name a few.

Object recognition has been studied for decades but much of that work has
focused on specific object detection [35, 54, 56, 63]. In this problem the goal
is to recognize a specific object instance, given a library of possible objects —
for example recognizing that the object in Figure 1.1(a) is the same toy plane
as in the lower left of Figure 1.1(b). This is a challenging problem because an
object’s appearance can vary dramatically across different images, due to factors
like illumination differences, viewpoint changes, object non-rigidity, occlusion from
other objects, complex and confusing backgrounds, image compression artifacts,
etc. However the specific object recognition task is simplified by the fact that the

algorithm is trying to match exactly the same object — the same toy plane.

A more general problem is object class recognition [14, 25, 26, 32, 33, 58], in
which the goal is to recognize instances of broad object categories such as cars,
bicycles, and airplanes. In addition to sources of variation like illumination and

viewpoint, an additional challenge is the large degree of variation in visual appear-

Figure 1.2: Some instances of the “airplane” object class.

ance across specific objects of the same class. For example the “airplane” class
encompasses a wide variety of aircraft including turboprops, jumbo jets, exper-
imental aircraft, fighter jets, biplanes, stealth bombers, and many others. Even

within each of these types of aircraft there is variation due to manufacturer, model,

age, color, etc. Some examples are shown in Figure 1.2.

In many applications of computer vision the ultimate goal is to understand
scenes that naturally occur in the world. In this context, object class recognition
is often a more relevant problem than specific object recognition. An autonomous
vehicle trying to navigate through city streets, for example, needs to detect cars of
any type in order to avoid collisions; the ability to detect only white 2002 Subaru
Foresters is of very little use. Thus we argue that object class recognition is an

important problem in machine perception and make it the focus of this thesis.

1.1 Object category models

Recognition of certain object categories has been studied extensively; in particular,
hundreds of methods have been proposed for detecting cars, people, and faces over
the years because of the importance of these particular object classes in surveillance
and biometrics applications [37, 80, 89]. Most of this work has relied on hand-
crafted models that were designed specifically for one particular object category.
In these approaches, vision researchers use their intuition about an object class in
order to design a set of features and a model.! While the performance achieved
by these detection methods can be quite good, the human cost of producing these
models is enormous: for every object class of interest a human expert must create
an object model from scratch. Thus crafting detection systems by hand is not a
realistic way of building models for the hundreds of thousands of object categories

that exist in our world.

In this thesis we take the alternative approach of developing techniques that are

! These approaches often involve some learning component to choose parameter values, however
the choice of model and features are typically so specific to one object class that satisfactory
parameters cannot be learned for other object classes.

general enough to be applicable to a wide range of object categories. These general
models have parameters that are learned for a particular object category; thus the
same generic model detects cars when loaded with the car-specific parameters
and detects bicycles when loaded with the bicycle parameters. The class-specific
parameters can be learned automatically from training images. This approach of
generic models with learnable parameters has become very popular within the class

recognition community over the last decade [26].

1.1.1 Deformable part-based object models

In choosing among the possible modeling strategies, we need a framework that
is general enough to handle a wide variety of object classes, with a parameter
space that is rich enough to capture the unique appearance characteristics of each
specific class, while also being flexible enough to tolerate the large degree of visual

variation typical of most object classes.

Part-based deformable modeling is one approach that has been successfully ap-
plied to the category recognition problem |2, 30, 32, 33]. These models arise from
the observation that many interesting objects consist of a set of individual parts
that are arranged in some characteristic geometry. Faces, for example, consist of
eyes, a nose, and a mouth, while airplanes consist of wings, a fuselage, and a tail.
While the appearance of an object class might vary dramatically across different
instances, the appearance of the small local parts is less variable. Part-based mod-
els exploit this observation by decomposing an object into its component parts and
then modeling the local appearance of each part individually. These models also

include some constraints on the relative spatial configuration of the parts.

Figure 1.3: Diagram of the part-based deformable models of Fischler and
Elschlager [36].

The concept of part-based deformable models dates back at least to 1973 in the
work of Fischler and Elschlager [36]. They imagined an appearance model for each
individual part, along with a spatial consistency model that intuitively consists of
springs connecting some of the parts, as depicted in Figure 1.3. Recently these
deformable part models have attracted renewed attention [2, 30, 32, 33]. These
approaches differ in the type and amount of spatial constraint they put on the
parts — that is, how many “springs” are used and how they are arranged. There
is no clear best choice for the form of the spatial model; in general, richer models
give a more faithful representation of the object at an increased computational

cost during inference and learning.

In this thesis we show that many of the seemingly disparate approaches to part-
based flexible models in the literature can be thought of as specific members of the
same family, which we call k-fans. Studying these different approaches within the
same framework will allow us to explicitly consider the trade-off between modeling

power and computational complexity.

1.1.2 Statistical object models

As with many problems in computer vision, object recognition involves dealing
with large degrees of uncertainty. State-of-the-art object models do not capture
all of the nuances of an object and so it is possible for non-objects to fit the
model very well, or for actual objects to fit the model poorly. At the same time,
photographs contain noise due to factors like image compression and imperfect
camera sensors; even an ideal camera would introduce ambiguity because it projects
a three-dimensional scene onto the two-dimensional plane of the imaging sensor.
Thus in object recognition uncertainty arises because an object model is not an
exact representation of an object’s visual appearance and a digital image is not an

exact representation of a real-world scene.

Probabilistic models (or statistical models) are a natural way of handling this
uncertainty, and Bayesian statistics in particular has become popular for address-
ing a wide range of computer vision problems [43, 49, 50, 78, 79, 88, 83]. In
a probabilistic model there are random variables that describe the state of the
world and a set of probability distributions that captures the correlations between
these variables. Some of the random variables are directly observable while other
variables are not. Bayesian statistics gives a probabilistic framework for inferring
values of (or distributions over) the unobservable (or hidden) variables given the
values of the observable variables and prior knowledge about the world. In the
specific case of object detection, we can think of an image as a random variable
that can be observed while an object’s location in the image is a hidden random

variable that cannot be directly observed.

More concretely, consider a part-based model with a set of n parts V' =

{v1,...,v,}. The location of an object in an image is given by a configuration

of its parts L = (Iy,...,1,), where [; is the location of the ith part.? We can view
the image I as a set of observable random variables encoding the color and inten-
sity at each pixel, while the configuration L of the object is not directly observable.
Using Bayes’ law, the probability that the object is in a particular configuration
given an image and a fixed set of model parameters M is,

Py(I|L) Py (L)
P (1) '

Here, Py (I|L) is the likelihood of observing image I given that a particular con-

PM(L|[) =

(1.1)

figuration of the object occurs in the scene, while Py, (L) and Py ([) are the prior
probability distributions on object configuration and images, respectively. Intu-
itively, Bayesian inference combines what is known about the random variables
ahead of time (the prior distribution) with the states of the observable variables
(through the likelihood distribution) to produce an estimate of the hidden variables

(the posterior distribution).3

1.1.3 Inference

Now we can formulate object recognition as a statistical inference problem on this
Bayesian framework. Depending on the application, there are two main tasks that
are often demanded of an object recognition system: classification and localiza-

tion.* Both of these can be formulated in terms of the statistical framework.

2We mean “location” in a very general way; the location space could have arbitrary dimension-
ality specifying the part’s position, orientation, scale, etc. In this thesis we focus on translation-
invariant recognition and thus the location space is simply position in the two-dimensional image,
l; = (x;,9;), but the statistical framework and the algorithms we discuss generalize to an arbitrary
number of dimensions.

3The prior over images Py/(I) is notoriously difficult to define [84]; the usual solution to
this problem is to assume a uniform prior (i.e. all images are equally likely), and we take that
approach here.

“We purposely avoid using the terms detection and recognition here, as their meanings vary
across the literature. For example, [19] uses detection to describe what we call localization, while
detection in [32] is used to refer to what we call classification.

The classification problem is to decide if the image has an instance of the object
(which we call hypothesis w;) or if no such instance exists (hypothesis wg). To
make this decision it is natural to consider the Bayes’ factor [46],

Prr(I|wy)

Par(Tlwn)’ (1.2)

and compare it to a threshold to make the hard “yes” or “no” classification decision.

In localization we seek to find the location of the object in an image. From a
statistical perspective the task is to find a configuration of the parts that maximizes

the posterior probability,
L* = arg max Py (L|T).

Depending on the application we may require multiple hypotheses of the object’s
location instead of a single estimate. In this case it is natural to sample multiple

configurations from the posterior distribution.

1.1.4 Independence assumptions and graphical models

The computational complexity of the inference tasks just described is highly de-
pendent on the form of the likelihood distribution Py,(/|L) and the spatial prior
Py(L). There are two important decisions made when designing a model in this
statistical framework that influence the computational cost: the choice of distri-

bution and the independence assumptions.

In choosing the type of distribution, there is a trade-off between practicality
and accuracy of the model. Non-parametric distributions allow for arbitrary types
of correlations to be captured accurately, but they are difficult to learn and repre-

sent due to the large number of parameters; thus parametric distributions such as

Gaussians are often more practical. In this thesis we present two versions of the
inference algorithms: one that makes no assumptions on the type of distribution,
and another that assumes Gaussian distributions but has a lower computational

cost.

The second important decision in designing a statistical model is the set of
independence assumptions that are made about the random variables. It is pos-
sible to assume that all of the random variables are directly correlated with one
another (i.e. no independence assumptions) but exact inference is intractable in
that case. Thus one must either settle for an approximate inference algorithm that
is computationally tractable but does not give an exact answer, or one must design
the model such that some of the random variables are conditionally independent

from one another.

For example, most approaches assume that the part appearances are indepen-
dent of one another; that is, it is assumed that Py (I|L) factors into a product of
functions each of which depends on the location of at most one part,

Py(I1L) = Z(I) || Pu(1]i), (13)

v, €V

where Z(I) is a term that does not depend on the location of any part.® On the
other hand independence assumptions about the variables in the prior distribution
Py (L) vary considerably across different approaches. These differences reflect
different trade-offs that can be made in order to balance computational tractability

with expressiveness of the model.

Probabilistic graphical models [51] provide a framework for representing and

reasoning about these independence assumptions. A graphical model is a graph

A notable exception is the Patchwork of Parts model of [2] which relaxes this assumption
in order to better handle overlapping parts. We discuss the POP model in more detail in Sec-
tion 4.1.3.

having a node for every random variable in the statistical model. An edge connects
two nodes p and ¢ if the model assumes that there is an explicit dependency be-
tween the two random variables. A graphical model is called directed or undirected
depending on the type of its edges; directed edges imply causality between vari-
ables while undirected edges only imply correlation. In our application to object
recognition we have no interest in modeling causal relationships, so the graphical
models considered in this thesis are undirected. Undirected graphical models are

also called Markov Random Fields [10].

Given a probabilistic graphical model, one can determine the independence
relationships of the random variables by examining the edges and paths in the
graph. Two random variables p and ¢ are independent if there is no path of edges
between the two corresponding nodes in the graph; that is, they are independent
if p and ¢ are unreachable from one another. Two variables are conditionally
independent given the values of a set of variables R if all paths in the graph
between p and ¢ involve a node in R. In other words, two variables are conditionally
independent if they are reachable in the original graph but unreachable if the set

of nodes R were to be removed [51].

1.1.5 Inference: unified versus bottom-up

The junction tree algorithm [51] provides a technique for exact inference on prob-
abilistic graphical models. The running time of the algorithm depends on the size
of the maximal cliques in the graphical model.® In particular the algorithm is

linear in the number of nodes but exponential in the size of the largest maximal

6A clique is a subset of the nodes of a graph such that there is an edge between all pairs of
nodes. A mazimal clique is a clique for which it is not possible to create a larger clique by adding
another node.

10

Figure 1.4: Result of feature detection (right) on a sample image (left).

clique. Thus there is a trade-off between the richness of the statistical model and
the computational complexity of inference. Richer models have more edges and

larger cliques but inference becomes exponentially harder.

One way this problem has been addressed in the context of object recognition
is to use rich models but an approximate inference algorithm [32, 33]. A common
approach is to first run a feature detector on the image to identify salient points
of interest such as corners. Then only object configurations that involve this small
subset of image points are considered during inference, thus tremendously reducing
the computational cost. This can be thought of as a bottom-up inference strategy,
in which good locations for the individual object parts are estimated individually
by finding local maxima of Py/(/|l;), and then some subset of those high-likelihood
parts is combined together to produce an object localization. The output of a

feature detector on a sample image is shown in Figure 1.4.

While such an approach makes inference on rich statistical models tractable,

a disadvantage is that it makes hard intermediate classification decisions that can

11

lead to poor recognition results. For example, consider an image in which one
part of the face, such as the right eye, is occluded by another object (such as a
hat). The feature detector might not fire anywhere near the right eye because the
local image data there is inconsistent with the expected appearance of an eye. The

bottom-up inference approach is likely to fail in this case.

A major difference between this thesis and most other work in object recogni-
tion is that we do not employ bottom-up inference or feature detection. Instead
we use a unified inference approach that postpones hard classification decisions
until the last stages of the algorithm, after evidence from the entire model has
been combined. Instead of using feature detectors, our approach instead uses fea-
ture operators that give a response for Py (I|l;) at every pixel in the image. Thus
we perform ezact inference; during localization we find a configuration that actu-
ally maximizes the posterior Py/(L|I), and during classification we compute the
exact value of P(I|w;). A benefit of this approach is that it naturally handles
occlusion. In the above case of an occluded eye, for example, our models would be
willing to hallucinate the eye in front of the hat if doing so maximized the posterior

probability.

However this exact inference is potentially more expensive depending on the
type of object model that is used. To reason about this trade-off between com-
putational cost and representational power, in this thesis we introduce a family of
models called k-fans that explicitly parameterizes the richness of spatial informa-
tion. We find that greater spatial constraint does increase detection performance,
but that exact inference on relatively simple spatial models performs as well or

better than the more complex models for which inference is not tractable.

12

1.2 Learning

Given the enormous number of object classes in the world, it is very appealing to
learn object models automatically with a minimal amount of human involvement.
An automatic learning algorithm is given a set of training images and some amount
of ground truth data, where the quantity and type of ground truth depends on the
degree of human supervision that is available. In this thesis we present several
learning algorithms for our object models, each requiring a different degree of
human supervision. We present a fully-supervised algorithm that requires hand-
labeled part locations, a partially-supervised algorithm that requires bounding
boxes around objects, and a weakly-supervised algorithm that requires nothing
except for a boolean value on each image indicating the presence or absence of the
object class. Thus the appropriate learning algorithm can be selected based on the

resources and requirements of a given application.

In terms of the statistical models framework that we presented above, to learn
an object model we wish to find a set of model parameters that maximizes the
probability of the training data,

T
M* = arg mﬂz/}xil:[l Py (L wy),
where {11, ..., I7} are images that contain the object of interest. A key difference
between our approach and others in the literature is that we do not use feature
detection during learning, and we do not assume that the part appearance models
are fixed a priori. Instead, we learn the part appearance and spatial portions of

the model stmultaneously.

We show that the combination of our weakly-supervised learning algorithm and

exact inference algorithms outperform other recent part-based spatial models, such

13

as the constellation models of |32, 33]. In fact, our weakly-supervised algorithm
gives consistently better models than the fully-supervised learning approach. Thus
our weakly-supervised learning algorithm not only requires less human effort but

also produces higher-quality models!

1.3 Hierarchical scene context models

It is well-known that the human visual system integrates contextual cues from
an entire scene [4] in performing high-level visual tasks. In object recognition,
these cues include constraints on the sizes and relative layout of objects in a scene.
Other cues arise from physical laws that make some scenes much more likely than
others. These constraints differ from object to object. For instance a car is almost
always sitting on some horizontal support surface, usually a road, and is often
accompanied by pedestrians and other vehicles; an airplane, on the other hand, is
often seen in the sky near clouds but almost never appears on the roads of a busy

city scene.

Despite its importance in human vision, most object recognition algorithms for
computers do not make use of scene-level contextual information, instead model-
ing only the appearance of an individual object. In this thesis we show how to
exploit scene context in order to improve recognition results, by building hierar-
chical models of objects and scenes. We integrate image information at multiple
scales into the same statistical framework that is used for object recognition. This
lets us perform unified inference on the entire combined scene and object model
simultaneously; that is, we delay making any hard classification decisions until af-

ter evidence from both object appearance and scene context have been combined.

14

The contextual models are learned automatically from training data.

1.4 Experimental evaluations

Given the simplifications and modeling error inherent in computer vision, no dis-
cussion of the object class recognition problem is complete without a thorough
experimental evaluation. For several years the object class recognition research
community has relied on evaluation datasets consisting of photos taken by vision
researchers, such as Caltech-4 [32]|, Caltech-101 [28], UIUC [70], MSR [17], and
Graz [58]. These datasets provided a convenient benchmark for testing object
detection algorithms on common datasets and are probably to a large degree re-
sponsible for the impressive progress on category recognition that has occurred
over the last five years. However these datasets were all collected by computer
vision researchers and suffer from biases that make them unrepresentative samples

of real-world images [62].

Recently more challenging datasets of consumer images have become available
as part of the PASCAL Visual Object Class (VOC) Challenge competitions [25, 26].
The VOC dataset consists of nearly 15,000 images downloaded from online photo-
sharing sites and is thus a large, realistic sample of unconstrained consumer images.
Objects in the dataset appear with unconstrained position, scale, viewpoint, illumi-
nation, occlusion, and orientation. In addition to the image data, the competition
supplies ground truth data and a common experimental protocol, so that results

from different papers on this dataset can be directly compared.

The focus of most work in the object category recognition literature has been

on the classification task. As an illustration, the 2006 PASCAL VOC challenge

15

had 23 entries in the classification competition but only 6 entries in the localization
competition [25]. Thus most papers present results only for the classification task
(e.g. [15, 21, 18, 32, 33, 58, 73, 86]). While classification is an important task,
localization is also highly important for many applications. In this thesis we present

thorough evaluations for both the classification and localization tasks.

We use the VOC data for testing our approach to category recognition because
we believe it to be the largest and most challenging image set that is publicly
available. We present recognition results on a dozen object categories and compare
our results with the teams that entered the competition. The results show that
our approach using weakly-supervised models and k-fan spatial models outperforms
other recent approaches using deformable part-based models, and gives comparable

results to the best object category recognition algorithms published to date.

1.5 Outline of the thesis

The remainder of the thesis is organized as follows. In Chapter 2 we present a
family of spatial models called k-fans and show how several recent approaches
to part-based object recognition can be explained in terms of this family. We
turn to the inference problem in Chapter 3, showing how to perform classification
and localization efficiently on k-fan models. The focus of these two chapters is
on the spatial portion of the object models and make no assumptions about the
appearance model (other than that the image likelihood factors as a product over
parts, as discussed above). In Chapter 4 we present several possible choices of
feature operators and show how to compute them efficiently. We discuss how

to learn our object models in Chapter 5, presenting several algorithms based on

16

the amount of human supervision that is available. In Chapter 6 we show how
contextual evidence from the scene can be included in the models, by building
hierarchies at multiple image scales. We present detailed experimental results in

Chapter 7, and finally conclude in Chapter 8.

17

CHAPTER 2
STATISTICAL PART-BASED OBJECT MODELS

Probabilistic graphical models are a powerful technique for representing sta-
tistical dependencies between random variables. These models have become a
popular approach to solving problems in computer vision over the last decade [43,
50, 49, 78, 79, 88, 83|. For object recognition, graphical models have been applied
in the context of part-based object models. The central idea behind these models
is that many objects consist of a small set of well-defined parts. For example, a
face consists of eyes, a nose, and a mouth; a bicycle consists of wheels, a seat, and
handlebars. Although the appearance of an object class may vary dramatically
across different images (due to pose and viewpoint variations as well as appear-
ance variation within the object class), the local appearance of an individual part
is usually much more consistent. Part-based object models exploit this observation
by modeling the local appearance of each part individually. The overall geometric
structure of the object is enforced by a separate spatial model that captures the

relative configuration of the parts.

This chapter discusses part-based models for object recognition using prob-
abilistic graphical models to capture inter-part spatial dependencies, using the
general statistical framework we presented in Section 1.1.2. This framework is
common to a number of recent object recognition approaches, as we show in a
literature survey in Section 2.1. We argue that many of these recent approaches
to graphical object models are in fact specific instances of a general family which

we call k-fans. We introduce this family of spatial models in Section 2.2.

We purposely do not discuss the part appearance models in this chapter because

the spatial models presented here and the inference techniques in Chapter 3 are

18

largely independent of them. We simply assume that the image likelihood factors
as in equation (1.3) and that there is some efficient way of computing Py (I|l;)
for each part v;. Thus we present the spatial models and inference algorithms
in a general way and delay covering the details of the appearance models until

Chapter 4.

2.1 Related work

The statistical framework presented in the last chapter has become popular for
part-based object recognition. The major distinguishing characteristic between
different approaches is the form of the prior and likelihood distributions that they

assume. In this section we review some of these recent approaches.

2.1.1 Bag-of-parts models

Bag-of-parts models [18, 73, 86| treat an object as an unstructured set of parts
with no geometric constraints. This approach is analogous to the bag-of-words
models in the information retrieval literature [69] which represent a document as
an unordered set of words. Bag-of-parts models assume that the part locations are
independent of one another (the naive Bayes assumption), so that in the context
of our framework, the prior factors as a product over parts,
Py(L) = [] Pu(L).
vV

The graphical model representing this factorization is an empty graph.

The detection and localization problems are particularly easy with this spatial

prior. For localization it is only necessary to maximize Py, (I|l;)Py(l;) indepen-

19

dently for each part v;. This can be done in O(nh) time for a model with n
parts and an image with A possible locations for each part. But while bag-of-parts
models yield computationally-tractable recognition and learning procedures, they
are unable to accurately represent multi-part objects since they capture no spatial
information. In practice these models have been found to work well for the classi-
fication task but poorly on localization, suggesting that spatial models are needed

to accurately estimate an object’s position and extent [26].

2.1.2 Constellation models

Another option is to make no independence assumptions on the locations of dif-
ferent parts. Constellation models [5, 6, 32, 33| take this approach by using a full

multivariate joint Gaussian model for the spatial distribution Py/(L),
Pu(L) = N(L|,2).

where X is an arbitrary covariance matrix. The corresponding graphical model in
this case is a complete graph, indicating that the position of every node is directly
correlated with the position of every other node. Such a graphical model without

any conditional independence restrictions is called saturated [51].

It is not known how to perform exact inference using this spatial prior effi-
ciently; the best known inference algorithm takes time exponential in the number
of parts. Since exact inference with constellation models is therefore intractable,
approaches in the literature instead compute an approximate maximization of the
posterior by using various heuristics. For example, feature detection is typically
used to constrain the set of possible configurations. The idea behind feature de-

tection is to identify a small number of promising interest points in the image, and

20

then only consider object configurations that involve those sparse feature points.

Various interest point detectors are popular in the literature including Kadir &

Brady [48|, KLT corners [81], and SIFT [54].

More formally, a feature detector can be thought of as identifying a small set
of high-likelihood locations of Py;(l;|I) for each part. Let S; denote the set of
interest points identified for part v;, where |S;| is usually less than a few hundred.
Then instead of maximizing the posterior over the complete configuration space
I™, where n is the number of parts in the model, the maximization is instead

performed over the small subset S; X Sy X ... X S,.

Thus feature detection is used as a heuristic to reduce the search space and
make inference tractable. Because of this heuristic the inference algorithm is not
guaranteed to produce a maximization or sum of the posterior that is optimal
or even provably approximate. Particularly problematic is the case when a part
of an actual object is not detected by the feature detector, because of occlusion
for example. To handle this case, the constellation model inference algorithm [32]
allows some parts of the model to not be matched anywhere in the image with some
small probability. Thus inference with feature detection becomes a combinatorial
matching problem: a subset of the parts of the object model are matched with a
subset of the detected feature points in the image, so as to find an approximate

maximization of the posterior.

2.1.3 Pictorial structures

In pictorial structures models [30] the graphical model for the spatial prior is a

tree. Efficient exact inference procedures are known in this case; in particular the

21

detection and localization problems can be solved in O(nh?) time using dynamic
programming. Moreover, in the case when the spatial models are Gaussian, these
problems can be solved exactly in O(nh log h) time and can be closely approximated
in O(nh) time — the same asymptotic time required by inference on bag-of-parts

models.

The family of spatial models and inference algorithms in this thesis were largely
inspired by the pictorial structures models. Our models can be thought of as a gen-
eralization of pictorial structures to allow for modeling richer geometric constraints

than can be expressed with a tree-structured graphical model.

2.1.4 Patchwork of parts

Patchwork of parts (POP) |2] takes a similar approach to the spatial prior as [30],
but takes a unique approach in modeling the image likelihood function. Most
other approaches assume that part appearances are independent, thus producing
a factorization of the image likelihood into a product over parts as in equation
(1.3). This assumption implies that parts do not overlap; if part overlap occurs,
the likelihood function effectively weights some pixels more than others because

the pixels involved in the overlap contribute multiple terms to the image likelihood.

POP attempts to correct for part overlap by averaging the contributions of
overlapping parts. There is no known efficient, exact inference algorithm for mod-
els with this overlap-aware likelihood function. To make inference tractable, the
simpler factored likelihood is first used to generate object localization hypotheses
and then those hypotheses are re-scored using the POP likelihood distribution. We

show how this idea can be applied to our models in Section 4.1.3.

22

2.1.5 Summary of related work

To summarize, approaches to part-based object recognition differ in the conditional
independence assumptions they make about the random variables in the statistical
model. In fact we can imagine a spectrum of spatial priors, arranged according to
the degree of independence assumptions that they make about the relative spatial
locations of the parts. At one end of the spectrum, the bag-of-parts models assume
that all parts are spatially independent, so that the location of a given part does
not constrain the location of any other part. Inference in this case is efficient
but the object model is weak. At the other end of the spectrum are models that
make no spatial independence assumptions, by for example representing the prior
as a full-rank multivariate joint Gaussian. This form of spatial prior can capture
complex spatial relationships between part locations, but it is not known how to
perform exact inference efficiently even for restricted cases. Tree-structured spatial
priors fall in between the two extremes, with efficient inference but relatively weak

models.

Given these different approaches, it is natural to ask what the best trade-off
between computation cost and representation power of the model is. In other
words, is it better to use exact inference with a weak model, or approximate
inference with a rich model? We set out to answer these questions by proposing
a family of spatial priors called k-fans that are explicitly parameterized according
to where they fall along the spectrum. The k-fan models are described in the next
section, and we present experimental results on object category detection using

these models in Chapter 7.

23

2.2 k-fans

Now we consider a class of spatial priors that lie between the two extremes of
the naive Bayes model and the fully-connected spatial model discussed in the last
section. The goal is to find models with recognition performance comparable to a

fully-connected model but for which there exist fast procedures for exact inference.

We first consider star graph-structured spatial models. A star graph on n
vertices has a central node that is connected to all of the other nodes, but none of
the non-central nodes are connected to one another. In other words a star graph
is a connected tree with depth one. Let G be a star graph with a set of edges
E on a set of vertices V. Denote the central node as v,. This star-structured
graphical model has a simple statistical interpretation: the location of each of the
non-central nodes is independent when conditioned on the location of v,. In other
words the prior distribution factors as a product over the non-central parts,

Py(L) = Py (L) T Pur(ills),
vER
where R is the set of non-central nodes, R = V — {v,}. We call v, the reference

part of this particular spatial prior.

The k-fans family generalizes the star-shaped graphical model to allow for a
set of reference parts instead of a single part. A k-fan is a graph with k reference
parts in which all of the reference parts are connected to one another, while each
of the non-reference parts is connected only to the reference parts. More formally,
let R C V be a set of k reference parts and R = V — R be the remaining parts of

the model. A k-fan is a simple graph G = (V, E) such that the set of edges is,

E=RxRURXR.

24

(@)
(@)
(@)
(@)
0-fan 1-fan 2-fan
3-fan 4-fan 5-fan

Figure 2.1: Some k-fans on six nodes. Reference nodes are shown in black.

A k-fan can also be seen as a collection of n — k cliques of size k + 1 connected
together along a common clique of size k. The k nodes in the common clique
are the reference parts R. Some examples of k-fans on six nodes are shown in

Figure 2.1.

The set of graphs produced as k grows from 0 to n — 1 intuitively interpolates
between the empty graph and the complete graph on n nodes.! Thus we can view
k-fans as a family of graphical models in which the degree of expressive power is

explicitly parameterized by k.

Without loss of generality assume that the set of reference parts is R =

{v1,...,v;}. The prior distribution for a k-fan model is then,
Py(L) = Py(lr) [] Pu(tilir). (2.1)
U¢EE
where [g denotes a particular configuration of the reference parts, lgp = (I1,...,).

!Note that on n nodes, an n — 1 fan and an n-fan are equivalent.

25

From this equation it is clear that the set of k-fan models is exactly the models
where the locations of the non-reference parts are conditionally independent given
the locations of the reference parts. Alternatively we can write the prior in terms

of marginal distributions,

[To.cr Pr(lislr)
Par(Lg)— D

Py (L) = (2.2)

The numerator here is a product over the prior probabilities for each of the n — k
maximal cliques in the graph (each consisting of all of the reference parts and one
non-reference part), and the denominator involves the prior distribution of just
the reference parts. This is a special form of the factorization for a triangulated
graph, which is the ratio of a product over maximal cliques and a product over

separators [12].

2.2.1 Geometric Interpretation

There is a natural connection between k-fan models and geometric alignment [45].
In a k-fan model the locations of the reference parts can be used to compute a
global transformation aligning a geometrical model and the image. This alignment
defines an ideal location for each non-reference part, and deviations from these ideal

locations can be measured by the conditional distributions Py (l;|lr) [14].

There is also a close connection between k-fan models and object recognition
using geometric invariants. Each maximal clique in a k-fan consists of exactly £+ 1
parts, and the location of these parts can be used to define shape constraints that
are invariant to certain geometric transformations (see [8]). The number of refer-

ence parts controls the type of geometric invariants that can be represented [14].
In a k-fan model the location of a non-reference part can be described in a

26

reference frame defined by the locations of the k reference parts. For example,
when k£ = 1 the location of a non-reference part can be described relative to the
location of the single reference part. The values I = [; — [, are invariant under
translations, so 1-fans can be used to define translation invariant models. For the
case of k = 2 the two reference parts can be used to define models that are invariant
to rigid motions and global scaling. When k£ = 3 we can use the three reference
parts to define an affine basis in the image plane; if the location of every non-
reference part is described in this basis we obtain affine invariant models. These
models are important because they capture arbitrary views of planar objects under

orthographic projection [14].

To enforce geometric invariants over k + 1 parts one could define Py, (l;|Ir) to
be one if the k£ + 1 locations satisfy a geometric constraint and zero otherwise. In
general our models capture soft geometric constraints, giving preference to con-
figurations that satisfy relationships on k + 1 features as much as possible. The
distribution over the reference part locations Py (lz) could be uniform in the case
where all geometric constrains are defined in terms of k£ + 1 parts. Non-uniform

distributions can be used to represent interesting classes of non-rigid objects [14].

2.2.2 Gaussian k-fans

The k-fan models we have presented so far assume that the locations of some parts
are conditionally independent from the location of other parts, but otherwise we
have made no assumptions on the actual form of the prior distributions. In this

section we describe an important specialization of k-fans in which the prior is

27

assumed to be a Gaussian,
Pu(L) = (LI, %).

This form of the spatial prior allows for more efficient inference, as we will show
in Chapter 3. Gaussians have often been used to model the spatial constraints

between parts in an object [2, 30, 32, 33].

Any conditional independence assumptions made by the k-fan appear as zero
entries in both the covariance matrix ¥ and inverse covariance matrix 7! [51].
That is, if parts v; and v; are conditionally independent, then X ;, 3;;, X jl,
and Zj_ll are all zero. The marginal distribution of any subset of variables in a
multivariate Gaussian is also Gaussian [51]; thus the marginal distribution of just
the reference parts Py (Lg) is Gaussian. Let ur and Xy denote the mean and
covariance of the locations of the reference parts. Now by the same property, the

marginal distribution of any subset of parts involving the reference set and a single

non-reference part v; is Gaussian with parameters,

Mg 2 YR
/~Li,R = y Ei,R = . (23)
IR YRri 2R

These parameters can be used to define the spatial prior in terms of equation (2.2).

We will use this for learning Gaussian k-fans, as we will see in Chapter 5.

Another property of multivariate Gaussians is that the conditional probability
of any subset of the variables is also Gaussian. In particular, the conditional
distribution on the location of a non-reference part given particular locations for

the reference parts, Pys(l;|lg), has mean and covariance [51],

wir(lr) = i+ SirSr (g — pr), (2.4)

Yir = S — SirSr S, (2.5)

28

Note that the covariance X; is independent of the location of the reference parts.
This is a non-trivial property that enables the use of convolutions to obtain faster
inference algorithms than is possible with non-Gaussian models, as we will show

in the next chapter.

In addition to their computational benefits, Gaussian spatial priors have a
particularly intuitive interpretation. A model prefers a certain configuration of the
model (its mean) at which the prior probability is maximum. The probability
drops off quickly as the configuration diverges from p, where the rate of drop-off
depends on the covariance Y. To continue with this intuition it is useful to consider

the negative logarithm of the prior,
—log Py(L) = —(L =)" (L — p) + Z,

where Z is a constant. We can think of this negative log-likelihood as the cost or
energy of a given configuration, and the goal of inference is to minimize this cost.
It is easy to see from the above equation that the cost of a given configuration
is related to the square of its distance from the mean configuration. This is very
similar to the ideal spring model in physics, where the potential energy of a mass
connected to a spring is proportional to the square of its displacement from the
equilibrium point [74]. Thus we can visualize a Gaussian spatial model as a set
of springs connecting some parts of the object, with u specifying the equilibrium
positions of the springs and X controlling the spring constants.? This is exactly
how Fischler and Elschlager imagined part-based deformable models in their 1973

paper, as reprinted in Figure 1.3 [36].

2The analogy is not perfect however: our Gaussians are multi-dimensional with arbitrary
covariance matrices, which are not easily visualized using one-dimensional springs.

29

2.2.3 Other graphical models

Although we focus on the k-fan family in this thesis, other families of graphical
models exist that may prove useful in object recognition. For example, we have
explored using general k-trees [65]; k-fans are a special class of k-trees. To see this,
notice that a k-fan can be constructed by starting with a k-clique corresponding to
the reference nodes and sequentially adding new nodes by connecting each of them
to the reference nodes and nothing else. In particular k-fans are decomposable
(also known as triangulated or chordal) graphs. An important difference between
k-fans and arbitrary k-trees, however, is that we do not know how to learn k-tree
models efficiently. While k-fan models can be learned in time polynomial in n and
exponential in k&, as we will show in Chapter 5, learning a k-tree is not tractable
because the minimum spanning k-tree problem is NP-hard even for small & (the

running time is exponential in n) [11].

30

CHAPTER 3
EFFICIENT INFERENCE

The last chapter introduced a family of statistical models for part-based object
recognition. The advantage of these k-fan models over others in the literature is
that the degree of spatial structure in the model can be explicitly controlled by
the parameter k. In this chapter we turn to the problem of performing efficient
inference on these models. We consider in turn the two basic recognition tasks,
classification and localization. In each case we show how to perform the task
in time linear in the number of parts and exponential in k for a general k-fan
model. We then show how the exponent of the computational complexity can
be reduced if the spatial prior is a Gaussian distribution. For localization we
also present an algorithm based on branch-and-bound search that significantly
decreases computation times in practice. All of the inference algorithms presented
here are exact in the sense that they provably compute the actual maximum or

sum of the posterior.
3.1 Classification

In classification the goal is to decide whether or not an image contains an instance
of a particular object category. As we described in Section 1.1.3, it is natural
when performing classification to compare the ratio of the likelihood that an object
appears in the image, Py/(I|w;), to the likelihood that it does not, Py (I|wg). To

compute Py/(I|w;) we must sum over all possible configurations of the parts,

v (I]we) ZPM)Py (I|L).

31

Using the likelihood function of equation (1.3) we see that,
Py (Iwy) = ZPM L)] PuIln).
vieV
where once again Z(I) is a term that does not depend on the part configuration.
How Z(I) and Py (I|wg) are computed depends on the type of appearance model
that is being used. We will describe several appearance models in Chapter 4; for
now we simply assume that these distributions exist and can be computed in linear

time.

Py(I|wy) can be computed by brute force in time O(h™), where h is the number
of possible locations for each part in the image; however we can do much better
using the conditional independence assumptions of a k-fan model. For a k-fan
model the sum over all configurations L can be factored using the conditional form
of the spatial prior in (2.1). As before let V' denote the set of parts, R be the set of
reference parts, and R = V — R be the set of non-reference parts. Now Py (I]w;)
can be written as,

v(Iw) = ZPM (tr) T[Pur(Tlts) T cvi(ln), (3.1)
viER vieR

where «;(lr) is defined for each non-reference part v,

ai(lr) =Y Par(lilig) Par(I|L). (3.2)
li

This factorization gives an O(nh**!) algorithm for computing Py, (I|w;). For any
given reference set configuration Lg, o;(Lg) can be computed in O(h) time; thus
each «;(-) can be computed for all possible configurations in O(h**!) time. The

summation in equation (3.1) can be computed using the precomputed values of «

in O(nh*) time.

32

3.1.1 Efficient classification in Gaussian k-fans

For the case of a Gaussian k-fan we can compute the likelihood ratio even faster

using convolutions. For each non-reference part v; we have,

Pu(lillr) = N (lilpir(lr), Zir),

a Gaussian distribution with mean and covariance given by equations (2.4) and
(2.5). Let o}(l;) be the convolution of P(/|l;) with a Gaussian kernel of covariance

>ijr- It 1s not hard to see that,

a;(lg) = Oé;(/ii\R(lR))-

So each «; can be computed by a convolution in the space of possible part locations.
This can be done in O(h* + hlogh) time (compared to O(h**!) time using brute
force) using the Fast Fourier Transform to perform the convolution, as discussed in
Appendix A. The overall running time of the classification computation for the case
of a Gaussian k-fan model is thus O(nh* +nhlogh). The log h dependency can be
removed by using linear time methods that approximate Gaussian convolutions, as
we discuss in Appendix A. Using that method a good approximation of Py ([|w)
can be computed in time O(nh*). Note that for a 1-fan model this is the same
asymptotic cost required if the locations of the parts were completely independent,
as in a O-fan. Thus by using convolutions and dynamic programming, we are able
to add spatial constraints to a bag-of-parts model at no additional asymptotic

computational cost.

33

3.2 Localization

In localization the goal is to find a configuration of the model having maximum
posterior likelihood in a particular image. The posterior distribution for a k-fan
model can be written in terms of the likelihood function (1.3) and the spatial prior

using the factorization from Baye’s law in equation (1.1),

Py(LIT) = Z(1) Py (L) [] Par(111)-

v, €V

A configuration L* that maximizes this posterior can be found in O(h") time by
brute force, but we can do better by using the conditional independence assump-
tions of the k-fan. By manipulating terms and using the conditional form of the

prior in equation (2.1) we have,

Pa(LIT) = Z(1) P () [T PacCtlt) TT Prrlilim) Pac2lls). - (33)

v ER v ER
Notice in equation (3.3) that the ideal location of any non-reference part de-
pends only on the configuration of the reference parts. In other words, if we knew

the optimal reference part configuration, then we could easily find the optimal

location [} of any non-reference part v; € R in O(h) time,

I} =arg max Pr (L) lg) P (1)L:). (3.4)
We define o (lg) to be the likelihood of non-reference part v; in its optimal con-
figuration given a particular reference part configuration,

al(lg) = max Pur(Li|lR) P (I)1;).

Using these o functions and equation (3.3) we can express the probability of an
optimal configuration of all of the parts given a particular reference part configu-

ration [as,

B*(lr) = Z(I)Prn(lr) H Py (1)) H o; (Ir). (3.5)

v;ER v;ER

34

These functions give an algorithm that computes an optimal configuration in
time polynomial in the number of parts n and the number of locations h for each
part but exponential in k. For each part, o (-) can be computed by brute force in
O(h¥*1) time, while 3* can be computed in O(nh*) time. An optimal configuration
for the reference parts [}, is one maximizing 3*. Finally, we can use equation (3.4)
to find the best position for each non-reference part. This takes O(h) time for each

non-reference part. The overall running time of this procedure is O(nh**+1).

An inference algorithm with a running time of O(nh**!) is computationally
tractable only for very small k. Fortunately the running time can be reduced to
O(nh*) when the spatial prior is Gaussian, as we describe in the next section. In
Section 3.2.3 we show how the running time can be further reduced in practice

using branch-and-bound search.

3.2.1 Efficient localization in Gaussian k-fans

We can speed up localization if the spatial prior is a Gaussian distribution. The
technique for doing this is similar to that used for the classification problem in
Section 3.1, but it uses minimum convolutions instead of regular convolutions.

The min-convolution of two sampled functions f and ¢ is defined as,

(f®g)p) = mqinf(Q) +9(p—q).

Efficient algorithms exist for computing the min-convolution, as we will describe

in Appendix A.

To apply the min-convolution to this problem it is necessary to perform the

computations on the logarithms of probabilities instead of on the probabilities

35

themselves. In practice it is also advantageous to use logarithms because they avoid
the numerical problems that result from trying to store very small probabilities
in a digital computer.! In particular we work with the negative logarithms of
probabilities because they have a natural intuitive interpretation as energies or
costs. Thus when performing localization with negative log-likelihoods the goal
is to find a configuration that minimizes the cost of placing the model instead of

maximizing the probability.

We can think of a “cost distribution” C(-) associated with any probability distri-
bution P(-). The cost distribution corresponding to probability distribution P(x)
is,

C(x) = —log P(x),
and likewise we denote the cost distribution corresponding to a conditional prob-

ability distribution P(zx|y) as,
C(xly) = —log P(zly).
Rewriting equation (3.3) in terms of costs, we have

Cu(L|T) = Coy(1g) —log Z(I) + Y Cu(Ill) + Y —logaj(lg),

v, ER v;ER

where

In the case of a Gaussian k-fan, the distribution of non-reference part v; conditioned

on the reference configuration, Py (l;|lr), is Gaussian and hence the cost function

LA back-of-the-envelope calculation is useful to illustrate how small the probabilities in our
statistical framework can become. Consider computing the prior probability of a one-megapixel
image, assuming a uniform prior. In a typical digital image each pixel has a grayscale intensity
value in the range [0,255]. Thus there are 256000000 ~ 12400000 poggible images, and the prior
probability of any given image is about 1072400000 " This is a fantastically small number; for
comparison, consider an experiment in which we draw atoms at random with replacement from
the known universe. 1072400000 jg roughly the probability of drawing the same atom 30,000 times
in a row! [40]

36

Cr(li|lr) is a Mahalanobis distance,
1
Cu(lillr) = §(li — Ni\R)TEi_ul{(li — pilr) + 21,

where Z; is a constant. When written in this form it is clear that equation (3.6)
can be computed using a min-convolution. In particular, let D;(l;) be the min-

convolution of Cy/(I|l;) and g(l;), where
Lo \r

9(1) = ST h0) + 21

Then the logarithm of o can be easily computed as,

—log o} (Ir) = Di(pir(lr))-

Note that using min-convolution to perform this computation is possible because
Yjr can be written as a function of only the marginal covariances, as in equa-
tion (2.5). The computation would not be possible if X,z were a function of /g,

for example.

Localization is then completed by computing the negative logarithm of equa-

tion (3.5), which is the final cost for each configuration of the reference parts,

F(lgr) = —logB*(Ir)
= + > Cull)+ > —loga;(lp) —log Z(I), (3.7)
v, ER vleR

(3.8)

and then finding the minimizing position of each of the non-reference parts using
equation (3.4). Performing the min-convolutions takes time O(h) using the linear
time algorithm described in Appendix A, so computing F'(lg) for any given value
of I takes time O(h). Since F(lg) must be computed for all of the possible h*
configurations of the reference parts, the total running time for localization with

a Gaussian k-fan is O(nh*).

37

MotorcycleWorld

Figure 3.1: A k-fan model for motorbikes, and a sample input image. The
model is a six-part 1-fan with the back wheel as the reference part.

3.2.2 An illustrated example

We have shown mathematically how to perform exact inference with Gaussian k-
fan models efficiently without relying on feature detection. It turns out that the
inference algorithms are also intuitive and straightforward to implement. In this
section we illustrate how the efficient localization algorithm works with a running

example showing each step of the process.

Figure 3.1(a) shows a diagram of a six-part 1-fan model for the “motorbike”
object class. For visualization purposes the models are drawn as follows: the parts
are positioned in their mean locations p; r with respect to the reference part, which
is the back wheel, and the conditional covariance XJ;r of each non-reference part
location is represented as an ellipse plotted at two standard deviations from the
mean. The part appearance models are simple edge-based templates, which will
be described in more detail in Chapter 4. We will describe how the localization
procedure works using this motorbike model on the sample input image shown in

Figure 3.1(b). There are three steps to the procedure, as we now describe.

38

Step 1: Apply part appearance operators

The first step in performing localization is to compute C(I|l;) for each part at
each possible pixel location. This produces a cost map for each part, indicating
how well the part appearance model matches the local image information at each
image location. One can visualize this step as template correlation with a template
for each part (although the actual operation depends on the specific appearance

model used, as we describe in Chapter 4).

Figure 3.2(a) shows the cost maps that were generated by the motorbike model
on the sample input image, with lower-cost locations represented by brighter inten-
sities. To perform O-fan inference we would simply choose the highest-likelihood
location for each part based on these maps alone. The individual quality maps are
quite noisy; for example, the front and back wheel are very similar in appearance
so there are peaks at the location of the front wheel in the back wheel cost map and
vice-versa. This illustrates an advantage of using a spatial model and our unified
inference framework: weak evidence from each part is combined together in order

to produce better overall localization decisions.

Step 2: Perform min-convolutions

The next step takes into account the spatial dependencies in the model as encoded
by the Gaussian prior on each non-reference part with respect to the reference
parts. This is done by computing the min-convolution of the quality map for each

non-reference part, producing a new quality map D;((;),

(= y)"E a0~)
- |

Yy
We show how to compute this min-convolution efficiently in Appendix A.

39

Figure 3.2: Illustration of the efficient localization procedure for k-fan models:
(a) quality maps indicating the cost of placing each part at each location, with
brighter intensity indicating better locations, (b) result of min-convolution
applied to the quality maps of the non-reference parts, (c) final quality map
showing the cost of placing the reference part at each location, and (d) final
result, showing the localized part locations.

40

The result of this step in the running example is shown in Figure 3.2(b). The
transformation effectively “spreads” the cost maps produced by the appearance
models, allowing for flexibility in the relative part locations. Intuitively the result-
ing cost D;(l;) is low near locations where the original part cost was low, with the
size and shape of the spreading operation controlled by the conditional covariance

parameter X g.

Step 3: Combine evidence

The last step in the localization procedure combines the min-convolved cost maps
of all of the non-reference parts with the cost maps of the reference parts. The
result is a cost for every configuration of the reference parts that takes into account
the placement of the whole model. This cost is exactly F'(Ig) in equation (3.7),

the negative logarithm of 5*(lg) from equation (3.5).

The combining evidence step is particularly simple for the case of a translation-
invariant 1-fan model. In this case the reference set is a single part, and the prior on
reference set configuration is uniform (since translation invariance implies that all
object positions are equally likely). Thus the cost distribution C);(Ig) is constant
and can be ignored. To compute F(lg), we shift the quality maps D;(l;) by the
mean position ji;r of part 7 relative to the reference part and sum all of these shifted
quality maps together with the quality map for the reference part Cy;(I|lg). The
resulting cost map for the sample image is shown in Figure 3.2(c). An optimal
location [g* for the reference part (the back wheel) is determined by picking a
minimum-cost location in this map. Then, the locations of the other parts can
be found by choosing [} for each individual non-reference part so as to minimize

Cr(Li|15) + Car(1]1;). The final localization results for the sample image are shown

41

in Figure 3.2(d).

For a 1-fan F(lg) is a two-dimensional cost map but for general k it is a 2k
dimensional map. To compute F'(lg) we iterate over all possible reference locations
and evaluate the sum above. In the next section, we introduce a branch and bound
technique that significantly reduces computation cost by eliminating the need to

explicitly consider all possible reference set configurations.

3.2.3 Faster inference using branch-and-bound search

The localization procedure described in Section 3.2.2 can be thought of as a search
over all possible configurations of the reference parts in order to maximize the like-
lihood in equation (3.7). Algorithmic techniques like min-convolution and dynamic
programming help us to compute the marginal probability of any given reference
part configuration efficiently, but performing localization still requires a search over
a space of configurations that grows exponentially with k. Thus localization using
the procedure from the last section is tractable only when £ is very small (typically

less than or equal to 2).

For most models and images, however, the majority of the reference part con-
figuration space has very low probability. Branch-and-bound search [68] is a well-
known general optimization technique that works well in such situations where
the optimal solution is much better than the majority of the solution space. The
idea is to discard large portions of the solution space en masse that are provably
not optimal, assuming that bounds on regions of the configuration space can be

computed efficiently.
In this section we present a localization technique based on branch-and-bound

42

search. Although the worst-case running time is the same as that of the algorithm
presented in the last section, in practice the technique is several orders of magnitude
faster for most models and images. We will first give an overview of the branch-
and-bound-based algorithm in the next section. We then prove that the algorithm
always converges to the optimal configuration of any model in any image. We
discuss efficient bounding functions in Section 3.2.3 and turn to implementation

issues in Section 3.2.3.

A branch-and-bound algorithm

Consider the localization problem on a p x ¢ pixel image with a k-fan model. The
space of possible reference part configurations is Z = ([1,p] x [1,q])*, where a
given configuration [p of the reference parts is represented by a single point in
Z. The goal of the search is to find [},, a configuration that maximizes F(lx) in
equation (3.7). Once [}, is found, the optimal configuration of the other parts can

be found in O(nh) time using equation (3.4).

We define a cell to be a subset of the search space Z. Suppose that we have a
bounding function B(FE) that for any cell E C I satisfies two conditions,
condition (1): B(E) < F(lg) for all I € E,
condition (ii): B(E) = F(lg) if £ = Ig.
That is, B(FE) is a lower bound on the cost of any part configuration within the
cell E, with the additional property that if F is a single point, B(FE) is exactly the

cost of that reference configuration. A computationally-efficient bounding function

that satisfies these properties is presented in the next section.
We now describe our branch and bound procedure for efficient k-fan localiza-

43

tion. The procedure uses a priority queue that stores cells. We begin by adding
7 with priority B(Z) to the empty queue. Then, the lowest-cost cell F is removed
from the queue and partitioned into several strictly smaller cells F,...E,. Each of
these cells E; is added to the queue, along with the corresponding priority B(E;).
This process continues until the cell removed from the queue is a single point.
We now prove that the algorithm always finds such a point, and that the point

corresponds to an optimal reference part configuration.

Theorem 3.2.1 For any image I and model M, the above algorithm always con-

verges to an optimal reference part configuration.

Proof We first show that the procedure always terminates. In each iteration,
either a cell corresponding to a single point is removed from the queue, in which
case the procedure completes, or a cell is replaced with a finite number of strictly
smaller cells. The image [is finite, so eventually a single point must be the

highest-priority item in the queue.

We now show that the the reference part configuration removed from the queue
before termination is optimal. Denote this last point removed from the queue as
. The priority queue guarantees that for any cell £’ still in the queue, B(lg) <
B(E"). Further, our bounding function guarantees that for any point I}, € E’,
B(E'") < F(l%y), so we have that F(lg) < F(l%;). Now since any cell removed from
the queue by the algorithm is always replaced by a set of cells whose union is
the original cell, the union of all cells still in the priority queue at the end of the
algorithm is Z — {Iz}. Thus there is no lower-cost configuration in Z than [z, and

IR is optimal. |

The algorithm just described finds a single maximum-likelihood configuration

44

of the reference parts. For some applications it is useful to find multiple high-
likelihood configurations. This can be accomplished using the above procedure by
continuing the branch-and-bound algorithm after [}, has been found. Whenever
the cell removed from the priority queue is a single point, the algorithm records it
as the next most probable reference part configuration. It removes the next entry
from the priority queue and continues the recursive descent. This process can be

repeated until an arbitrary number of configurations has been produced.

A bounding function

Having described the general algorithm we now turn to producing a bounding
function that satisfies conditions (i) and (ii) from the last section. The efficiency
of the branch-and-bound optimization algorithm depends critically on the choice
of bounding function. If the bound is too loose, the algorithm must consider many
sub-optimal cells. On the other hand if the bounding function is slow to compute,
the algorithm might be no faster than a brute-force search. In this section we
describe a bounding function that we have found is tight enough to work well in

practice.
Suppose that we had a bounding function B; such that for any cell F,

condition (i1): B;(E) < D;(ur(lr)) for all Iz € £, and

condition (iv): Bi(E) = Di(ur(lr)) if E = Ig.

That is, B;(E) bounds the min-convolved likelihood map of part i over its possible
mean locations corresponding to the possible reference configurations in £. Then

using the fact that a lower bound on a summation is the sum of lower bounds on

45

the individual terms, a bound on the cost F'(Ig) in equation (3.7) is,
B(E) = min Cyi(lg) + > min Car(1]L) + Z Bi(E) —log Z(I). (3.9)
v, ER v, ER
It is easy to verify that both of conditions (i) and (ii) from the last section are met

by this function.

All that remains is a bound B; on the min-convolved likelihood maps that
satisfies conditions (iii) and (iv) above. A simple bound satisfying these conditions
is,

B;(E) = min D;(p), (3.10)

pet;(E)

where ¢;(E) computes the set of possible mean locations for part ¢ given I € F,
t;(E) = {nyr(lr) | lr € E}. (3.11)

It is useful to visualize ¢;(E) geometrically. From the form of ji;r(lr) given in
equation (2.4), one observes that t;(E) is an affine transformation of the set E

followed by a projection onto the two-dimensional image coordinate space.

Implementation issues

In order for the branch and bound procedure to be computationally efficient, the
bound function B must be easy to compute. Fortunately, the minimizations in
equations (3.9) and (3.10) can be computed ahead of time, so that calculating the
bound on a given cell involves only adding together a few pre-computed values.
The key is to perform the cell partitioning step in such a way that only a few
sizes of cells are used. The minimizations can then be pre-computed for all of
the possible cell sizes using a min filter in time linear in the dimensions of the

image [38|.

46

Figure 3.3: Illustration of cell partitioning. The cells are hypercubes of ar-
bitrary dimensionality, but for visualization purposes three-dimensional cubes
are shown.

For convenience we begin by padding the input image out to an m x m pixel
square where m is a power of two. This allows us to restrict the cells to be
hypercubes with side lengths that are also powers of two. During the branch and
bound procedure, each cell is partitioned into (2k)? hypercubes, each having one-
half the edge length of the original, as illustrated in Figure 3.3. The total number
of different cell sizes used by this approach is only O(logm). The minimizations
in equation (3.9) are then only over a small set of squares with dimensions that

are powers of two.

When FE is a hypercube, the affine projection function ¢;(£) in equation (3.11)
produces a two-dimensional polytope (because as noted above, t; is an affine trans-
form followed by a projection into two-dimensional space). Thus each minimization
in equation (3.10) is over one of a set of O(logm) polytopes, since the size and shape
of the projected polytope depends only on the size of the hypercube E. To use a
min filter to carry out these maximizations, it is convenient if ¢;(£) produces axis-
oriented rectangles. We accomplish this by having ¢;(F) compute a rectangular
superset of the true set of possible mean locations, at the expense of weakening the

bound B;(E). To generate such a rectangle we compute the ideal location fi;z(lr)

47

,,,,,,,,,,,,,,,,,,

Figure 3.4: Geometric interpretation of the function ¢;. On a cell E, ¢;(F)
performs an affine transformation, a projection onto 2-D image space, and then
computes a smallest enclosing rectangle.

for each vertex of £ and then find the smallest axis-oriented rectangle enclosing
these points. Any point in ¢;(F) is guaranteed to also be in this rectangle, because
the affine projection of a polytope is the convex hull of the projection of its vertices,
and an enclosing rectangle is a superset of this convex hull [90]. The process of
computing this enclosing rectangle is illustrated geometrically in Figure 3.4. Max-
imizing or minimizing over rectangular subsets of distance-transformed likelihood

maps has been called the boz distance transform [66].

3.3 Sampling from the posterior

In Section 3.2 we showed how to find an exact maximum a posteriori configuration
for a k-fan model in a given image. However many applications are interested
in having multiple hypotheses for the location of the object — when multiple
instances of the same object class appear in an image, for example. Even in
images where there is only one object, the highest-likelihood model configuration

may not correspond to the actual object because of modeling error. In these cases

48

it is useful to retrieve multiple high-likelihood configurations of the model instead
of only the maximum-likelihood configuration. The application can then use a
separate criterion independent from the statistical model to choose among the
multiple hypotheses. In our statistical framework, a natural way of generating

these high-likelihood configurations is to sample from the posterior, Py, (L|I).

With k-fan models it is possible to sample from the posterior efficiently. To do
this, we first compute the marginal distribution over the reference set configuration,
Pu(lll) = Z(I)Pu(lr) H P(Il;) H a;(lRr),

v, ER vER
where «;(lg) is defined in equation (3.1). This takes time O(nh*) for Gaussian k-
fans using convolutions to compute «;(lg), as discussed in Section 3.1. To sample
from the posterior, we first draw a sample I’y from Py (lg|]) and then draw samples
from Py (l;|1,1%) for each non-reference part i. Note that the marginal need not
be recomputed for each sample, so that drawing s samples from the posterior for

a given model and image takes time O(nh* + sn).

49

CHAPTER 4
FEATURE OPERATORS

The last two chapters introduced a family of spatial models for object class
recognition and presented efficient classification and localization algorithms for
those models. In order to keep those chapters as general as possible, we did not
assume the use of any particular part appearance model: we simply assumed that
some mechanism existed to compute Py (]l;) for part v; at any location /; in the
image. Thus the appearance model can be chosen independently of the spatial
model and inference algorithm according to the requirements of the application.
In fact, it is possible to use multiple types of appearance models in the same object

model, as we do for scene modeling in Chapter 6.

A key difference between our approach and most others in the literature is
that we do not use feature detection, as we discussed in Section 1.1.5. Instead
of using a feature detector to produce a small set of possible locations for each
part, we instead compute the likelihood for every part at every possible location
in the image. In other words we can think of our appearance models as feature
operators that when applied to an image produces a likelihood map over the entire
configuration space. Our use of feature operators thus avoids the intermediate
hard classification decisions that are made by feature detectors, by computing the
entire factored posterior distribution in (1.1) using the full likelihood functions
for all the parts. In Chapter 7 we demonstrate experimentally that this unified
inference approach performs better than approaches that use feature detection and

bottom-up inference.

We have experimented with a number of different part appearance models. We

present here the details of two specific models that we have found to work well

90

across a variety of object classes. The first appearance model uses small proba-
bilistic rigid templates and can be applied to a range of image features including
edges, texture, and color. The second approach models part appearance using
histograms of image gradients, which have recently become popular for category

recognition [9, 19, 31].

4.1 Template-based part models

We first introduce the simple template-based feature operators. A preprocessor
is first run on the image to assign one of a small set of labels to each pixel. The
preprocessor is chosen according to the type of image features of interest; this makes
the approach general enough to handle a broad range of different image features. In
our work we have used preprocessors tuned for color, edge, and surface orientation
features. The parts are modeled as small rigid templates, with each position in the

template having a probability distribution over the set of possible pixel labels.

More formally let I be the result of running the preprocessor on a given image.
We assume that / has one of a small set of labels at each pixel, such that I(p) €
E =1{1,2,...,r} for each pixel location p € I. The foreground appearance model
for a part 7 consists of a small template 7T} that gives the probability of observing
each possible label at each location within the template. That is, for part i the
foreground appearance model is a function f;(p)[u] for all p € T; and v € &€
specifying the probability of observing label u at location p within the template
when the patch is centered over a true part location. Another function b[u| gives
the probability of observing label u at a background pixel not corresponding to
an object part. Assuming that background pixels are independent, the probability

that an image is composed entirely of background pixels (which we call hypothesis

o1

wO) iS,
Pyr(Ilwo) = [T oz (p)].

Given the location [; of single part v;, we can write a likelihood function,

P(I|l;) = Par(Tlwo) T halp + 1, 1), (4.1)

p€eT;

where
filp = L) [I(p)]
bli(p)]

Then the likelihood for given a configuration L of several parts is,

hi(p,1;) =

Py(I1L) = Pa(Iwo) [T T] hilp + - 1) (4.2)
= Z(I) [] Put11), (4.3)
v, EV

where

Z(I) = Py (Iwy) ",

Note that this likelihood function is a true probability distribution (it sums to one
over all possible images) as long as no patches overlap in the configuration L. For
part configurations with overlap, equation (4.3) overcounts some pixels and thus
gives only an approximation. In Section 4.1.3 we describe how this part overlap

problem can be addressed.

In principle this template-based part model framework can be applied to any
type of feature in which each pixel is assigned a discrete label. In practice it is also
important that the set of possible pixel labels has small cardinality (e.g. less than
a few dozen). Otherwise very large numbers of training exemplars are needed to

estimate the non-parametric probability distributions accurately.

In our work we apply this framework to three different types of features: edges,

color and surface orientation. We describe the edge features here; the color and

52

surface orientation features are used for modeling scene context and are discussed
in Chapter 6. Edges tend to capture useful local image information such as corners
and boundaries of object regions. Instead of the simple presence or absence of an
edge, we use coarsely-quantized edge orientation, dilated in both the spatial and
orientation dimensions. Augmenting edge detection with dilation and edge orien-
tation has been found to significantly improve results in other object recognition
work [44]. We use the Canny algorithm [7] to detect edges in grayscale images. The
gradient orientation at each edge pixel is also computed and quantized into one of
four bins: north-south, east-west, northeast-southwest, and northwest-southeast. *
We apply morphological dilation with a radius of 2.5 pixels to the binary edge
map. Then we assign each nonzero pixel in the dilated map the orientation of the
closest edge pixel. Note that this can be computed efficiently using a standard
binary distance transform [39]. Thus for the edge features, the set £ of possible
edge labels consists of five elements: the four edge orientations and the non-edge

label.

To implement this feature operator it is necessary to evaluate Py (I|l;) at all
pixel locations in image /. In practice the negative logarithms are computed in-
stead, as we discussed in Section 3.2, to produce a cost map Cy(I|l;). The obvious
way to compute this cost map is to slide the part template over the image, explicitly
computing the likelihood at each position according to equation (4.1),

Crr(I]1;) = Crr(Iwe) = > log hy(p +1;,). (4.4)

p€eT;

This implementation takes time O(|T;|h) for each part v;, where |T;| is the number

of pixels in the part template and A is the number of pixels in the image. This

!The advantage to putting opposing directions into the same bin is for greater invariance to
background color. For example, if opposing directions were placed in separate bins (e.g. by
breaking up north-south into a north bin and a south bin), then the edge orientation labels along
the boundary of a gray object would be different depending on whether the background is black
or white.

93

straightforward algorithm is prohibitively slow for large templates.

4.1.1 Efficient implementation for sparse label maps

A faster implementation is possible when the labeled image maps are sparse — that
is, when most pixels have the same label. This is the case for edge maps, where
typically less than 5% of the pixels are labeled as edges. Let z € £ be the most

common label (e.g. the non-edge label). Then equation (4.4) can be rewritten as,

((p)I(1 bl
Cu(I)l;) = Crr(I|wo) — ¢ — XT: log : é@%z&;}]ﬁ] fi(z[a)][z]’

where (is a sum of the likelihood ratios in the part template having edge label z,

¢ = Z log fz(p)[z]

0 @)

The important property of equation (4.5) is that whenever the value of p is such

(4.5)

that I(l 4+ p) = z, the corresponding term in the summation is zero. Thus when
computing the cost map for a sparse label map, most of the pixels in the image

can be ignored because they have no effect on the sum.

An implementation of this approach proceeds as follows. Let B; be the array
that is to hold Cy;(I]l;) computed at every location ;. First B; is initialized
to be Cy(I|wg) — ¢ at every location. Then each pixel location [in the image is
considered. If I(l) = z, then no action is taken and the pixel is skipped. Otherwise,

for each location p € T; in the part template, the cost map is updated,

filp) (1 +p)] bz]
bI(l+p)] filp)lz]

The worst-case running time of this implementation is still O(|7;|h) for each part,

Bl —p) = Bi(l - p) — log

but in practice this method is typically 10-20 times faster than the naive imple-

mentation described above for sparse label maps.

54

4.1.2 Efficient Fourier transform-based method

The optimization presented in the last section is fast for sparse label maps such as
edge maps, but it provides little benefit when the frequency of the labels is roughly
uniform, as with the color or surface orientation features discussed in Section 4.1.
For these features it is faster to use the Fourier transform-based implementation

presented in this section.

We can rewrite the likelihood function in terms of convolutions. To see this,

note that equation (4.4) can be rewritten as a product over pixel labels,

p€eT; e€&

where 1.(7,1) is an indicator function that is one if I(I) = e and is zero otherwise.

This is just a sum of cross correlations,

Cur(I1) = Cus(Twg) — 3 (log G 1e<f>) (n).

ble
ec& []
and can be re-written in terms of convolutions,

Cu(I[l;) = Cu(Ifwo) — (Z file] * Le() (L), (4.6)

eef

where

Using the convolution theorem [39], equation (4.6) can be rewritten in terms of
the Fourier transform,
Cu(I]l) = Car(Two) = Y- FH{F{flel} F{L(D}} (4.7)
ec&
where F denotes the forward Fourier transform, 7! denotes the inverse transform,

and - is the elementwise complex multiplication operator.

95

Thus convolution gives a faster method for computing the part likelihood maps.
The Fourier transforms of the part template functions fl can be pre-computed be-
cause they do not depend on /. Then during recognition, the Fourier transform
of each of the binary indicator maps 1.(I) is computed. Using the Fast Fourier
Transform (FFT) algorithm [11] this takes time O(|€|hlogh) where h is the num-
ber of pixels in the image. Then for each part v; € V and each edge label e € £, we
compute the complex multiplication of the Fourier transform of the binary indica-
tor function 1.(/) and that of the part template ﬁ[ﬁ’], and then take the inverse
transform of each result. Finally an addition over the edge labels is performed for
each part. Thus computing all of the part likelihood maps for an image requires
|€|(2n+1) applications of the FFT and takes total asymptotic time O(|€|nhlogh).
This approach is typically several times faster than the naive O(|T;|hn) implemen-
tation described in Section 4.1 because |T;|, the number of pixels per part template,
is typically large (hundreds or thousands of pixels) while the number of possible

edge labels is relatively small (fewer than a dozen).

4.1.3 Handling overlapping patches

The probabilistic framework presented in Section 1.1.2 assumes that the image
likelihood factors into a product over parts. The local appearance of a part is
thus assumed to be independent from that of any other part; in particular this
implies that parts of an object never overlap one another, which is generally not
true. For configurations with overlap, equation (1.3) overcounts some pixels and
thus gives only an approximation to the true likelihood function. In [2] a model
called Patchwork of Parts (POP) was introduced to address this problem. They

propose averaging the probabilities of overlapping templates in order to eliminate

o6

the over-counting.

We can use a similar approach to address the patch overlap problem with our
template-based models. For a given pixel p and object configuration L of patches,

let q(L,p) be the set of all patches that overlap p,

q(L,p) ={vilpe (Ti @)},

where @ denotes Minkowski addition, and let Q(L) be the set of pixels covered by

at least one patch,
Q(L) = {pla(L,p) # 0}.

Now the likelihood function in equation (4.2) can be rewritten in order to average
the contributions of overlapping patches:
. 1
Py (I|1L) = Py(1|wo) H 2Dl Z hi(p, i), (4.8)
PEQ(L) "7 vieg(Lop)
where | - | denotes set cardinality. For configurations in which no patches overlap,

equation (4.8) simplifies to the factored likelihood function of equation (4.2).

Unfortunately an efficient inference algorithm for maximizing Py (L|I, M) is
not known, since the factorization in equation (3.3) is no longer possible. Given a
particular part configuration L, however, it is easy to compute pM(L|I , M). Thus
we use a compromise approach that uses the simpler likelihood function to generate
promising object configurations, but scores these configurations using the more
accurate POP framework. In other words, we treat the simpler posterior Py (L|I)
as a proposal distribution for the true posterior JSM(L\I). We then draw samples
from the proposal distribution using the method described in Section 3.3 and
evaluate the true posterior probability for each sampled configuration. The highest-

likelihood configuration provides an approximation to the MAP estimate of the true

57

posterior. In practice we have found that this process provides significantly better

detection and localization results than just using the simple likelihood function.

4.2 Image gradient-based part models

The template-based models described in the last section are simple, fast, and work
relatively well, but there are some situations in which these feature operators often
fail. One problem is that they are sensitive to failures by the pixelwise classifier
— a missed edge in a low-contrast region, for example. Another problem is that
the models are very rigid, allowing for little deformation in part appearance. Thus
these models work well for rigid objects like cars and motorbikes, but are unsuitable

for highly deformable objects like people and animals.

Several alternative part appearance models were explored that allow for greater
deformation and were less sensitive to local image contrast. We found the His-
tograms of Oriented Gradients (HOG) descriptor [19] to be the most successful
approach. HOG descriptors capture the distribution of gradients across an image
region, aggregated in both spatial and orientation dimensions. Thus they respond
to edge features but operate directly on gradients instead of the output of a hard
classifier like an edge detector. The quantization in spatial and orientation dimen-

sions also allows for a greater degree of local part deformation.

In [19] the HOG descriptors were applied to object recognition using a rigid
template model. Although the HOG descriptor allows for local deformation, the
use of a single rigid template model for the entire object prevents more global
deformations. In a sense this is the opposite of the problem with our part templates

from the last section; there the deformable spatial model allows for large object-

o8

level deformations but the parts themselves are too rigid.

We combine the advantages of both approaches by showing how to use HOG
features in our part-based statistical framework, thus allowing for both part-level
and object-level deformations. A similar approach has recently been proposed

in [31].

4.2.1 Histograms of Oriented Gradients

HOG descriptors are computed by dividing an image into small non-overlapping
cells of about 8 x 8 pixels. Image gradients are computed, and then a histogram
of gradient orientation weighted by gradient magnitude is built for each cell. The
histograms are normalized within blocks of approximately 2 x 2 cells. More formally,
for each pixel p in an image, let G, (p) and G, (p) be estimates of the image gradient

in the = and y directions at pixel p,?

Gy(p) = 5 U(pespy + 1) = I(pz,py — 1))

N = DN

Then the gradient magnitude at p is given by,

M(p) = \/G.(p)? + Gy ()2,

and the gradient direction is,

=)

20ther methods exist for estimating local image gradient [39]. We use the method presented
here because it was found to work the best for object recognition in [19].

99

where () is a quantization function that maps angles onto a small set O of orien-
tations. A histogram is computed for each cell £},
H(E)d] = M(p)s(0(p) - d),
PEE;
for all d € O, where §(n) is an indicator function that is 1 if n = 0 and 0 otherwise.
These histograms are normalized on a per-block basis. Suppose that E; belongs to

a block B;. Then the normalized histogram of E; relative to B; is,

H(E;, B))ld] = N(B;)H(E;)ld),
where N(B;) is a normalization function. Of the several normalization schemes

studied in [19], normalizing based on L, distance was found to be the best,

NBy) = > D HES+|

EkGBj ecO

N

where € is a small constant.

4.2.2 Part-based object detection using HOG features

In [19] these HOG descriptors are applied to object recognition using a simple
rigid template approach. They build a feature vector for any given rectangular
region of an image by concatenating the normalized histograms of all of the blocks
underneath the region. An object model consists of a support vector machine
(SVM) [23] trained on the HOG feature vectors corresponding to object regions
marked in the ground truth. Object detection on a test image is performed using a
sliding window classifier which exhaustively classifies subregions at many different

scales and offsets.

60

In contrast, we use HOG descriptors to characterize the appearance of local
image patches for use in our part-based object models. For simplicity we assume
that the patch size is the same as the HOG block size, although this could be
generalized. For a given image I and pixel location [, we define a vector consisting

of the normalized HOG histograms in the block centered at [,
(I, 1) = (H<E1, B),H(Ey, By), ..., FI(Em,Bo) , (4.9)

where Fi, E,,...E,, are the cells belonging to B;. Each vector v(/,[) consists of
m histograms each having |O| bins, so the total dimensionality of the vector is
m|O|. Using dynamic programming, v([,l) can be efficiently computed for all
pixel locations in an image in time proportional to h|O|, where h is the number
of pixels in the image. In particular, note that the running time is independent of

the cell size.

We use two different approaches for modeling part appearance using HOG

features. The first approach uses a Gaussian distribution,

This model is used internally during the learning process, as we describe in Chap-
ter 5. For performing recognition we use an SVM, interpreting the distance of a
given HOG feature vector from the SVM’s separating hyperplane as a log-likelihood

ratio. That is, during recognition we use,
Py (I[l;) o< exp(w; - v(1,1;) = by),

where w; and b; are parameters learned during the SVM training process.

61

CHAPTER 5
LEARNING THE MODELS

We have so far described a family of graphical models for object recognition
and shown how to perform inference efficiently using these models. This chapter
turns to the problem of choosing the model parameters for a given object category.
This involves selecting a set of salient object parts, building an appearance model
for each part, and building a spatial model that relates the geometric configuration

of the parts.

In principal a human expert can develop an object model directly, using his or
her intuition about what the object looks like. However setting the model param-
eters by hand is tedious and time-consuming. Moreover, research has repeatedly
found that hand-tuned object models perform poorly compared to models produced
by a learning algorithm [22, 64, 72, 87|. In this chapter we discuss algorithms for

learning the object models automatically from labeled training images.

All learning algorithms require training exemplars, which in the case of object
recognition are images that contain the object of interest. Approaches differ in
the amount of information that they require about these exemplars, but most

approaches can be categorized into one of four supervision paradigms:*
o Fully-supervised learning algorithms [14, 30| assume that the correct location
of each object part is given as ground truth for every training image.

e Partially-supervised learning [19, 31] assumes that the training image data is

annotated with bounding boxes enclosing each instance of the object. How-

!Note that the meaning of these terms is not standardized in the object recognition literature.
For example, what we call weakly-supervised is referred to as “unsupervised” by [52]; what we
call partially-supervised is called “supervised” in [1].

62

ever the individual part locations are not known.

o Weakly-supervised learning algorithms |2, 32, 33, 59, 86| expect an annotation
for each training image indicating whether or not the object appears in it.

No information on the position of the object within the image is assumed.

e Unsupervised techniques [67, 76| are given only a set of training images with
no other ground truth data. These algorithms attempt to both discover the

object classes in the training imagery and learn models for each one.

Less supervised learning methods require less human effort during training,
but generally are more complex and require more computational resources. In
practice, human time is usually considered more valuable than computer time
and hence weaker supervision is preferred. However learning models in a fully
unsupervised fashion is a very challenging problem with state-of-the-art approaches
giving relatively poor results, which makes unsupervised learning impractical for
now. Thus we consider the first three paradigms but do not consider unsupervised

learning further in this thesis.

We frame learning the object models as a maximum-likelihood estimation prob-
lem. Given a set of positive training images D = {[y,...,Ir}, we seek a model

that maximizes the likelihood of the training data,?
M :argmﬁxP(D\M), (5.1)

Exactly how the maximization in equation (5.1) is performed depends on the de-
gree of supervision that is available. The remainder of this chapter describes
algorithms for learning object models under the weakly-, partially-, and fully-

supervised paradigms. First we show how to carry out the maximization in the

2In previous chapters we have used the notation Pj;(-) to emphasize that the model M was
a constant during inference. In this chapter we treat M as a random variable and thus switch to
the alternative notation P(-|M).

63

weakly-supervised setting, where only per-image class membership labels are avail-
able. Then we show that the partially-supervised and fully-supervised learning
problems can be viewed as special cases of our weakly-supervised approach. We dis-
cuss the partially-supervised and fully-supervised problems in Sections 5.2 and 5.3,

respectively.

5.1 Weakly-supervised learning

In weakly-supervised learning, each training image has a binary annotation in-
dicating whether the object of interest appears in the image. The label can be
thought of as partitioning the training imagery into a set of positive images that
contain the object and a set of negative images that do not. No information about

the location of the object within the images is available.

Evaluating P(D|M) for a particular model and set of T" training images involves
summing over the space of all possible model configurations in that dataset,
P(D|M) =) P(D,L|M). (5.2)
LeIT
where 7 is the set of possible object configurations for the model in an individual
image. For example, if we consider only translation and assume that each training
image is p X ¢, then Z = ([1,p] x [1,¢])", where n is the number of parts in the

model.

It is not tractable to perform the sum and maximization explicitly as the space
of possible configurations is huge. Any given value of L records a specific config-
uration of each part of the model in each training image. Maximum likelihood

estimation problems that involve latent or “nuisance” random variables like L can

64

be solved approximately using an expectation maximization (EM) algorithm |20].
EM is an iterative hill-climbing optimization algorithm that is guaranteed to con-
verge to a local maximum. Each iteration consists of two steps. In the first step, the
posterior distribution of the latent variable is computed using an estimated model
M?*. In the second step, the expectation of the likelihood function is maximized

with respect to the model parameters, to produce an improved model M.

In our context, the general form of the EM update equation in [20] can be
written,

MiF = argmj‘z}XEL [log P(D, L|M")|D] (5.3)

where E; [X|Y] denotes the expectation of random variable X conditioned on
the value of another random variable Y. Assuming that the training images are

independent, P(D, L|M) factors into a product over images,

T
j=1

so that the update equation becomes,

T
ML — argmj&xEL zlogP(Ij,L|M)|[j] .
]:
Then using properties of expectations we have,
MY = argmaxz > P(L;|1;, M")log P(I;, Lj| M). (5.4)
j=1L;el

A k-fan object model M consists of an appearance model A that records the pa-
rameters of the image likelihood and a spatial model S that records the parameters

of the prior. The logarithm in equation (5.4) factors further,

M = argmaxz > P(L;|1;, M*)log P(I;|L;, A)P(L;|S).

j=1 L;eT

65

This means that the appearance model and spatial models can be maximized

independently,
gl _ argmaxz S" P(Ly|1;, MY log P(Ly]9), (5.5)
j= 1LJeI
A+ argmaxz S P(L|T;, M) log P(I,| Ly, A), (5.6)
j=1 L;eT

where Mt = (At—i-l’ St-l—l).

We describe how to find A and S**!, in turn, in the following two sections.

5.1.1 Spatial model update equations

First we consider how to find the EM update equation for the spatial model. Recall
from equation (2.1) that in a Gaussian k-fan the spatial prior factors as a product

over cliques,

P(L|S) = P(ix|S)]| Pz,). (5.7)

vieﬁ
where R C V is the set of reference parts, R = V — R is the set of non-reference

parts, and

P(lr|S) = N(lgrlur,Xr), (5.8)

P(lz|lR> S) = N(ZZ“LZ(ZR), ZZ|R) for each part V;. (59)

The conditional parameters 1,z and X;r for part v; are computed by estimating
wir and 3; g, the mean and covariance for the clique R U {v;}. In particular,
iir and X; p are treated as block matrices to define p;, ug, i, Xir, and X
using equation (2.3). The conditional parameters needed for recognition are then

computed using equations (2.4) and (2.5).

66

We thus learn p; r and X; r for each maximal clique of the graph independently,
using the joint form of the prior in equation (2.2). From equation (5.5) we have,

T
Sl = arg max Z Z Z P, 11;, M"Y log P(l;, Ir|pi.r, Xi R)-

b
Hi,Ry24i, R =1 IREIJ' liEIj

The quantity being maximized here further simplifies to,
d 1
Z Z Z —§P(li,R|[j, M) ((lir — p,r)"Si g (g — pa,r) — log Z|Sigl) |
7j=1 lREIj liEIj
(5.10)

with a constant Z related only to the dimensionality of the Gaussians. We set the
partial derivatives of (5.10) equal to zero and solve for pf% and ¥{%;. Taking the
partial derivative with respect to p; g,

T
Z Z ZP ZZ,ZR‘] Mt)(@R_2'u’7wR)EZ_,}12:0

lrel; l;el;

and multiplying both sides by ¥; r and rearranging gives,

t+1 Z?:l ZlRte Zlielj P(lw ZR|[j> Mt)(li,R)

Hip = —oT (5.11)
Z]:l ZIREIJ' Zlielj P(l“ lR|I]7 Mt)
Taking the partial derivative of (5.10) with respect to X; g and simplifying,
T
> Z Z P(ls, gl 1y, M*) (2 5 (lir — pir)(lir — pir) Sip — Xik)
j=1 lgel; Lil;
where we have used the facts that ¥; z = ¥, and the identities: [61]
0aT’X b
—_— —X Tap’X"T
X N ’
9X]| 7
— = [X|X7.
X X
Setting this equal to zero and solving for ¥, i gives,
T
- S e P UL, MY (L g — pir)(Lir — pir)t
Zi—i}-%l _ Zj—l ZIREIJ leefj J (512)

ZfZl ZIREIJ' ZliEIJ‘ P(l“ lR|[]7 Mt) ’

67

which is the final update equation.

The update equations for a 1-fan model are particularly simple. In this thesis
we are interested in translation-invariant models, in which P(Lg|M) is a uniform
distribution in a 1-fan. To make the models insensitive to absolute position, we
learn the Gaussian spatial parameters relative to the reference part location. The
dimensionality of Xy is thus zero, and from equations (2.3), (2.4), and (2.5) we

have X; = X; p = ;g and ji; = p1;g. Thus the update equations for a 1-fan are:

,u?-l—l _ Zle erelj Zlielj P(Ziv lr|[j7 Mt)(li - lr)
' Z;F:l ZITEIJ leEIJ P(lz? l7”|lj? Mt)
Z?:l erelj Zlielj P, 1|1, MYl = b = pa) (L = 1 — :ui)T
Zle erelj Zlielj P(liv lr|[j7 Mt)

, (5.13)

Y = (5.14)

5.1.2 Appearance model update equation

Now we turn to the equations for finding an appearance model A**! given an
estimated model A’. The update equations depend on the type of appearance
model used. In this section we derive the equations for the two types of models

proposed in Chapter 4.

Template models

We first consider the template-based models of Section 4.1. Recall that these
appearance models consist of a background model and a foreground template 7;

for each part,

P(I|L, A) = P(I|wo, A) [T T] hilp + - 1), (5.15)

v, €V peT;

68

where
filp = L)L (p)]
blI(p)]

and f;(p)[u] is the probability that a given pixel p in the template 7; corresponding

to the i-th part has edge label u, and each background pixel has label u with
probability b[u]. The background probabilities are trivial to estimate from the
negative training images, so we will assume that b is fixed and known beforehand.
Substituting equation (5.15) into (5.6) gives,

L
47 a3 5 P s oo [T T L),
7,0

Jj=1 L;eT v, €V peT;
(5.16)

where L;; denotes the location of the i-th part in configuration Lj;.

From equation (5.16) we see that to estimate A1, it is sufficient to maximize

fi(p)[-] independently for each part ¢ and pixel p € T},

f)] = arg maxZZPlu M*)log fi(p)[L;(p + 1) (5.17)

=1 Lel;
where P(l;|1;, M") is the marginal probability that part v; occurs at location /; in
image I;. Recall that an oriented edge detector has assigned a label from the set
€ to each pixel in the image. The quantity to maximize in equation (5.17) can be
rewritten as a sum over the possible edge labels,
arg maxZZZP (LI, MY 1.(1;,p + ;) log fi(p)]e],
S b ey e

subject to the constraint the sum of the probabilities over edge labels for a given
pixel in the template must sum to one,

> fip)e) =

ce€

and where 1.(7, p) is an indicator function that is one if /(p) = e and is 0 otherwise.

69

We use Lagrange multipliers to perform this maximization for each part v; and
pixel p € T;. The Lagrangian is,

c(fi<p>,A>=A<Zfi<p>[) SN Pl MY 1(1;, p+13) log fi(p)[e]

Jj=1l;€l; ect

Taking partial derivatives with respect to f;(p)[e] for each edge label e, we obtain a
system of 4+ 1 equations for each pixel p in each part v;. Each of these constraints

has the form,

OL(fi(p), N
9fi(p)le]

Solving the system of equations for fi(p) le] for e € & gives the EM appearance

= Milp

IIMH

Z (il I, M) 1Ly, p + 1)
el

model update equation,

Zlezliel (|I Mt) (Ijvp"'_li)

T . (5.18)
> e 2ery 2owee Pl L, M) (I, p + ;)

f (p)le] =

In summary, finding A**! involves computing f;*(p)[e] using equation (5.18)

for each combination of part v;, template pixel p € T}, and edge label e € £.

Gradient-based models

For the gradient-based models of Section 4.2, we need to estimate the u; and ¥;
parameters of equation (4.10) for each part v;. Using a derivation very similar to
that shown for Gaussian k-fans in Section 5.1.1, it is straightforward to find the

following update equations for the gradient-based appearance models:

e Yoims Sover, PUIT, MYYo(1,1;)
’ > it Sner, PUlL, MY
seH _ Si Sner, P, MYyo(1, 1Yo (T, 1)
S e Dner, P(L 1)1, MY)

(5.19)

(5.20)

70

5.1.3 Learning an initial model

Since EM is a local search technique, it is important to start with a reasonable
initial model M°. Our approach is to generate a large set of candidate appearance
templates that seem promising based only on how well they individually predict
the training data. Then we examine the configurations of these templates in the
training images both to choose which candidates to include in the initial appearance
model A° and to define an initial spatial model S°. We now discuss how to learn

an initial model from weakly-supervised training data.

Candidate Patch Models

We first generate a large set of potential appearance models based on the training
image data. We do this by randomly sampling image patches from the positive
training images and generating a part operator for each sample. The way this is

done depends on the type of feature operator being used.

For the template-based appearance models of Section 4.1, we uniformly sample
patches of several different sizes at random from the edge maps of the positive
training images. Then we generate a template model T; from each sampled patch.
We do this by dilating the patch in both the spatial and orientation dimensions, and
then setting the template probabilities to reasonable values based on the dilated
patch. We use a probability of 0.85 for the observed edge orientation and distribute

the rest of the probability mass uniformly among the other orientations.

For the gradient-based models of Section 4.2, we sample image locations from
the positive training images and compute the corresponding HOG feature vectors.

We then build a feature operator for each vector by estimating the mean and

71

covariance parameters of equation (4.10); in particular we set y; to the observed

HOG feature vector and set >; = 0.1/, where [is the identity matrix.

For the experiments reported in this paper we sampled approximately 10,000
initial patches at three different scales. Note that due to the redundancy in the
sampling of the initial patches, many of the resulting feature operators may be
quite similar. However we do not attempt to cluster or eliminate operators at this

stage.

Building an initial model

The previous step generates a very large set of candidate patches. We want to
build an initial k-fan model (for a given k) by choosing a small subset of these
candidate patches so as to maximize the likelihood in equation (5.1). Combining

equations (3.1), (3.2), and (5.2), we have

M" = arg max I 2> Putte) | TT Prctil) 1T D2 Par(Lill) Pas(lillr) |

IjED v, €ER UiEE l;
assuming as before that the parts do not overlap. Assuming that the set of reference

patches R has already been chosen, the best non-reference part set R is

arg max H q(RU{v;}), (5.21)

V; €R
where

9(G) =[] D_ Plclse) [T P, (5.22)

I;eD g v;€EG

and sg is a maximum-likelihood full multivariate Gaussian on the relative locations
of the patches in G. ¢(G) is high for groups of patches that both individually pre-

dict the training data well and that appear at predictable relative spatial locations

72

in the training images. This is a natural measure of how valuable a given set of

patches would be as a clique in a k-fan object model.

These observations suggest a natural procedure for learning an initial spatial
model. For every possible combination G of k£ + 1 candidate patches, the clique
quality score ¢(G) is computed. As we discuss below, this involves estimating
a spatial model sg = (Xg, itg) on the locations of the patches in the training
data. Then all possible combinations of k£ candidate patches are considered for
the reference set R. For each possible reference set, a k-fan model is built by
choosing the cliques with the highest quality scores that include R. Because we
assume that parts do not overlap, we use a greedy procedure that sorts the quality
scores and chooses the first n — £ cliques in which the non-reference parts do not
overlap one another. In practice a small degree of overlap is allowed. This greedy
process continues until there are either no more cliques left to add, or until some
pre-determined maximal number of parts is reached. After completing this process
we have a large set of candidate k-fan models, one for every possible reference set.
We then compute the likelihood Py (D) for each of the models and choose the one
with highest likelihood. This model becomes our initial model M° = (A°, SY) that

is then improved using the EM procedure described previously.

For models using the HOG-based features, we train an SVM for each part’s
appearance after the last iteration of the EM procedure. To do the learning we
use the SVM-Light toolkit of [47]. For the positive training exemplars we use the
maximum a priori estimate for the part location in each training image according
to the object model produced by the last iteration of EM. The exemplar corre-
sponding to each of these estimates is the feature vector of equation (4.9). For

the background exemplars we randomly sample many regions from the training

73

images.

Implementation

The summations in the clique quality scores in (5.22) can be computed efficiently
using convolutions, as described in Section 3.1. However computing the scores for
all possible combinations of k + 1 patches is still intractable when the number of
candidate patches is large. To speed up the computation, we approximate the
clique quality by sampling a small number of patch locations from Py (l;|/;) and
perform the summation in (5.22) only over those sampled locations. Also, when
k > 2, we can approximate the spatial prior P(lg|sg) as the product of pairwise

patch likelihoods,

P(lglse) = Z H P(ly, lg|sp,q),
{p.a}CG

where s,, = (ue, 2¢) is a Gaussian on the pairwise relative location of patches
p and ¢, and Z is a normalization constant. In our implementation we use this
approximation to select a small fraction of high-likelihood patch combinations, and
then compute the true prior when computing the clique quality scores for these

promising combinations.

Some objects have two or more distinct parts that are similar in appearance.
Examples include the two wheels of a bicycle and the two eyes of a human face. For
these objects, the relative configuration of a set of patches may be a multimodal
distribution and thus is poorly modeled by a single Gaussian. In these cases we
have found it is better to fit a model to the strongest mode and ignore the rest
of the distribution. This approach is motivated by the high degree of redundancy
in the patches, making it unnecessary at this stage to explicitly handle patches

that match at multiple locations. In practice, we handle this case by fitting a

74

mixture of Gaussians model with a small number of mixture components when a
single Gaussian is not a good fit. We then choose the highest-likelihood mixture
component and use the mean and covariance of that component as the parameters

of SG-

5.2 Partially-supervised learning

The generality of the weakly-supervised approach just described comes at a high
computational cost: learning a single object model takes about 24 hours on a 40-
processor cluster of Pentium 3 and Pentium 4 machines. However this level of
generality is not required when additional ground truth information is available,
such as object bounding boxes. For example, the training data of the PASCAL
Visual Object Challenge (which we use in our experiments in Chapter 7) includes
bounding boxes around object instances. These bounding boxes can be exploited

to significantly reduce the training times.

Partially-supervised learning is implemented as a simple modification to the
weakly-supervised technique just described. In particular we modify the procedure
for learning the initial model estimate, M°. Candidate parts are still sampled
randomly from the training image set, but only from within regions marked with
bounding boxes in the ground truth. Then the summation in equation (5.22) is
performed only over configurations in which all of the parts lie inside the object’s

bounding box.

A further simplification is possible by learning the part locations with respect
to the bounding boxes, by for example forcing one of the reference parts to lie at

the center of each bounding box. Then we have to perform the maximization in

75

equation (5.21) only (,",) times instead of () times as with weakly-supervised
learning, where N is the number of candidate parts. This is a significant speed-up

because N is usually on the order of tens of thousands.

5.3 Fully-supervised learning

In the supervised learning case, the actual part configurations in the training exem-
plars are known. Assume for simplicity that each training image contains exactly
one instance of the object of interest. Then the fully-supervised training exemplars
are a set of image-object configuration pairs, {(Iy, L1),..., (I, L7)}. As before we

denote the location of the i-th part in the j-th training image as L, .

This extra ground truth data simplifies the learning process considerably. We
show how the fully-supervised learning equations can be derived directly from the
weakly-supervised EM update equations (5.18), (5.11), and (5.12). In the super-
vised learning case P(l;|1;, M) is equal to either one or zero, under the assumption
that each part appears exactly once per training image; specifically, P(l;|;, M) is
one if [; = L;,; and zero otherwise. Substituting this into the appearance model
EM update equations from Section 5.1, we have,
Y Lep+ Ly
N S Yowee Le(Lisp+ L)

Similarly, P(l;,lg|I;, M) is either zero or one, so we can rewrite the spatial model

fi(p)[e] (5.23)

equations as,

T
1
pir= 7 Z Ljir (5.24)
j=1
L7
YR = T ;(Lj,iR — i r)(Ljir — pig)" (5.25)

76

Note that these are no longer update equations since M does not appear on the
right hand side. Instead, these equations find a globally-maximal object model
M* in a single iteration, given a specific choice of the reference set R. Moreover,
these equations are quite intuitive. Equation (5.23) simply computes the fraction
of images in which a given location p in the template for part v; has label e. Equa-
tions (5.24) and (5.25) are just the maximum-likelihood estimates of Gaussians on

part configuration.

All that remains is to choose the reference part set R. To do this we learn a
separate model for each choice of R and select the one that maximizes P(D|M).
Since the choice of reference set does not affect the appearance model A, it is
sufficient to a learn a spatial model using equations (5.24) and (5.25) for each of
the (7) possible reference sets, and then choosing the one that maximizes P(D|S5),

P(D|S) =[] P(L;19).

J=1

7

CHAPTER 6
HIERARCHICAL MODELS OF OBJECTS AND SCENES

In real images, objects do not usually appear in isolation but as one of many
components of an overall scene. There are typically strong correlations between
these components. For example, cars are usually pictured above some surface of
support, which is usually pavement or gravel. Cars are rarely seen on grass and
almost never on water; birds, on the other hand, can be observed on water, land,
or in the air. Bicycles and people are very likely to co-occur; bicycles and fish are

not.

In the last several chapters we have introduced the essential ingredients of an
object category recognition system: a family of spatial models, part appearance
operators, efficient inference algorithms, and learning techniques for various degrees
of supervision. In this chapter we show how to combine these ingredients to build
hierarchical models designed for object class recognition in consumer images. These
hierarchical models collect evidence from the image at multiple scales, and are thus

able to capture both fine object details as well as broad characteristics of a scene.

Recently there have been some impressive demonstrations of the power of scene
context for classification and to a lesser extent for localization (e.g., [42, 57, 75,
82, 78]). The past few years have seen a resurgence of work on context-based
recognition, which is an area where research dates back to the 1970’s. Whereas
much of the early work on scene context sought to parse the scene, accounting
for all the objects and relations between those objects, more recent work has used
contextual information to improve recognition. For instance, information about the
locations of sidewalks, roads or the horizon has been shown to improve localization

of automobiles and pedestrians (e.g., |42, 82|) and the co-occurrence of objects in

78

an office scene can aid in recognition (e.g., [57]). There has also been relatively
little work on the use of scene context for multi-part spatial models; in contrast,
previous work has tended to focus on rigid template object models (e.g., [42, 57|)

or on pixel-level classification (e.g., [75]).

In this chapter we show how the object recognition framework and techniques
we have described in earlier chapters can be used to model both an object and
the surrounding scene. We build a single statistical model that includes part
operators tuned for different object scales, and then during inference we combine
evidence from all of the scales in a single unified step. This is in contrast to other
approaches like [78] that do bottom-up or top-down inference strategies where hard
intermediate decisions are made. We learn the scene models and object models
automatically, unlike [42| for instance where knowledge of priors on object height

and scene geometry are assumed.

6.1 Combined scene and object models

We extend the part-based model framework described so far to not only represent
an object in terms of its constituent parts but also to represent the surrounding
scene context. The form of the object and scene components of our model are
the same, differing only in the types of parts that are used for the object versus
the scene. More formally, a model now consists of an object component and a
scene component, each of which is composed of a collection of patches and spatial
relations between pairs of those patches. Let VO = (v9 ..., v9) be the set of
patches in the object model with pairwise spatial relations E° C V° x V© among
those parts. Similarly let the set of scene patches be V° = (vf ... v3) with

pairwise spatial relations £° C V° x V9. In addition to the spatial relations

79

between pairs of object patches and those between pairs of scene patches, there
are also spatial relations between pairs that consist of one scene patch and one
object patch, which we denote E?° C VO x V. A model thus consists of the
object and scene patches, the spatial relations within those sets of patches and the

spatial relations between the two sets of patches, M = (VO, V5 EC E% E©9).

Now a configuration L of the model is a particular placement of the object parts

ZO

Y 'n

and the scene patches; that is, L = (19, ... I9,...15) where each [¥ specifies
the location of scene patch v and [P the location of object patch vP. While a
configuration L specifies locations for each scene patch as well as each object patch,
we consider only the locations of the object patches in localizing an instance of
an object in an image (i.e., in placing a bounding box around the instance). The

scene patches serve to constrain the configuration of object patches via the spatial

relations of the model, but are not themselves part of the object location.

As before, we are interested in finding configurations that maximize the poste-
rior, Py;(L|I). As we saw in Chapter 3, the running time for performing inference
on a spatial model is related to the maximal clique size of the underlying graphi-
cal model. Thus for computational reasons we seek a combined scene and object
model that forms a tree. We do this by using a 1-fan model for the scene and
1-fan model for the object, where the root part of the object is one of the parts of
the scene model. More formally, the underlying graphical model G = (V| E) has
vertices V = VO U V® and edges £ = E° U E° U E9°, where E© and E° each
form a tree of height 1 and Epg is a single edge. The structure of the combined
graphical model is illustrated in Figure 6.1. Then the independence assumption

on the image likelihood from equation (1.3) implies that,

Py (L) = Par(LP)Par(L%) Py (LO%) Par(I1LP) Py (1|15 (6.1)

80

Scene model

Object model

Figure 6.1: Graphical model of the combined scene and object models.

where
Py(L9) =] Pu?.19)
ei; €EO
Py(L%) =] Pu@.1))
ey EES
Py(L9%) = [Pu@.1)
e;; EEOS
0] _ (0] (0]
Py(IIL9) = z°(D)] Pu(II?)
viEVO
Py(IIL%) = z5(1) T Pu(IlE).
UiEVS

A given object category may consist of more than one model of the form de-

scribed in this section. For instance, there may be models corresponding to differ-

ent viewpoints, to distinctive sub-categories of objects, or even to different scene

contexts. In the experiments reported in this thesis, we used one scene context

model per object category, with one object model per viewpoint as defined by the

labels in the training data.

81

6.2 Scene appearance models

Any of the appearance operators presented in Chapter 4 can in principle be used
to model the scene-level patches, however for the experiments in Chapter 7 we use
the non-parametric template-based operators using several different types of image
features. Regardless of the feature type, the scene appearance operators have a
coarser spatial resolution than those of the object parts. We do this because the
goal for the scene models is to represent general characteristics of the scene and
not details of individual objects. Thus our combined scene and object models can
be viewed as hierarchical: the scene-level component of the model captures coarse
features over broad portions of the image, while the object-level component sees

the finer detail.

We use three types of image features in particular:

e Oriented edges: These are the same oriented edge feature operators de-
scribed in Chapter 4. For scene-level patches this type of operator tends to
capture strong intensity variations corresponding to the horizon, roads, large

buildings, etc.

e Color: Color is an important feature for establishing scene context. For
examples, bicycles are often observed above an area of green (grass) or gray
(pavement) but rarely appear above an area of blue (sky or water). The color
quantization algorithm in [55] is applied to label each pixel with one of ten

basic color clusters, yielding ten possible labels for each pixel.

e Surface orientation: The surface orientation of regions around an object
often provides useful contextual cues. For example, many objects like cars

and bicycles are usually observed resting on a horizontal support surface

82

such as a road. We use the surface orientation classification algorithm in [41]
to classify each image pixel as one of three labels: ground, sky, or vertical

surface, yielding three possible labels for each pixel.

6.3 Learning the combined models

For learning scene models we assume that bounding boxes around objects are
available in the ground truth of the training imagery. This simplifies learning
because we can use the partially-supervised technique of Chapter 5 and learn
the object and scene models separately. In learning the object model (V©, E©),
only the regions inside object bounding boxes (as given by the ground truth)
are considered by the learning algorithm. In learning the scene context model
(VS, ES), whole images are processed, but the algorithm is constrained to produce
a model that includes the bounding box of the object as one of its patches. Finally
the model for the edge connecting the object and scene models, E9%, is learned
by simply estimating a Gaussian on the relative location of the object model’s

reference part within the object bounding box.

Most state-of-the-art learning algorithms (including those presented in Chap-
ter 5) assume that all of the training images show an object from the same view-
point — frontal views of cars, for example. However for use in unconstrained
consumer images, an object recognition system must be able to detect an object
from many different viewpoints. We thus learn separate k-fan models for each
of several canonical viewpoints for each object class. It is assumed that coarse
viewpoint labels are provided in the ground truth for the training data (which is

the case in most publicly available datasets), so that we can invoke the partially-

83

supervised learning algorithm multiple times to learn each viewpoint-specific model

independently.

84

CHAPTER 7
EXPERIMENTAL RESULTS

In this chapter we give experimental results for the models and algorithms
proposed in this thesis. We present results on multiple datasets and for both
the localization and classification tasks, unlike most recent papers which study
only classification on a single dataset (e.g. [32, 33, 58]). Classification is a useful
task for some applications — notably content-based image retrieval — but many
applications also require some notion of the location of the object in the image. For
example, a visual collision avoidance system installed in an automobile needs to
decide whether or not a collision with another car is imminent — not just whether
another car appears in the imaged scene. Thus we believe that results on the
localization task are critical to a complete experimental evaluation of an object

recognition approach.

The choice of test dataset is crucial to conduct a meaningful experimental
evaluation. Most papers test against a single set of images, usually using one of
the popular publicly-available datasets such as Caltech-4 [32], Caltech-101 [28],
UIUC [70], MSR. [17], and Graz [58]. While these datasets have fueled much of
the dramatic progress on the category recognition problem over the last few years,
each of them suffers from some biases related to the way they were collected [62].
The problem is that a set of images taken by a single photographer (and especially
a single computer vision researcher) is not a representative sample of real-world
images. We discuss one such bias in Caltech-4 in Section 7.2.7. A better approach
is to use images taken by a large number of consumer photographers, and to use

multiple datasets to guard against biases in any single collection.
In this chapter we describe extensive experimentation for both the classifica-

85

tion and localization tasks. We first review the datasets that are used for our
experiments, namely the popular Caltech-4 set [32] and the very challenging PAS-
CAL VOC sets [25, 26]. We present classification experiments in Section 7.2.
The main goal of these experiments is to understand how the parameter k affects
recognition performance of k-fan spatial models. We also compare our results
to other recent work using part-based spatial models, showing that our approach
of using exact inference with weaker spatial models outperforms using approxi-
mate inference with rich models. We also compare classification performance of
models learned using the weakly-supervised and fully-supervised paradigms, find-
ing that the weakly-supervised models actually perform better despite having less
ground truth information. We then turn to the localization experiments, first
studying part-level localization in Section 7.3 and then object-level localization
in Section 7.4. We show that the hierarchical models of Chapter 6 significantly
outperform the single-scale models, and give state-of-the-art performance on our

difficult test datasets.

7.1 Datasets

We use three publicly-available datasets for our evaluations: Caltech-4 [32], 2006
PASCAL VOC [25], and 2007 PASCAL VOC [26]. A summary of the datasets is

presented in Table 7.1.

The Caltech-4 set [32] includes a total of about 4,400 images with ground truth
for four airplanes, motorbikes, cars, and faces. There is also a negative image set
consisting of 800 empty road scenes and 800 general scenes that do not contain
any of these objects. The viewpoint of the objects is constant, with only side

views of airplanes and motorbikes and only rear views of cars. The objects are

86

Table 7.1: Summary of test image sets.

Caltech-4 [32] || PASCAL 2006 |25| | PASCAL 2007 [26]

of # of # of # of # of # of
Object class || objects | images || objects images objects images
Airplane 800 800 — 612 486
Bicycle — — 649 538 706 486
Bird — — — 972 660
Boat — — — — 580 362
Bottle — — — — 1,010 488
Bus — — 468 354 458 372
Car 800 800 1,708 1,097 2,500 1,426
Cat — — 774 858 752 674
Chair — — — 1,596 890
Cow — — 628 403 518 282
Dining table — — — 430 400
Dog — — 845 735 1,020 842
Faces 435 435 — — — —
Horse — — 650 501 724 574
Motorbike 800 800 549 469 678 490
People — — 2,309 1,341 9,380 4,016
Potted plant — — — — 1,028 490
Sheep — — 843 489 192 514
Train — — — 594 522
Television — — — — 648 512

large and centered in many images, although object scale does vary considerably.

Most images contain either zero or one instance of exactly one of the four object

categories. A random subset of images from Caltech-4 is shown in Figure 7.1.

The PASCAL 2006 Visual Object Classes (VOC) Challenge data [25] includes a

total of 5,304 images with ground truth for 9,507 instances of ten object categories,

as shown in Table 7.1. The set is a combination of consumer images collected from

the online photo sharing site Flickr.com and images from the Microsoft Research

87

Figure 7.1: A random subset of images from the Caltech-4 dataset.

Cambridge Object Recognition Image Database [17]. The images contain a wide
variety of scenes with unconstrained illumination and object scale and viewpoint,
although the images from the MSR set are mostly objects in canonical viewpoints
(e.g. cars viewed from the front, side, or rear). A sample set of these images is
shown in Figure 7.2. The ground truth includes a bounding box for each object
instance as well as a coarse viewpoint label (e.g. front, rear, left, right, or un-
specified). The bounding boxes are aligned with the image axes (i.e. they do not

have information about object orientation). Each bounding box optionally has a

88

“truncated” flag indicating if only a portion of the object is visible due to occlusion
or the frame boundary. Some bounding boxes are marked “difficult” if for example
the viewpoint is particularly unusual or only a small portion of the object is visible.
The ground truth includes bounding boxes for every visible object instance, even

if the object is very small.

The PASCAL 2007 Visual Object Classes (VOC) Challenge data [26] is similar
to the 2006 dataset but is larger and more challenging. It is composed of 9,963
images with ground truth for 24,640 instances of twenty object categories, and
consists entirely of unconstrained consumer images from the photo sharing site
Flickr.com. A sampling of images in the 2007 dataset is shown in Figure 7.3. To
our knowledge this is the largest and most challenging publicly-available dataset

for evaluating object category recognition algorithms available to date.

7.2 Classification experiments

Our first set of experiments concerns the image classification task: deciding
whether an image contains an instance of a given object category (without having
to determine its position). An important goal of these experiments is to determine
the degree to which spatial structure affects object recognition performance. Since
the running time for both learning and inference varies exponentially with k£, in
practice it is best to choose the lowest value of k£ that provides adequate classifica-
tion and localization performance. We also compare our results to the constellation
models of Fergus et al [32, 33] who use full multivariate Gaussians as the spatial
priors (i.e. they use n — 1-fans, where n is the number of parts). Their recognition

algorithm uses feature detection and other search heuristics since exact inference

89

Figure 7.2: A random subset of images from the PASCAL 2006 VOC dataset.

90

Figure 7.3: A random subset of images from the PASCAL 2007 VOC dataset.

91

is not computationally tractable. Thus we also study whether it is best to use rich
spatial models with approximate inference, as constellation models do, or weaker

spatial models with exact inference, as we do.

7.2.1 Experimental protocol

To facilitate comparison we duplicated the experimental protocol and datasets of
the constellation models work [32, 33|. In particular we used the same dataset
(Caltech-4), used the same partitioning of test and training images, the same set
of object categories (cars, faces, bicycles, motorbikes), and evaluated using the

same ground truth.

Object models were trained using the weakly-supervised learning algorithm de-
scribed in Chapter 5. For the classification experiments we used the edge templates
of Section 4.1 as the appearance models. No positional information was given to
the learning algorithm; the only ground truth information available was whether
or not a given training image contained the object of interest. However we pre-
scaled all training images so that object width was roughly uniform. As in [32]
and [33], six parts were used to model each object. Figure 7.4 illustrates some of
the models that were learned using the weakly-supervised procedure. Note that
in each case the configuration of parts is readily recognizable as a prototype of
the object. No hand-tuning of model parameters was carried out; all of the model
parameters were either learned automatically by the weakly-supervised procedure

or were constants that were fixed across all object classes.

To characterize classification performance we use the equal-ROC rate statistic,

which is the point at which the true positive rate equals one minus the false positive

92

jJ
“c=
¢ D

(a) Cars (6 parts, 1-fan) (b) Airplanes (6 parts, 1-fan)

r
*

/

.-

(c) Faces (15 parts, 1-fan)) Motorbikes (6 parts, 2-fan)

Figure 7.4: Illustration of some models learned by the weakly-supervised al-
gorithm. Each model is drawn with the part appearance templates positioned
in their mean configuration and thick borders around the reference parts. El-
lipses indicate the conditional covariances for the non-reference parts given
the locations of the reference parts. High intensity pixels represent high edge
probabilities. For clarity, just the probability of an edge is shown, even though
the actual part models capture probabilities at multiple edge orientations.

rate. In other words, we plot a Receiver Operating Characteristic (ROC) curve over
the range of possible values of the classification threshold, with the true positive
rate on one axis and one minus the false positive rate on the other. The equal-ROC

rate is the point at which this curve intersects the line y = x.

93

7.2.2 Scale-normalized classification

We first evaluate the performance of k-fan object models on scale-normalized ver-
sions of the Caltech and Graz image sets. Table 7.2 presents the results, showing
the equal-ROC rate on each two-class classification task. Note that all the results
shown in the table are directly comparable because the image data and exper-
imental protocol were identical across all of these tests. The results show that
classification accuracy increases as more structure is added to the spatial model
(as k increases). There is a substantial improvement for all object classes between
the 0-fan models and the 1-fan models. There is also some improvement as k in-
creases from 1 to 2 for the airplanes, but little or no improvement for the other
classes. This suggests that for some objects and image sets, increasing the de-
gree of spatial constraint in the object model improves classification performance
whereas for other objects and image sets additional spatial information provides
little or no benefit. In part this may be due to the fact that the positive versus
negative images in this database are highly different from one another, making it

unnecessary to use spatial relationships to distinguish positive from negative.

The table also compares results to the constellation models of [32] and [33]. Our
results are significantly better, suggesting that it is better to use weaker spatial
models with exact inference, as we do, than rich spatial models with an approxi-

mate inference algorithm.

The table also compares recognition results achieved using models learned with
the fully-supervised learning paradigm, in which the learning algorithm had ground
truth specifying the actual location of each part in each training image. Surpris-
ingly, the results from the models learned under weak supervision are significantly

better. This is an encouraging result that speaks to the efficacy of our weakly-

94

supervised learning algorithm, as one might expect that carefully hand-labeled

data would yield better performance.

To explore this result further we repeated the supervised learning for airplanes
on four additional sets of hand-labeled ground truth data produced by four different
people. The people were not computer vision researchers and were not connected
with our object recognition project in any way. They were instructed to select
six parts of the airplane and then locate those six parts in each of the training
images. We then used the supervised learning algorithm to produce an object
model based on each set of ground truth and evaluated the classification accuracy
of each of the resulting models. The equal ROC points for the four different
models were 89.1%, 91.1%, 92.4%, and 93.4%. Thus there was a small amount of
variation in performance across the supervised models, but none of them matched

the performance of the model learned by weak supervision.

We compared the models learned by the weakly- and fully-supervised ap-
proaches to try to explain this surprising result. In labeling the training set, a
human must make two sets of decisions, first choosing which n parts to label and
then accurately localizing each part in every image. While humans are good at
the latter task, their choice of parts appears to be sub-optimal from the perspec-
tive of object recognition. It appears that humans tend to choose parts that are
semantically meaningful — such as those that have names — instead of the parts
that are most visually distinctive. For example, three of the four humans in our
experiment chose the wingtip as a part, but this is a poor feature: it appears as
just a small horizontal line when the plane is viewed from the side. The weakly-
supervised learning algorithm, unencumbered by prior knowledge about airplanes,

chooses parts based only on their utility for object recognition and thus produces

95

Table 7.2: Classification performance on scale-normalized Caltech-4 images.
Performance is reported by the equal ROC rate.

Weakly-supervised Supervised [14] Other results
O-fan | 1-fan | 2-fan || O-fan | 1-fan | 2-fan [32]
Airplanes 90.5% | 94.5% | 95.8% || 90.5% | 91.3% | 93.3% 90.2%
Cars (rear) | 88.9% | 94.6% | 94.6% — — — —
Faces 86.0% | 98.4% | 98.4% || 98.2% | 98.2% | 98.2% 96.4%
Motorbikes | 96.7% | 98.8% | 98.8% || 96.5% | 97.0% | 97.0% 92.5%

better models.

7.2.3 Scale invariant classification

We also tested the classification accuracy on the non-scale normalized version of the
Caltech image set in which scale is not held constant. The results of this experiment
are shown in Table 7.3. We carried out scale-invariant classification by applying the
models at several different scales on each image and choosing the scale having the
highest-likelihood classification. Note that the results match or outperform the

scale-invariant classification performance reported with the constellation models

of [32] and [33].

7.2.4 Varying the number of parts

Next we investigated how the number of parts in our k-fan models affects classi-
fication performance. This experiment was inspired by bag-of-parts models that

use large numbers of features or “parts” (|18, 21, 86]). As the results in Table 7.4

96

Table 7.3: Classification performance on Caltech-4 with varying object scale.
Performance is reported by the equal ROC rate.

Weakly-supervised Other results
O-fan | 1-fan | 2-fan [32] [33]

Airplanes 90.1% | 93.6% | 93.8% || 93.0% | 93.6%
Cars (rear) | 88.4% | 92.0% | 92.1% || 90.3% | 84.2%
Faces 86.0% | 98.4% | 98.4% || 96.4% | 90.3%
Motorbikes | 96.5% | 97.6% | 97.6% || 93.3% | 97.3%

show, both increasing the number of parts and increasing the degree of spatial
constraint improve performance. Interestingly, even models consisting of a single

part perform relatively well on these datasets.

7.2.5 Multi-category classification

We also conducted multi-category classification experiments to test the ability of
the models to differentiate between the five different object classes and the back-
ground images. For each test image, the five object detectors were applied, and the
object class with the highest likelihood was chosen. That likelihood was compared
to the threshold at the equal ROC point to decide between that object class and
the background class. Note that an advantage of our probabilistic approach is that
the scores produced by each classifier are probabilities and hence can be compared

directly without weighting parameters.

The results of the multi-class experiments are shown in Table 7.5. The perfor-
mance of multi-class recognition was very similar to the single class case for 1-fans,

dropping less than 1 percentage point in most cases. However, O-fans performed

97

Table 7.4: Classification performance by number of model parts. Performance
is reported using the equal-ROC rate.

Airplanes Faces
O-fan | 1-fan | 2-fan O0-fan | 1-fan | 2-fan
1 part || 84.3% — — 76.3% — —
6 parts || 90.1% | 93.6% | 93.8% || 86.0% | 95.6% | 96.0%
15 parts || 90.1% | 94.8% | 94.8% || 86.1% | 98.4% | 98.4%
25 parts || 90.3% | 95.2% | 95.2% || 86.9% | 98.0% | 98.2%

dramatically worse on the multi-class task, suggesting that spatial constraints be-
come more important as the difficulty of the classification task increases. This
result underscores the need to study multi-class classification when evaluating the

performance of an object recognition algorithm.

7.2.6 Running time

The running time of the entire weakly-supervised learning process is approximately
24 hours on a small cluster of 20 Pentium III nodes, or about one week on a single
Pentium 4 node. Note that the majority of this processing time is spent performing
the correlations between the training images and the tens of thousands of candidate
part templates. The results of this part of the process can be cached and reused
when learning models for different values of k or different numbers of parts. Once a
model has been learned, the average time required to localize an object at a single
scale in a 320 x 240 image is approximately 0.1 seconds for a 0-fan, 0.3 seconds for

a 1-fan, and 2.5 seconds for a 2-fan.

98

Table 7.5: Confusion matrices for multi-category classification on Caltech-
4. Rows correspond to actual classes, while columns correspond to predicted
classes. The numbers in bold are the correct classification rates.

0-fan
Detected class
Airplanes | Motorbikes | Cars Faces | Background
2 | Airplanes 70.1% 0.5% 1.3% | 12.8% 14.8%
& [Motorbikes 0.0% 65.5% | 0.0% | 31.8% 2.8%
Tg Cars 6.8% 0.0% | 39.8% | 12.5% 41.0%
£ | Faces 0.5% 0.0% | 0.5% | 82.5% 16.6%
< [Background 0.4% 0.0% | 131% | 17.5% 69.0%
1-fan
Detected class
Airplanes | Motorbikes | Cars Faces | Background
2 | Airplanes 95.0% 0.0% 0.0% 0.0% 5.0%
= [Motorbikes 0.5% 97.5% | 0.0% | 0.3% 1.8%
TS Cars 1.3% 0.0% | 93.3% | 0.0% 5.5%
£ | Faces 0.0% 0.0% | 0.0% | 96.8% 3.2%
< [Background 0.6% 18% | 15% | 0.0% 96.1%

7.2.7 A caveat on the classification task

A problem with classification is that it is difficult to understand what image evi-
dence is being used to make the classification decisions. For example, it is difficult
to prevent a classification algorithm from exploiting biases in the test dataset. An
alarming bias is present in the popular Caltech-4 dataset, for instance. Most of the
positive images (those containing objects of interest) have larger physical dimen-
sions than the background images. In fact, a trivial classifier whose only feature
is image width achieves an equal-ROC rate of 99.4% on the airplane classification
task — without examining the content of the images at all! It is thus possible that

many classification methods tested on the Caltech-4 dataset inadvertently exploit

99

this or other biases.!

Such biases become immediately apparent when the localization task is used
for the experimental evaluation. The localizations themselves reveal the region of
the image that the classifier used to make its decision: the localizations could not
be accurate if the classifier uses evidence unrelated to the object, such as unrelated

features of the background scene.

7.3 Part localization experiments

We now turn to the localization task, in which the goal is to accurately estimate the
position of the objects in an image. This is a strictly more difficult problem than
classification: the localization algorithm must first determine whether or not an
object appears in an image before identifying the location of all of the instances. We
examine two variants of the localization problem: part-level localization, in which
the position of individual parts must be identified, and object-level localization, in
which only a bounding box around the object class is expected. We give results for
the part localization task in this section, and the object-level localization results

in Section 7.4.

To conduct the part-level localization experiments we need ground truth spec-
ifying the true location of each part in every test image. This means the parts of
the object model must correspond to meaningful parts of the object so that a hu-
man can annotate the true part locations. We could not use the weakly-supervised
learning algorithm to produce the object models because the parts learned by that

procedure are not guaranteed to correspond with meaningful object parts. Thus we

'We guard against this bias in our experiments by padding all images out to the same size.

100

learned the object models using the supervised algorithm described in Section 5.3.

We used the Caltech-4 dataset for this evaluation. The training images were

annotated with the true locations of six parts for each object:

— for airplanes, the front and back landing gear, nose, wing tip, rear-most point

of plane, and tail
— for faces, the left eye, right eye, nose, two corners of the mouth, and chin

— for motorbikes, the centers of the front and back wheels, headlight, tail light,

and the front and back of the seat

For scoring, we examined the test images that were correctly classified as positives
at the equal-ROC point in the experiments reported in Section 7.2.2. The part
localizations on this subset of images were then compared to the hand-labeled
ground truth. We computed the trimmed mean (at 75% and 90%) of the Euclidean

distance between estimated locations and the ground truth for each part.

We observed a dramatic drop in localization error between O-fans and 1-fans
for most parts, with the average 75% trimmed mean error decreasing from 20.13
to 7.16 pixels. The 2-fan models offer a minor improvement with the localization
error dropping to 7.02 pixels. Table 7.6 presents more detailed results. We see
that the localization errors for 0-fan models are quite high for most parts, with
the exception of visually distinctive parts such as the features of the face and
front wheel of the motorbike. In fact, the facial features are so distinctive that
the O-fan part localizations are excellent, with errors less than two pixels. On the
other hand, accurate localization of the less distinctive parts like the motorbike
seat and airplane landing gear requires a spatial model. These results illustrate

the advantage of our unified estimation approach in which weak evidence from

101

Figure 7.5: Sample part-level localization results.

multiple sources is combined to produce excellent overall results, even for parts

that are not easily localized individually.

Figure 7.5 presents some sample localization results produced by our system on
the motorbike dataset, showing precise localization of the parts despite substantial

variability in their appearances and configurations.

7.4 Object localization experiments

In the previous section we present experiments on localization of individual object
parts. Unfortunately collecting the ground truth for those experiments is expensive
so it is difficult to run large-scale experiments on many object classes. Furthermore

evaluating part localization accuracy is problematic when the model is learned in a

102

Table 7.6: Part localization results on Caltech-4. Shown are 75% and 90%
trimmed means of the part localization errors, in pixels, for the correctly-

classified Caltech-4 images.

Airplanes
Nose Front gear Back gear
5% | 90% || 5% | 90% || 75% | 90%
O-fan || 33.3 | 63.3 || 73.3 | 91.8 || 57.5 | 67.9
1-fan 6.7 | 12.1 9.5 14.7 13.1 | 20.0
2-fan 6.3 | 121 8.7 14.4 12.2 | 20.0
Rear Tail Wingtip
5% | 90% || 75% | 90% || 75% | 90%
O-fan || 34.9 | 55.7 || 19.3 | 42.2 || 63.8 | 79.0
1fan | 94 | 140 || 94 | 146 | 41.2 | 49.1
2-fan || 94 | 14.0 || 10.2 | 152 || 41.6 | 49.9
Faces

Left eye Right eye Nose
5% | 90% || 5% | 90% || 75% | 90%
O-fan || 0.38 | 0.52 || 0.54 | 0.70 1.11 | 1.31
1-fan || 0.39 | 0.51 || 0.53 | 0.67 || 1.09 | 1.28
2-fan || 0.73 | 0.87 || 0.53 | 0.68 || 1.25 | 1.45

L. mouth R. mouth Chin
5% | 90% || 5% | 90% || 75% | 90%
O-fan || 0.93 | 1.24 || 0.98 | 1.21 || 1.52 | 3.12
1-fan || 0.92 | 1.13 || 1.04 | 1.25 1.34 | 1.61
2-fan || 0.92 | 1.15 || 1.12 | 1.33 1.55 | 1.88

Motorbikes

Rear wheel || Front wheel || Headlight
5% | 90% || 75% | 90% || 75% | 90%
O-fan || 17.3 | 35.7 || 1.5 1.9 12.3 | 21.0
1-fan 1.7 2.1 1.5 1.9 8.4 | 13.0
2-fan || 1.7 | 2.1 1.6 1.9 76 | 11.7
Tail light Seat back Seat front
5% | 90% || 5% | 90% || 75% | 90%
O-fan || 12.7 | 19.8 || 23.5 | 36.0 74 | 13.8
1-fan 5.6 | 10.7 || 11.8 | 16.1 5.2 9.1
2-fan || 5.0 | 9.0 || 11.0 | 145 || 4.9 | 84

103

weakly-supervised setting. Many applications of object recognition do not require

localizations of individual parts anyway.

We therefore turn our attention to object-level localization, where the goal
is to produce an accurate bounding box around each object instance. For
these experiments we use the PASCAL Visual Object Classes (VOC) challenge
datasets [25, 26|, which include thousands of unconstrained consumer images with

a wide variety of objects and scenes.

7.4.1 Experimental protocol

To facilitate comparison with other published results, we conducted our object
localization experiments according to the rules of the VOC competitions. The
object models were trained using the training and validation subset of the VOC
data. All model parameters were either learned automatically or kept constant
for all of the experiments. The partially-supervised algorithm of Section 5.2 was
used to learn the models, using the object bounding boxes present in the ground
truth. The ground truth also includes coarse viewpoint labels (namely right, front,
left and rear) for some of the object instances. We used these labels by learning a
separate model for each of these viewpoints. Thus between one and four viewpoint
models were trained per object category, depending on the available ground truth.
Object instances marked as “difficult” or “truncated” in the ground truth were
excluded from the training procedure. Some of the models we learned are shown

in Figure 7.6.

Localization was performed on all of the test images for each object class. Note

that for any given object class, most of the images do not contain an instance of

104

Figure 7.6: Sample scene and object models learned under partial supervi-
sion: (a) motorbike side view, (b) car side view, (c) bicycle side view. Patches
are drawn at the mean configuration with ellipses showing spatial covariance
(at a 20 level set). Thick outlines designate the root patches of the scene and
object models. Simple illustrations of the appearance models are also shown.
For the part appearance models the probability of an edge is shown, with
brighter pixels indicating higher probabilities, while for the color and surface
orientation patches the mode at each pixel is shown. For surface orientation
patches, horizontal dashes represent ground, vertical lines represent vertical
surfaces, and boxes represent sky.

105

the object and therefore serve as distractor images. To count as a true positive,
the size and position of a localized bounding box must be accurate according to
the ground truth and must have the correct object class label. More specifically a

localized bounding box B, is considered correct if and only if

area(B, N By)

3B h that
gt SUCH Tha area(B, U By)

> 0.5,

where By is a bounding box in the ground truth such that the object category
labels for B, and B, are the same. However if multiple detected bounding boxes
satisfy this criterion using the same ground truth bounding box, only one of them is
counted as a true detect. Thus duplicate localizations of the same object instance
are counted as false positives. In accordance with the VOC rules, bounding boxes
marked “difficult” were ignored during the evaluation: they did not count as true

positives, false negatives, or false positives.

Localization performance is characterized according to average precision (AP),
a standard metric in information retrieval [69]. Average precision is computed by
taking the mean precision over a range of recall values, with precision and recall

defined as,

number of correctly detected object instances

Precision =
number of detected object instances

number of correctly detected object instances
Recall =

number of object instances

7.4.2 Results

We ran experiments for both the 2006 and 2007 PASCAL VOC challenges. The

experimental protocol for the two challenges are exactly the same, so the only

106

difference is in the datasets. The 2007 dataset is twice as large (about 10,000 versus
5,000 images) and has ground truth annotations for twice as many object categories
(20 versus 10). The 2007 set is also considerably more difficult: it consists only of
unconstrained consumer images, whereas the 2006 set also includes some images
from the MSR dataset [17]. We present results on both the 2006 and 2007 image
sets to allow comparisons with other published work that evaluate on only one or

the other.

2006 Results

Table 7.7 presents the results for the 2006 set on four object categories: bicycles,
buses, cars, and motorbikes. We used 1-fans as the spatial models, and the edge-
based template models of Section 4.1 as the part appearance models. We ran the
experiments both with and without the scene models proposed in Chapter 6. As
the table shows, the scene context models improved localization performance for
all four classes compared to using object models alone. These improvements are

all statistically significant at a 99% confidence level according to the test of [24].

Table 7.7 also shows the best average precision obtained by any of the entries
in the 2006 PASCAL VOC challenge for each object class as reported in [25]. and
object models outperformed the best VOC results by a substantial margin for the
bus, car, and bicycle classes. For the motorbike class our average precision was
slightly lower, but the difference is probably not statistically significant. Moreover,
unlike our method which performed uniformly well, none of the other methods
entered in the competition performed well on all categories. For example, the
algorithm that performed best on buses gave relatively poor results on bicycles

and motorbikes.

107

Table 7.7: Object-level localization results on the 2006 VOC data, in terms
of average precision.

Object model Scene + Best VOC
Object class only object model || result [25]
Bicycle 0.421 0.498 0.440
Bus 0.172 0.185 0.169
Car 0.429 0.458 0.444
Motorbike 0.342 0.388 0.390

2007 Results

Experimental results for many of the object categories in the PASCAL VOC 2007
dataset are shown in Table 7.8. We compared the performance of three variants of
our approach: 1-fan spatial models with the template-based appearance models of
Section 4.1, 1-fans with the gradient-based appearance models of Section 4.2, and
the multiscale models of Chapter 6 with the gradient appearance operators. For the
experiments using the gradient appearance operators, the HOG parameters were
set as follows: 2 x 2 cells per block, 8 x 8 pixels per cell, and 20 quantized edge
orientations. For each object class we learned between one and four viewpoint-

specific models.

Also shown in Figure 7.8 is a summary of the scores achieved by entrants in
the 2007 VOC competition [26]. Nine research groups submitted entries to the
competition; the maximum and median scores for each category are shown in
the table. Also shown is the place that our method would have earned in the
competition, had we entered. Note that most groups did not submit entries for all
of the object categories (presumably because the results for some objects were too

poor to report), so the median statistics in the table are likely overestimates. None

108

Table 7.8: Object-level localization results on the 2007 PASCAL VOC data,
in terms of average precision. Results for three model variants are shown:
“Edges” is with the part appearance operators of Section 4.1, “HOG” is with
the gradient-based appearance operators of Section 4.2, “MS HOG” is with the
gradient operators and the multi-scale spatial models proposed in Chapter 6.
“Place” shows where the multiscale HOG-based method would have placed in
the competition among the ten competitors.

Object Our results VOC results [26]

category Edges | HOG | MS HOG || Place | Median | Max
Airplane 18.1 18.5 21.1 2 15.2 26.2
Bicycle 30.3 40.0 40.3 2 26.4 40.9
Boat — 1.2 3.0 4 2.8 9.4
Bus — 14.6 18.9 4 19.7 | 39.3
Car 23.1 24.2 30.4 4 29.4 43.2
Cow — 10.9 12.1 3 10.0 14.0
Dog 0.9 2.6 5.3 4 10.6 16.2
Horse — 10.0 19.5 2 19.8 33.5
Motorbike 28.4 | 31.0 33.6 2 21.7 37.5
Television 18.6 21.8 25.5 3 24.2 28.9
Potted plant | 0.3 1.9 2.5 4 4.6 12.0

of the nine research groups consistently dominated the competition; all approaches
had weak or missing results for some object categories. The declared winner of
the competition, for example, only entered six of the twenty object categories. For
the bicycle, airplane, and motorbike classes, our results are a close second to the
highest result reported in the competition. For the other classes we placed among
the top four results from the competition, with the exception of “horse” in which

we scored fifth.

To give some context for these average precision statistics, we present sample
correct localizations in Figures 7.7, 7.8, and 7.9 for bicycles, cars, and motorbikes,
respectively. We also show some incorrect localizations in the form of false positives

in Figure 7.10 and false negatives in Figure 7.11.

109

Figure 7.7: Some correct bicycle localizations. Note the false negative in the
bottom right image.

Figure 7.8: Some correct car localizations. Note the missed detections in the
right three images of the bottom row caused by truncation and distant objects.

Another way of qualitatively visualizing the object detection performance is
to examine the highest-likelihood object localizations for each class. Figures 7.12
through 7.17 present such visualizations for six categories: airplanes, bicycles, cars,
cows, motorbikes, and televisions. Each of the figures shows the localization algo-
rithm’s top 32 most-probable object localizations for a given object category. In

each of the figures, the localizations are arranged in order of decreasing likelihood,

110

Figure 7.9: Some correct motorbike localizations. Note the false negative in
the bottom right image.

with the highest-likelihood localization in the top-left, the second-highest localiza-
tion in the second column of the first row, and so on. Images with localizations
that are incorrect according to the VOC ground truth and scoring criterion are out-
lined with a red border. The images without borders are considered correct. These
figures give a qualitative sense for both the precision and recall of the localization
algorithm, as well as some insight into failure modes. For example, in the airplane
results in Figure 7.12, six of the top ten false positives are actually poorly-localized
true positives, where the bounding box produced by the localization algorithm was
either too small or too large. Meanwhile many of the top bicycle false positives are
actually motorbikes, and many of the false positives during motorbike localization

are bicycles.

111

Figure 7.10: Some sample false positives: bicycle false positives due to (a)
textured regions, (b) drawing of a bicycle, (c) rotation, (d)-(e) confusing image
features; motorbike false positives due to (f)-(g) incorrect scale estimation,
(h) confusion with bicycle class; car false positive due to (i) image region
coincidentally having edges similar to the contour of a car.

112

Figure 7.11: Some sample false negatives shown in green: missed bicycles
due to (a) severe truncation, (b) frontal bike view, (c) perspective distortion;
car false negatives caused by (d) very small scale, (e) unusual antique car, (f)
severe occlusion.

7.4.3 Failure modes

In addition to the quantitative results reported in the last section, we have ex-
amined the results qualitatively to understand the situations that tend to cause
localization errors. The error analysis was conducted for three object classes: cars,
bicycles and motorbikes. For each class we chose an operating point near the
midpoint of the precision-recall curve and examined the false positives and false
negatives at that point by hand. For each error we identified its likely cause. Spec-
ulating on the causes is a subjective process, although for most of the failures the

cause was obvious.

We found that most false positives could be explained by three broad failure

113

Figure 7.12: The 32 highest-probability airplane localizations.

114

Figure 7.13: The 32 highest-probability bicycle localizations.

115

Figure 7.14: The 32 highest-probability car localizations.

116

Figure 7.15: The 32 highest-probability cow localizations.

117

Figure 7.16: The 32 highest-probability motorbike localizations.

118

Figure 7.17: The 32 highest-probability television localizations.

119

modes:

1. Confusion with other classes: There was a significant amount of cross-
confusion between the object classes. The most common errors involved
the vehicular classes like bicycles, cars, buses, and motorbikes, presumably
because they all share a For motorbikes, confusion with bicycles and cars
accounted for over 60% of the false positives, and for bicycles, confusion
with cars and motorbikes accounted for almost 50%. Most false positives
from the television detector were actually framed pictures, which look nearly

identical to flat-panel displays.

2. Other confounding regions in the scene: About 15% of false alarms
occurred in densely textured regions, which can cause our appearance models
to hallucinate small object parts and cause false positives. Figure 7.10(a)
shows an example. Pairs of circles appearing in a scene also were a source
of false positives, since they are visually similar to the wheels of a bicycle
or motorbike. Figures 7.10(d) and (e) show examples of false localizations

produced by pairs of circles.

3. Correct detection but poor localization: The detectors sometimes cor-
rectly identify an object but give a poor-quality bounding box. These poor
localizations are consequently scored as false positives by the evaluation cri-
terion. This typically occurs when the detector incorrectly estimates the
object scale (as in Figure 7.10(f) and (g)) or when the object is rotated (e.g.
Figure 7.10(c)).

Most false negatives occurred in one of the following situations:

1. Occlusion and truncation: A large fraction of the object instances in the

120

VOC dataset are either occluded by other objects or truncated by the image
boundary. In some cases the objects are barely visible. Examples are shown

in Figure 7.11(a) and (f).

. Small objects: A large percentage of car and motorbike false negatives are
due to small object scale. The VOC ground truth data includes bounding
boxes for cars of any visible size, even those that are so small that individual
parts cannot be made out. Our part-based object localization approach is
unlikely to be able to detect such small objects. For example, the barely

perceptible car in Figure 7.11(d) counts as a false positive.

. Unusual viewpoints: Objects viewed from certain unusual viewpoints were
difficult for our object detector. For example, object close-ups were detected
poorly because of the geometric distortion that occurs from such a viewpoint.
Also difficult were views for which models had not been trained, such as top
views of cars and head-on views of bicycles. For bicycles and motorbikes, the
greatest source of viewpoint-related false negatives occurred for views from

the side-front or side-rear (e.g. see Figure 7.11(c)).

. Unusual instances of the object class: All three detectors failed to rec-
ognize some of the more unusual instances of the object class. For example,
pick-up trucks and vans were often missed by the car detector because they
represent such a small fraction of the training data. Another example is the

British taxicab in Figure 7.11(e).

121

CHAPTER 8
SUMMARY AND CONCLUSIONS

In this thesis we have studied techniques for visual object class recognition. Our
approach is based on deformable part-based models, which represent an object class
with a local appearance model for each individual part as well as a geometric model
that captures the relative spatial constraints between parts. We used a statistical
framework to represent uncertainty in a principled way, and posed recognition as

a statistical inference problem.

A major contribution of the thesis is a family of probabilistic spatial mod-
els called k-fans, introduced in Chapter 2. In these models, the degree of spatial
constraint is explicitly controlled by a parameter k. We showed that this family in-
cludes several approaches in the literature as special cases, including bags-of-parts,
constellation models, and pictorial structures. By bringing these approaches into
a common framework, we were able to reason about the assumptions that different
approaches make and to directly compare the advantages and disadvantages of

each approach.

In Chapter 3 we presented efficient algorithms for performing classification and
localization using the k-fan models. These inference algorithms are ezact, in that
the answer they give is an actual global maximum of the posterior (in the case of
localization) or the actual sum over all configurations of the model (in the case
of classification). This is in contrast to almost all other part-based approaches
in the literature which use approximations like bottom-up inference with feature
detection. The computational cost of our inference algorithms is linear in the
number of parts in the model and number of pixels in the image, but exponential

in k. Thus fast, exact inference is possible for small k. In fact, we showed that

122

the asymptotic running time for a Gaussian 1-fan is identical to that of a 0-fan,
meaning that simple bag-of-parts models could include some spatial constraints at

no additional computational cost.

The k-fan model and exact inference algorithms allowed us to explicitly study
the trade-off between the degree of spatial constraint in the model and the compu-
tation complexity of inference. In experimental results we found a large improve-
ment in recognition performance between 0-fans and 1-fans, but little improvement
with values of k greater than 2. We also found that exact inference with 1-fan mod-
els outperformed constellation models, which use a large value of k£ but approximate
inference. Thus our results suggest that for many object classes, using a relatively

weak spatial model but an exact inference algorithm is the best trade-off position.

Most other part-based approaches begin by running a feature detector that
identifies a small set of possible locations for each part. In contrast, our exact
inference algorithm employs feature operators that give a likelihood at every lo-
cation in the image. Our statistical framework is general enough to allow almost
any kind of feature operator. We described two specific feature operators in Chap-
ter 4, one based on small templates of edge features and another based on gradient

histograms.

In Chapter 5 we presented algorithms for automatically learning object models
from training images. Unlike most other learning approaches, ours does not use
feature detection or assume a pre-defined part appearance model. In contrast, we
learn the appearance and spatial components of the model simultaneously. We
presented three different algorithms that differ in the amount of supervision they
require: a weakly-supervised method that needs only a set of images known to

contain the object of interest, a partially-supervised method that requires bounding

123

boxes around the object instances, and a fully-supervised method that requires
the location of each part in each training image. The less supervised methods
require less human effort but are also more complex and take more computation
to complete the learning process. Thus the family of algorithms offers a trade-off
between computation cost and human effort. Surprisingly, more supervision does
not necessarily lead to better models; in fact, our experimental results show that
models trained by the weakly-supervised algorithm consistently outperforms those

learned under full supervision.

In Chapter 6 we showed how the models and inference algorithms can be gener-
alized to capture evidence across multiple image scales. This is useful for including
contextual cues from the surrounding scene in making classification and localiza-
tion decisions. We showed how to build a single model that includes evidence
from both the scene and the object and how to perform exact inference on this
unified model. The scene and object models were trained automatically using our

partially-supervised learning algorithm.

Finally we presented extensive experimental results in Chapter 7, testing the
proposed methods on both the classification and localization tasks. We used sev-
eral test datasets including two very challenging collections of consumer images.
We found that our approach outperformed other part-based spatial models such as
constellation models on the classification task. On the localization task, we found
that the hierarchical and scene models proposed in Chapter 6 improved the perfor-
mance significantly. Our approach works very well for relatively rigid objects like
airplanes, motorbikes, and bicycles, meeting or exceeding the performance of the
best known algorithms. For less rigid objects like animals, our approach performs

less well but is still among the best algorithms in the literature.

124

APPENDIX A
COMPUTING CONVOLUTION AND MIN-CONVOLUTION

The efficient inference algorithms presented in Chapter 3 for Gaussian k-fan
models use two variants of the convolution operator. This appendix defines these
operations and presents several techniques for computing them; the best technique
for a given application depends on the form of the input functions and the accuracy
that is desired. We first describe the regular convolution operation and explain
how to compute it exactly using the Fourier transform. If one of the signals is
Gaussian we show how to compute a good approximation of the convolution in
linear time, first in one dimension and then generalizing to multiple dimensions.
These techniques are well-known as the convolution operator is quite pervasive in
computer vision and signal processing in general. We describe them here as a way
of introducing analogous techniques for the lesser-known minimum-convolution
operator, which we describe in Section A.2. We show that min-convolution can be
viewed as a generalization of the distance transform. We describe how to compute
the min-convolution efficiently when one of the functions is convex, as is the log-

normal used by the localization algorithm of Section 3.2.1.
A.1 Convolution

Discrete convolution is a well-known technique that is used extensively in signal

and image processing [39]. The convolution of two discrete functions f and g is,
(f*9)p)=>_ fa)-glp—q). (A1)
q

In practice the functions are finite in that they are non-zero over some finite portion

of their domain and are zero elsewhere. Also, in many applications one of the

125

functions has a much smaller non-zero domain than the other. This is the case
for the classification algorithm of Section 3.1, in which we convolve a probability
map with a relatively small Gaussian kernel. We will generally be interested in
functions of two dimensions, but all of the discussion and techniques presented

here generalize to arbitrary dimensionality.

The naive implementation of convolution involves computing the sum in equa-
tion (A.1) explicitly. This takes time O(|f] - |g|), where |f| and |g| represent
the number of discrete elements in the non-zero domain of f and g, respectively.
This approach is reasonable when one of the functions is small but is otherwise
prohibitively expensive. We now review some of the faster implementations of
convolution. All of these techniques are well-known, but we review them here to

serve as a basis for the discussion of min-convolution in Section A.2.

A.1.1 Frequency-based method

A faster method is to compute the convolution in the frequency domain. The
convolution theorem states that the Fourier transform of the convolution of two
signals is equal to the product of their Fourier transforms [39]. Thus convolution
can be computed with two Fourier transforms, a multiplication, and an inverse

Fourier transform,
frg=FHF{f} Flo}},

where - denotes pointwise multiplication of complex numbers. Using the Fast
Fourier Transform (FFT) algorithm [11], this computation takes asymptotic time
O(|f]log|f|+]g]log|g|)- In practice this method is the best choice for large convo-

lution kernels. For smaller kernels the naive algorithm above may be faster because

126

of the large hidden constants in the running times for the FFT and complex mul-

tiplications.

A.1.2 Separable kernels

Faster convolution is possible when one of the signals is separable, in that it can

be written as a product over dimensions,

g(p) = Hgi(pi),

where p; denotes the i-th component of the vector p and d is the dimensionality of p.
The convolution can then be computed as successive one-dimensional convolutions

in each of the dimensions,

fxg=/f*g1%g2%*..%gy.

This takes time O(]| f| - |g;| - d), where |g;| denotes the size of the largest dimension

in the domain of g.

A.1.3 Gaussian kernel approximations

Further speed-ups in convolution are possible if at least one of the signals is a Gaus-
sian. Without loss of generality, assume that f is an arbitrary sampled function

and ¢ is the Gaussian,
9(p) = N(plp, ¥).

This situation is of interest in our application to Gaussian k-fan inference in Chap-

ter 3, in which one function is an arbitrary probability distribution produced by a

127

part operator and the other is a small Gaussian kernel. If the covariance matrix X

is diagonal, then the convolution kernel is separable,

d

9(p) = [[N Wil s, Si), (A.2)

i=1
and the convolution can be computed using the method presented in the last sec-
tion. In fact, very good approximations of one-dimensional Gaussian convolutions
can be obtained in linear time using multiple convolutions with a box filter [85].
Thus for diagonal ¥, a good approximation to convolution can be computed in

total time O(|f]| - d).

If the covariance matrix is not diagonal, the factorization over axis-oriented
dimensions in equation (A.2) does not hold. One approach to overcoming this
problem is to rotate the signals f and g such that the Gaussian in g is axis-oriented.

In other words, we can rewrite the convolution as,

(f*9)(p) = f(R"p) * N(R"p|R" 11, '),
where
> = (R"SR),

and R is a rotation matrix (i.e. a real square matrix with BT = R and |R| = 1).
We can find R such that >’ is a diagonal matrix using the eigendecomposition of
¥ [53],

¥ = RY'R".

Such a decomposition is guaranteed to exist because as a covariance matrix, ¥ is

symmetric and positive definite [77].

This suggests an approach for “converting” a convolution with an arbitrary

multivariate Gaussian kernel into a separable problem. We first find a rotation

128

matrix R and diagonal matrix ¥’ using the eigendecomposition of ¥. Then we
rotate the coordinates of the signal f using R, run separable convolution with >,
and then rotate the signal back. Each rotation requires O(|f|) time. The total
time required to compute the convolution thus takes O(|f|- d) time, using the box

filter approximation for the 1-D Gaussian convolutions.

We have found that this method is the fastest in practice. Very efficient al-
gorithms exist for image rotation based on several passes of simple shearing op-
erations [60]. On most modern computers the rotations can be performed by the
Graphics Processing Unit (GPU), thus taking very little CPU time [34]. Note how-
ever that some error is introduced because interpolation is necessary when rotating
the discrete function f and re-sampling it on a rectangular grid. Thus this method
produces an approximation to convolution with a Gaussian kernel. We have found
the approximation to be very good in practice and adequate for our application. If
an exact answer is required, the method based on Fourier transforms may be used

instead.

A.2 Min-convolution

A variant of standard convolution is minimum-convolution, in which the sum is

replaced by a minimization,

(f®g)p) = mqinf(Q) +9(p—q).

As with our discussion of convolution, we will assume that f and g are functions of
arbitrary dimensionality sampled along a discrete grid, and that they are non-zero

over some finite domain.

129

Min-convolution can be computed by brute force in O(| f|-|g|) time for arbitrary

sampled functions f and g. Curiously, the fastest known algorithm for computing

£1-]gl
log [f]-|g]

the min-convolution of two arbitrary functions is O() — much worse than
the O(|f]log|f] + |g|log|g|) bound for standard convolution [3]. The difficulty
stems from the fact that min-convolution is not invertible, whereas the standard

convolution is. Thus there is no known analogue to the Fourier transform-based

approach from standard convolution.

However for object localization with Gaussian k-fans we are especially inter-
ested in min-convolutions in which one of the functions is the logarithm of a Gaus-
sian, as discussed in Section 3.2. The remainder of this section describes several
methods for computing the min-convolution efficiently with this restriction placed
on one of the functions. We first discuss the connection between min-convolution
and a related operation, the generalized distance transform. We then give an
O(nlogn) algorithm for computing the 1-D min-convolution between two func-
tions where one of them is convex. Finally we consider how to extend this result
to functions of arbitrary dimensionality, assuming that one of the functions is a

log-Gaussian.

A.2.1 Connection with distance transform

The distance transform of a binary image is a well-known technique in image
processing and computer vision [39]. It is used to find skeletons of digital shapes
and to implement morphological operations such as dilation, for example. It is also
key to efficient implementations of object recognition using Hausdorff distance [44].

For each pixel, the transform computes the distance to the nearest pixel whose

130

binary value is one. More formally, the distance transform of a binary image [is,

Da{1}(p) = min (d(p. q) + 1(q))

where 1(¢) is an indicator function that is one if I(¢) = 1 and is co otherwise.
The function d(p, ¢) is an arbitrary distance metric, with the most common choice
being Euclidean distance (Ls norm). Fast, linear-time algorithms exist for this and

other common choices of distance metric [27].

A generalization of the distance transform is possible by removing the restric-

tion that the input is binary,

Da{I}(p) = min (d(p,) + I(g)- (A-3)

This has been called the generalized distance transform [30]. Note that the input

need not be an image, but may be any function sampled on a regular grid.

There is an interesting connection between the generalized distance transform

and min-convolution. In particular, for any functions f and g,

f®9:Dg’{f}a

where

g (p.q) =9 —q).

A.2.2 Min-convolution in one dimension

An efficient algorithm for the one-dimensional generalized distance transform is
presented in [29] for the special case that the distance metric is a convex function.
Many useful distance functions are convex, including the Euclidean distance and

the Mahalanobis distance. That algorithm uses the fact that the distance transform

131

is the lower envelope of a set of convex functions. The algorithm runs in amortized
O(|f]+]g|) time, but the asymptotic running time analysis hides a relatively large

constant.

We present a much simpler algorithm for computing the one-dimensional dis-
tance transform with a convex function. The asymptotic running time is worse
than that of [29] by a logarithmic factor, but it is faster in practice for typical
images because it has a smaller hidden constant. The algorithm uses a divide-and-

conquer strategy that depends upon the following two theorems.

Theorem A.2.1 For any functions f,g : R — R with g conver, and any p,d € R

with p < d, there exists r € R such that

fr)+glp—r)=(f®9) (),

where

r< argmqinf(q) +g(d —q).

Proof We prove the theorem by contradiction. Suppose that for some f, g, p, and

d there is no such r. Then let ¢* > s be the smallest value such that,

(fegl)=fq)+9lp—q),

where s is a minimizing parameter of (f ® g)(d),

5= argmqinf(Q) +g(d - q).

Because s is a minimizing parameter it must be that,

f(s)+g(d—s) < f(q") +g(d—q"),

132

and since ¢* is the least minimizing parameter of (f ® g)(p),

f(@)+g9lp—q") < f(s) +g(p—s).

By combining these two inequalities we obtain,

glp—s)+g(d—q")>g(d—s)+gp—q"). (A4)

From the facts that s < ¢* and p < d, we have p —¢* < d—q¢* < d— s and
p—q* <p—s<d-—s. Since g is convex, by the definition of convexity we have

that for any real numbers x and y and any ¢ € [0, 1],

gtz + (1 —t)y) <tg(z)+ (1 —1t)g(y),

and in particular,

q-—s p—d
d—q¢)< ——glp—q) + d—s),
9(Q)_d_s_p+q*9(P q") d_s_p+q*g(s)
d—p q—s
< ——F ap—q* d —
g9(p S)_d_s_p+q*g(p Q)+d_s_p+q*g(s)

By combining these inequalities we can write,

glp—s)+g(d—q*) < gld—s)+glp—q").

But this inequality contradicts equation (A.4). Thus it must be that ¢* < s, and

the theorem is proven. |

Theorem A.2.2 For any functions f,q: R — R with g convex, and any p,d € R

with p > d, there exists r € R such that

fr)+glp—r)=(f®9)D),

where

r > argmqinf(Q) +9(d—q).

133

Proof By analogy with the above proof. |

Taken together, these theorems mean that once the min-convolution at some
point d is evaluated, the domain of f can be partitioned such that evaluating
the min-convolution at points to the left of d involves only the left partition, and
evaluating it at points to the right of d involves only the right partition. This
suggests a recursive algorithm for computing the min-convolution at all points in

the domain of f, which we now present.

MINCONVOLVESINGLEPOINT(F, G, f1, f2,d)

s <= f
: fori:fl tOfg do
if Fli]+ G[d —i] < F[s] + G[d — s] then
§ <=
end if
end for
return s

NPTy

MINCONVOLVE(F, G, D, fi, fo,dy, ds)
1: if dy — d; > 0 then
3: s < MINCONVOLVESINGLEPOINT(F, G, f1, f2,d)
4: DIld] < Fls| + G[d — 5]
5. MINCONVOWVE(F, G, D, f1,s,dy,d — 1)
6: MINCONVOLVE(F, G, D, s, fo,d+ 1,ds)
7: end if

Calling MINCONVOLVE(F, G, D, f1, f2, f1, f2) computes the min-convolution of
array F' having domain [f;, fo] with array G and places the result into an output
array D. The worst-case running time of the algorithm is O(| f|log | f|) (where | f| =
fo — fi +1). To see this, note that each recursive call to MINCONVOLVE divides
the output array in half, so the maximum depth of recursive calls is O(log|f]).

Moreover at any given depth in the call chain of MINCONVOLVE, all of the calls

to MINCONVOLVESINGLEPOINT take total time O(|f]). Thus the overall running

134

time is O(|f| log | f]).

In practice, this algorithm is typically faster than the linear time algorithm
of [29] for signals with |f| on the order of a thousand or less. This is the typical
scenario for the object detection work we present here, where f is a row or column of
an image. To measure this more concretely, we performed an experiment in which
we min-convolved random signals of different sizes with the function g(z) = 2?
and measured the running times on a 3.0 GHz Xeon system. We found that our

recursive algorithm was 32.4% faster when |f| = 10, 9.9% faster when |f| = 100,

8.6% faster when |f| = 1,000, and 21.9% slower when |f| = 10, 000.

A.2.3 Multidimensional min-convolution

As with regular convolution, min-convolution with multi-dimensional functions can
be computed using successive applications of the one-dimensional operation if a
separability condition is satisfied. In particular, if one of the functions can be

written as a sum over dimensions,

d

a(p) = gilp),

i=1

then the min-convolution can be written in terms of one-dimensional operations,

[Rg=fR®n1®¢p®..& g4

This is analogous to convolution with separable filters discussed in Section A.1.2

except that the factorization is a sum over dimensions instead of a product.

Thus we have a procedure for performing the min-convolution of an arbitrary

signal with another function that is separable and convex. One such function that

135

satisfies both requirements is the squared Euclidean distance,

d

de(p,q) = Z(pz - q)°,

i=1
where d is the number of dimensions in the signal. Min-convolution with the Eu-
clidean distance is useful for applications like Hausdorff matching and performing

the medial axis transform [39).

As we discuss in Section 3.2, for localization with Gaussian k-fans we are in-

terested in the squared Mahalanobis distance,

du(p,q)=(p—q)"S " (p—q). (A.5)

This distance function can be written as a sum over dimensions if and only if ¥ is
diagonal.! Moreover the Mahalanobis distance is convex if ¥ is positive definite.?
The restriction on positive definiteness is not a problem in our application because
Gaussian covariance matrices are positive definite by definition. The restriction
that X is diagonal is more problematic because in general we will be interested
in arbitrary covariance matrices. One approach to overcoming this problem is to
rotate X such that is diagonal, as we did in Section A.1.3 for Gaussian convolution.

That is, equation (A.5) can be rewritten,

dy(p,q) = (R"(p —)" & (R"(p — q)) ,

where

> = (R"SR),

and R is a rotation matrix such that >’ is diagonal.

INote that the Euclidean distance is a special case of the Mahalanobis distance in which ¥ is
the identity matrix.

2Here is a sketch of the proof of this fact. A continuous, twice-differentiable function is
convex if and only if its Hessian is positive definite. It is easy to show that the Hessian H of the
Mahalanobis distance between any two functions is equal to 227!, Thus if ¥ is positive definite,
then so is 2X 7!, as the inverse of a positive definite matrix is also positive definite.

136

Thus to perform min-convolution of a signal f with an arbitrary Mahalanobis
distance, we rotate the coordinate system of the signal according to R, run the
one-dimensional distance transform algorithm of Section A.2.2 along each dimen-
sion using Y, and then perform the inverse rotation on the result. The total time
required to compute the d-dimensional min-convolution with the Mahalanobis dis-
tance is O(d| f|log|f|) using the algorithm in A.2.2 and O(d|f|) using the algorithm
in [29]. The result is exact if ¥ is diagonal; otherwise it is an approximation as

some error is introduced due to interpolation during rotation.

137

1]

2]

3]

4]

[5]

[6]

7]

8]

[9]

[10]

BIBLIOGRAPHY

Saad Ali and Mubarak Shah. A supervised learning framework for generic
object detection in images. In IEEE International Conference on Computer
Vision, pages 1347-1354, Washington, DC, USA, 2005.

Yali Amit and Alain Trouvé. Pop: Patchwork of parts models for object recog-
nition. International Journal of Computer Vision, 75(2):267-282, November
2007.

Laszl6 Babai and Pedro Felzenszwalb. Computing rank convolutions with a
mask. Technical report, University of Chicago, 2006.

Irving Biederman. Perceiving real-world scenes. Science, 177(4043):77-80,
1972.

Michael C. Burl and Pietro Perona. Recognition of planar object classes. In
IEEE Conference on Computer Vision and Pattern Recognition, 1996.

Michael C. Burl, Markus Weber, and Pietro Perona. A probabilistic approach
to object recognition using local photometry and global geometry. In European
Conference on Computer Vision, 1998.

John Canny. A computational approach to edge detection. IEEFE Transactions
on Pattern Analysis and Machine Intelligence, 8(6), 1986.

Stefan Carlsson. Geometric structure and view invariant recognition.
Philosphical Transactions: Mathematical, Physical and Engineering Sciences,
356(1740), 1998.

Ondfej Chum and Andrew Zisserman. An exemplar model for learning object
classes. In IEEE Conference on Computer Vision and Pattern Recognition,
2007.

Peter Clifford. Markov Random Fields in statistics. In Geoffrey R. Grimmett
and Dominic J. A. Welsh, editors, Disorder in physical systems, pages 19-32,
Oxford, 1990. Clarendon Press.

138

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (second edition). MIT Press and McGraw-
Hill, 2001.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegel-
halter. Probabilistic Networks and Ezxpert Systems. Springer, 1999.

David J. Crandall, Pedro Felzenszwalb, and Daniel P. Huttenlocher. Object
recognition by combining appearance and geometry. In Toward Category-Level
Object Recognition. Springer, 2007.

David J. Crandall, Pedro F. Felzenszwalb, and Daniel P. Huttenlocher. Spatial
priors for part-based recognition using statistical models. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 10-17, 2005.

David J. Crandall and Daniel P. Huttenlocher. Weakly supervised learning of
part-based spatial models for visual object recognition. In Furopean Confer-
ence on Computer Vision, 2006.

David J. Crandall and Daniel P. Huttenlocher. Composite models of objects
and scenes for category recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

Antonio Criminisi. Microsoft Research Cambridge object recognition image
database version 1.0. 2004.

Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and
Cédric Bray. Visual categorization with bags of keypoints. In European Con-
ference on Computer Vision Workshop on Statistical Learning in Computer
Vision, 2004.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 886-893, Washington, DC, USA, 2005. IEEE Computer Society.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1977.

139

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Gyuri Dorko and Cordelia Schmid. Object class recognition using discrimina-
tive local features. Technical report, INRIA Grenoble, September 2005.

Bruce A. Draper, Jose Bins, and Kyungim Baek. ADORE: adaptive object
recognition. In Computer Vision Systems, pages 522 — 537, 1999.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley-Interscience, 2000.

DeLong E.R., DeLong D.M., and Clarke-Pearson D.L.. Comparing the areas
under two or more correlated roc curves: a non-parametric approach. Bio-
metrics, 44(3), 1998.

Mark Everingham, Andrew Zisserman, Christopher K. L
Williams, and Luc Van Gool. The PASCAL Visual Object
Classes Challenge 2006 (VOC2006) Results. http://www.pascal-
network.org/challenges/VOC /voc2006 /results.pdf.

Mark Everingham, Luc Van Gool, Christopher K. 1. Williams,
John Winn, and Andrew Zisserman. The PASCAL Visual Ob-
ject Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC /voc2007 /workshop /index.html.

Ricardo Fabbri, Luciano da F. Costa, Julio C. Torelli, and Odemir M. Bruno.
2D Euclidean distance transform algorithms: A comparative survey. ACM
Computing Surveys, 40(1):2:1-2:44, 2007.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual mod-
els from few training examples: an incremental Bayesian approach tested on
101 object categories. In IEEE Conference on Computer Vision and Pattern
Recognition Workshop on Generative Model-based Vision, 2004.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance transforms of
sampled functions. Technical Report TR2004-1963, Cornell Computing and
Information Science, September 2004.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for
object recognition. International Journal of Computer Vision, 61(1), 2005.

140

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Pedro F. Felzenszwalb, David McAllester, and Deva Ramanan. A discrimi-
natively trained, multiscale, deformable part model. In IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

Rob Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition
by unsupervised scale-invariant learning. In IEEE Conference on Computer
Vision and Pattern Recognition, 2003.

Rob Fergus, Pietro Perona, and Andrew Zisserman. A sparse object category
model for efficient learning and exhaustive recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 380-387, 2005.

Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Integrating multiple
model views for object recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2004.

Martin A. Fischler and Robert A. Elschlager. The representation and match-
ing of pictorial structures. IEEE Transactions on Computer, 22(1), 1973.

David Ger6nimo, Antonio Lopez, and Angel D. Sappa. Computer vision ap-
proaches to pedestrian detection: Visible spectrum survey. In Recognition and
Image Analysis, pages 547-554. Springer, 2007.

Joseph Gil and Michael Werman. Computing 2-d min, median, and max
filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(5):504-507, May 1993.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

John Gribbin. In search of the Big Bang: The life and death of the universe.
Penguin, 1999.

141

|41] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Geometric context from a
single image. In IEEFE International Conference on Computer Vision, pages
654-661, 2005.

[42] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Putting objects in per-
spective. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2137-2144, 2006.

[43] Rui Huang, Vladimir Pavlovic, and Dimitris N. Metaxas. A graphical model
framework for coupling MRFs and deformable models. In IEEE Conference
on Computer Vision and Pattern Recognition, pages II: 739-746, 2004.

[44] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge.
Comparing images using the Hausdorff distance. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15(9):850-863, September 1993.

[45] Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects
by alignment with an image. International Journal of Computer Vision,
5(2):195-212, November 1990.

[46] Harold Jeffreys. The Theory of Probability. Oxford University Press, third
edition, 1961.

[47] Thorstem Joachims. Making large-scale SVM learning practical. In Bern-
hard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola, editors,
Advances in kernel methods — support vector learning. MIT Press, 1999.

[48] Timor Kadir and Michael Brady. Scale, saliency and image description. In-
ternational Journal of Computer Vision, 45(2):83-105, 2001.

[49] Xiangyang Lan and Daniel P. Huttenlocher. A unified spatio-temporal ar-
ticulated model for tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, 2004.

[50] Xiangyang Lan, Stefan Roth, Daniel P. Huttenlocher, and Michael Black.
Efficient belief propagation with learned higher-order Markov Random Fields.
In European Conference on Computer Vision, 2006.

142

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Steffen Lauritzen. Graphical Models. Oxford, 1996.

Marius Leordeanu and Robert Collins. Unsupervised learning of object models
from video sequences. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 1142 — 1149, June 2005.

Charles F. Van Loan. Introduction to Scientific Computing. Prentice-Hall,
2000.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004.

Jiebo Luo and David J. Crandall. Robust color object detection using spatial-
color joint probability functions. IEEE Transactions on Image Processing,
15(6):1443-1453, 2006.

Pierre Moreels and Pietro Perona. Evaluation of features detectors and de-
scriptors based on 3D objects. In IEEE International Conference on Computer
Vision, volume 1, pages 800-807, 2005.

Kevin P. Murphy, Antonio B. Torralba, and William T. Freeman. Graphical
model for recognizing scenes and objects. In Proceedings of Neural Information
Processing Systems, 2003.

Andreas Opelt, Michael Fussenegger, Axel Pinz, and Peter Auer. Weak hy-
potheses and boosting for generic object detection and recognition. In Euro-
pean Conference on Computer Vision, pages 71-84, 2004.

Andreas Opelt, Axel Pinz, Michael Fussenegger, and Peter Auer. Generic
object recognition with boosting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(3):416-431, 2006.

Alan Paeth. A fast algorithm for general raster rotation. In Graphics Interface,
pages 77-81, 1986.

Karre B. Peterson and Michael S. Peterson. The matrix cookbook. September
2007.

143

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Jean Ponce, Tamara L. Berg, Michael Everingham, David Forsyth, Martial
Hebert, Svetlana Lazebnik, Marcin Marszatek, Cordelia Schmid, Bryan C.
Russell, Antonio Torralba, Christopher Williams, Jianguo Zhang, and Andrew
Zisserman. Dataset issues in object recognition. In Towards Category-Level
Object Recognition, pages 29-48. Springer, 2006.

Jean Ponce, Svetlana Lazebnik, Fred Rothganger, and Cordelia Schmid. To-
wards true 3D object recognition. In Reconnaissance des Formes et Intelli-
gence Artificielle, 2004.

Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun. Un-
supervised learning of invariant feature hierarchies with applications to object
recognition. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 411-426, 2007.

Donald J. Rose. On simple characterizations of k-trees. Discrete Mathematics,
7(3-4):317-322, 1974.

William Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance.
Springer-Verlag, 1996. Lecture Notes in Computer Science volume 1173.

Bryan C. Russell, Alexei A. Efros, Josef Sivic, William T. Freeman, and An-
drew Zisserman. Using multiple segmentations to discover objects and their
extent in image collections. In IEEE Conference on Computer Vision and
Pattern Recognition, 2006.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, NJ, 1995.

Gerard Salton. Introduction to Modern Information Retrieval (McGraw-Hill
Computer Science Series). McGraw-Hill Companies, September 1983.

Silvio Savarese and Li Fei-Fei. 3D generic object categorization, localization
and pose estimation. In IEEE International Conference on Computer Vision,

2007.

Andrea Selinger and Randal C. Nelson. A perceptual grouping hierarchy
for appearance-based 3D object recognition. Computer Vision and Image

144

[72]

73]

[74]

|75]

[76]

[77]

78]

[79]

[80]

Understanding, 76(1):83-92, October 1999.

Thomas Serre, Lior Wolf, Stanley Bileschi, and Maximilian Riesenhuber. Ro-
bust object recognition with cortex-like mechanisms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(3):411-426, 2007.

Thomas Serre, Lior Wolf, and Tomaso Poggio. A new biologically motivated
framework for robust object recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2005.

Raymond A. Serway. Physics for Scientists and Engineers. Harcourt, 5th
edition, 1999.

Jamie Shotton, John M. Winn, Carsten Rother, and Antonio Criminisi. 7ez-
tonBoost: Joint appearance, shape and context modeling for multi-class object
recognition and segmentation. In Furopean Conference on Computer Vision,
pages 1-15, 2006.

Josef Sivic, Bryan Russell, Alexei A. Efros, Andrew Zisserman, and William T.
Freeman. Discovering objects and their location in images. In IEEFE Interna-
tional Conference on Computer Vision, 2005.

Gilbert Strang. Introduction to Linear Algebra. Wellesley Cambridge, 3rd
edition, 2003.

Erik B. Sudderth, Antonio Torralba, William T. Freeman, and Alan S. Will-
sky. Learning hierarchial models of scenes, objects, and parts. In IEEFE
International Conference on Computer Vision, 2005.

Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using
belief propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(7), 2003.

Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection using
optical sensors: a review. In IEEE Conference on Intelligent Transportation
Systems, pages 585590, 2004.

145

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89)]

[90]

Carlo Tomasi and Takeo Kanade. Detection and tracking of feature points.
Technical Report CMU-CS-91-132, Carnegie Mellon University, 1992.

Antonio B. Torralba, Kevin P. Murphy, William T. Freeman, and Mark A.
Rubin. Context-based vision system for place and object recognition. In /EEE
International Conference on Computer Vision, pages 273-280, 2003.

Douglas L. Vail, Manuela M. Veloso, and John D. Lafferty. Conditional ran-
dom fields for activity recognition. In Proceedings of the International Con-

ference on Autonomous Agents and Multi-agent Systems, 2007.

Yair Weiss and William T. Freeman. What makes a good model of natural
images? In IEEE Conference on Computer Vision and Pattern Recognition,
2007.

Williams M. Wells, III. Efficient synthesis of Gaussian filters by cascaded
uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 8(2), 1986.

John Winn, Antonio Criminisi, and Thomas Minka. Object categorization
by learned universal visual dictionary. In IEEFE International Conference on
Computer Vision, 2005.

Kevin Woods, Diane Cook, Lawrence Hall, Kevin W. Bowyer, and Louise
Stark. Learning membership functions in a function-based object recognition
system. Journal of Artificial Intelligence Research, 3:187-222, 1995.

Hanhong Xue and Venu Govindaraju. Hidden Markov Models combining
discrete symbols and continuous attributes in handwriting recognition. /JEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(3):458-462,
2006.

Wenyi Zhao, Rama Chellappa, P. Jonathon Phillips, and Azriel Rosenfeld.
Face recognition: A literature survey. ACM Compututing Surveys, 35(4):399—
458, 2003.

Giinter M. Ziegler. Lectures on polytopes. Springer-Verlag, New York, 1995.

146

