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Abstract

Recent work in structure from motion (SfM) has success-
fully built 3D models from large unstructured collections
of images downloaded from the Internet. Most approaches
use incremental algorithms that solve progressively larger
bundle adjustment problems. These incremental techniques
scale poorly as the number of images grows, and can drift
or fall into bad local minima. We present an alternative for-
mulation for SfM based on finding a coarse initial solution
using a hybrid discrete-continuous optimization, and then
improving that solution using bundle adjustment. The ini-
tial optimization step uses a discrete Markov random field
(MRF) formulation, coupled with a continuous Levenberg-
Marquardt refinement. The formulation naturally incorpo-
rates various sources of information about both the cameras
and the points, including noisy geotags and vanishing point
estimates. We test our method on several large-scale photo
collections, including one with measured camera positions,
and show that it can produce models that are similar to or
better than those produced with incremental bundle adjust-
ment, but more robustly and in a fraction of the time.

1. Introduction
Structure from motion (SfM) techniques have recently

been used to build 3D models from unstructured and uncon-
strained image collections, including images downloaded
from Internet photo-sharing sites such as Flickr [1, 6, 11,
25]. Most approaches to SfM from unstructured image col-
lections operate incrementally, starting with a small seed re-
construction, then growing through repeated adding of ad-
ditional cameras and scene points. While such incremental
approaches have been quite successful, they have two sig-
nificant drawbacks. First, these methods tend to be com-
putationally intensive, making repeated use of bundle ad-
justment [29] (a non-linear optimization method that jointly
refines camera parameters and scene structure) as well as
outlier rejection to remove inconsistent measurements. Sec-
ond, these methods do not treat all images equally, produc-
ing different results depending on the order in which pho-

tos are considered. This sometimes leads to failures due
to local minima or cascades of misestimated cameras. Such
methods can also suffer from drift as large scenes with weak
visual connections grow over time.

In this paper we propose a new SfM method for unstruc-
tured image collections which considers all the photos at
once rather than incrementally building up a solution. This
method is faster than current incremental bundle adjustment
(IBA) approaches and more robust to reconstruction fail-
ures. Our approach computes an initial estimate of the cam-
era poses using all available photos, and then refines that
estimate and solves for scene structure using bundle adjust-
ment. This approach is reminiscent of earlier work in SfM
(prior to recent work on unstructured collections) where a
good initialization was obtained and bundle adjustment was
used as a final nonlinear refinement step yielding accurate
camera parameters and scene structure. Thus one can think
of our approach as a means of providing a good initializa-
tion for highly unstructured image sets, one that is readily
refined using bundle adjustment.

Our initialization technique uses a two-step process com-
bining discrete and continuous optimization techniques. In
the first step, discrete belief propagation (BP) is used to
estimate camera parameters based on a Markov random
field (MRF) formulation of constraints between pairs of
cameras or between cameras and scene points. This for-
mulation naturally incorporates additional noisy sources of
constraint including geotags (camera locations) and vanish-
ing points. The second step of our initialization process
is a Levenberg-Marquardt nonlinear optimization, related
to bundle adjustment, but involving additional constraints.
This hybrid discrete-continuous optimization allows for an
efficient search of a very large parameter space of camera
poses and 3D points, while yielding a good initialization
for bundle adjustment. The method is highly parallelizable,
requiring a fraction of the time of IBA. By using all of the
available data at once (rather than incrementally), and by
allowing additional forms of constraint, we find that the ap-
proach is quite robust on large, challenging problems.

We evaluate our approach on several large datasets, find-
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ing that it produces comparable reconstructions—and in the
case of a particularly challenging dataset, a much better
reconstruction—to those produced by the state-of-the-art
IBA approach of [1], in significantly less time. We have
also created a dataset of several thousand photos, includ-
ing some with very accurate ground-truth positions taken at
surveyed points. On this dataset our method and IBA have
similar accuracy with respect to the ground truth, and thus
our method not only can yield similar results to IBA, but the
two achieve comparably accurate reconstructions.

2. Related work
Current techniques for large-scale SfM from unordered

photo collections (e.g, [1, 11, 21, 25]) make heavy use of
nonlinear optimization (bundle adjustment), which is sen-
sitive to initialization. Thus, these methods are run iter-
atively, starting with a small set of photos, then repeat-
edly adding photos and refining 3D points and camera
poses. While generally successful, incremental approaches
are time-consuming for large image sets, with a worst-case
running time O(n4) in the number of images.1 Hence re-
cent work has used clustering or graph-based techniques
to reduce the number of images that must be considered
in SfM [1, 3, 11, 26, 30]. These techniques make SfM
more tractable, but the graph algorithms themselves can be
costly, the number of remaining images can be large, and
the effects on solution robustness are not well understood.
Other approaches to SfM solve the full problem in a sin-
gle batch optimization. These include factorization meth-
ods [28], which in some cases can solve SfM in closed form.
However, it is difficult to apply factorization to perspective
cameras with significant outliers and missing data (which
are the norm in Internet photo collections).

Our work is most closely related to batch SfM methods
that solve for a global set of camera poses given local esti-
mates of geometry, such as pairwise relative camera poses.
These include linear methods for solving for global cam-
era orientations or translations [8, 14, 20], and L∞ meth-
ods for solving for camera (and possibly point) positions
given known rotations and pairwise geometry or point cor-
respondence [9, 22]. While fast, these methods do not have
built-in robustness to outliers, and it can be difficult to inte-
grate noisy prior pose information into the optimization. In
contrast, our MRF formulation can easily incorporate both
robust error functions and priors.

Some very recent work has incorporated geotags and
other prior information into SfM, as we do here. Sinha
et al. [24] proposed a linear SfM method that incorporates

1If the system is dense, direct methods for solving the reduced camera
matrix during bundle adjustment [29] take O(n3) time in the number of
images added so far. If a constant number of images is added during each
round of incremental SfM, the overall running time is O(n4). This can be
alleviated for some problems through sparse or iterative methods. [1]

vanishing points (but not geotags) in estimating camera ori-
entations. They use only a small number of pairwise esti-
mates of geometry (forming a spanning tree on an image
graph) for initializing translations, while our method in-
corporates all available information. Prior information has
also been used as a postprocess for SfM, e.g., by apply-
ing vanishing point or map constraints to straighten out a
model [12, 23], using sparse geotags to georegister an exist-
ing reconstruction [10], or using geotags, terrain maps, and
GIS data to register different connected components of a re-
construction [27]. In our work, we incorporate such geotag
and vanishing point information into the optimization itself.

Finally, other techniques for accelerating SfM have been
proposed, including methods for hierarchical reconstruc-
tion or bundle adjustment [7, 11, 15]. These methods still
depend on an incremental approach for initialization, but
structure the computation more efficiently. We present an
alternative that avoids incremental reconstruction entirely.

3. Global estimation of cameras and points
Our approach represents a set of images as a graph mod-

eling geometric constraints between pairs of cameras or be-
tween cameras and scene points (as binary constraints), as
well as single-camera pose information such as geotags (as
unary constraints). This set of binary and unary constraints
can be modeled as a Markov random field (MRF) with
an associated energy function on configurations of cam-
eras and points. A key contribution of our work is to use
both discrete and continuous optimization to minimize this
energy function; in particular, we use belief propagation
(BP) on a discretized space of camera and point parame-
ters to find a good initialization, and non-linear least squares
(NLLS) to refine the estimate. The power and generality of
this combination of techniques allow us to efficiently opti-
mize a more general class of energy functions than previous
batch techniques. This class includes robust error functions,
which are critical to obtaining good results in the presence
of noisy binary and unary constraints.

3.1. Problem formulation

The input to our problem is a set of images I =
{I1, . . . , In}, relative pose estimates between some pairs
of images (computed using two-frame SfM, described in
Section 4), point correspondences between the images, and
noisy absolute pose estimates for a subset of cameras (de-
rived from sources like geotags). Our goal is to estimate
an absolute pose for each camera, and a location for each
scene point, consistent with the input measurements and in
a geo-referenced coordinate system. We denote the abso-
lute pose of camera Ii as a pair (Ri, ti), where Ri is a 3D
rotation specifying the camera orientation and ti is the po-
sition of the camera’s optical center in a global coordinate
frame. The 3D position of a scene point is denoted Xk.
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Each pairwise estimate of relative pose between two
cameras Ii and Ij has the form (Rij , tij), where Rij is
a relative orientation and tij is a translation direction (in
the coordinate system of camera Ii). Given perfect pairwise
pose estimates, the absolute poses (Ri, ti) and (Rj , tj) of
the two cameras would satisfy

Rij = R>i Rj (1)
λijtij = R>i (tj − ti), (2)

where λij is an unknown scaling factor (due to the gauge
ambiguity in 2-frame SfM). We can also write constraints
between cameras and scene points. For a scene point Xk

visible to camera Ii, let xik denote the 2D position of the
point in Ii’s image plane. Then we can relate the absolute
pose of the camera and the 3D location of the point:

µikxik = KiRi(Xk − ti) (3)

where Ki is the matrix of intrinsics for image Ii (assumed
known, see Section 4), and µik is an unknown scale factor
(the depth of the point). Equation (3) is the basis for the
standard reprojection error used in bundle adjustment. The
above three constraints can be defined on a reconstruction
graph G = (V,EC ∪ EP ) having a node for each camera
and each point, a set EC of edges between pairs of cameras
with estimated relative pose, and a set EP of edges linking
each camera to its visible points. Bundle adjustment typi-
cally only uses point-camera constraints, but in batch tech-
niques constraints between cameras have proven useful.

These constraints are unlikely to be satisfied exactly be-
cause of noise and outliers in relative pose estimates, so we
pose the problem as an optimization which seeks absolute
poses most consistent with the constraints according to a
cost function. Ideally, one would minimize an objective on
camera poses and points simultaneously, as in bundle ad-
justment, but in practice many batch techniques solve for
camera rotations and translations separately [14, 22, 24].
We follow this custom and define an MRF for each of these
two subproblems. A key concern will be to use objectives
that are robust to incorrect two-frame geometry and point
correspondence.

Rotations. From equation (1) we see that for neighboring
images Ii and Ij in the reconstruction graph, we seek abso-
lute camera poses Ri and Rj such that dR(Rij ,R>i Rj) is
small, for some choice of distance function dR. This choice
of distance function is tightly linked with the choice of pa-
rameterization of 3D rotations. Previous linear approaches
to this problem have used a squared L2 distance between
3 × 3 rotations matrices (i.e., the Frobenius norm) or be-
tween quaternions. Such methods relax the orthonormal-
ity constraints on these representations, which allows for an
approximate least squares solution. In our case, we instead
define dR to be a robustified distance,

dR(Ra,Rb) = ρR(||Ra −Rb||), (4)

for some parameterization of rotations (detailed below), and
a robust error function ρR (we use a truncated quadratic).

For some cameras we may have noisy pose information
from evidence like vanishing point detection and camera
orientation sensors. To incorporate this evidence into our
optimization, we assume that for each camera Ii there is a
distance function dOi (R) that gives a cost for assigning the
camera to any absolute orientation R. This function can
have any form, including uniform if no prior information is
available; we propose a particular cost function in Section 4.

We combine the unary and binary distances into a total
rotational error function DR,

DR(R) =
∑

eij∈EC

dR
(
Rij ,R>i Rj

)
+ α1

∑
Ii∈I

dOi (Ri), (5)

whereR is an assignment of absolute rotations to the entire
image collection,EC is the set of camera-camera edges, and
α1 is a constant. We minimize DR using a combination of
BP and NLLS, as described in Section 4.

Camera and point positions. Having solved for camera
rotations, we fix them and estimate the positions of cam-
eras and a subset of scene points by solving another MRF
inference problem on the graph G. As with the rotations,
we define an error function using a combination of binary
and unary terms, where the binary terms correspond to the
pairwise constraints in equations (2) and (3), and the unary
terms correspond to prior pose information from geotags.

Equation (2) implies that for a pair of adjacent images Ii
and Ij we seek absolute camera positions ti and tj such that
the relative displacement induced by those absolute camera
positions, tj−ti, is close to the relative translation estimate
t̂ij = Ritij . Similarly, for a point Xk visible in image Ii,
we want the displacement Xk − ti to be close to the “ray
direction” x̂ik derived from the 2D position of that point in
the image (where x̂ik = R>i K−1

i xik given observed posi-
tion xik and known intrinsics Ki). Thus, we can utilize both
camera-camera constraints and camera-point constraints.

Previous linear approaches have considered one or the
other of these constraints, by observing that t̂ij×(tj−ti) =
0 for camera-camera constraints [8], or that x̂ik × (Xk −
ti) = 0 for camera-point constraints [20]. These constraints
form a homogeneous linear system, but the corresponding
least squares problem minimizes a non-robust cost func-
tion that disproportionately weights distant points. Alter-
natively, L∞ formulations to this problem have been de-
fined [9, 22], but these too lack robustness. In contrast, we
explicitly handle outliers by defining a robust distance on
the angle between displacement vectors,

dT(ta, tb, tab) = ρ(angleof(tb − ta, tab)), (6)

where ρ again denotes a robust distance function.
We also integrate geotags into the optimization. For

now, we simply assume that there is a cost function dGi (ti)
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for each camera Ii over the space of absolute translations,
which may be uniform if a geotag is not available; we pro-
pose a particular form for dGi in Section 4. We define the
translational error of an assignment of absolute positions T
to the cameras as a combination of binary and unary terms,

DT(T ) = α2

∑
eij∈EC

dT(ti, tj , t̂ij) + dT(tj , ti, t̂ji) +

α3

∑
eik∈EP

dT(Xk, ti, x̂ik) +
∑
Ii∈I

dGi (ti) (7)

where EC denotes the set of camera-camera edges in G,
EP is the set of camera-point edges, and α2 and α3 are
weighting constants. We could ignore one of these sets by
fixing α2 or α3 to 0; we evaluate these options in Section 5.

3.2. Initial poses and points via discrete BP

The objectives in equations (5) and (7) can be minimized
directly using Levenberg-Marquardt with reweighting for
robustness, as we discuss in section 3.3, but this algorithm
requires a good initial estimate of the solution. We tried
using raw geotags to initialize the camera positions, for ex-
ample, but we have found that they alone are too noisy for
this purpose. In this section, we show how to compute a
coarse initial estimate of camera poses and point positions
using discrete belief propagation on an MRF.

The reconstruction graph G can be viewed as a first-
order MRF with hidden variables corresponding to absolute
camera orientations and camera and point positions, observ-
able variables corresponding to prior camera pose informa-
tion, and constraints between pairs of cameras and between
cameras and points. Finding an optimal labeling of an MRF
is NP-hard in general, but approximate methods work well
on problems like stereo [4]. However compared with those
problems, our MRF is highly non-uniform (dense in some
places, sparse in others) and the label space is very large. To
do inference on this MRF efficiently, we use discrete belief
propagation (BP) [19], computing the messages in linear
time using distance transforms [5]. We use BP to solve both
the rotations in equation (5) and the translations in (7).

Estimating rotations. We first solve for absolute camera
rotations R by minimizing equation (5) using discrete BP.
Instead of solving for full 3D rotations, we reduce the state
space by assuming that most cameras have little twist (in-
plane rotation) because most photos are close to landscape
or portrait orientations and most digital cameras automati-
cally orient images correctly. (We estimate that about 80%
of photos in our datasets have less than 5◦ twist, and 99%
have less than 10◦ twist. The no-twist assumption is made
only during the BP stage; in the later NLLS and bundle ad-
justment stages we allow twist angles to vary.) Under this
assumption, camera orientations Ri can be represented as a
single unit 3-vector vi (the viewing direction). The distance

function in equation (5) then simplifies to

dR0(vi,vj) = ρR(||vij −R0(vi)−1vj ||), (8)

where vij is the expected difference in viewing directions
(which can be computed from Rij) and R0(v) is a 3D ori-
entation with viewing direction v and no twist.2 We define
ρR(x) = min(x2,KR), for constant KR (we use 1.0).

Estimating translations and points. Having solved for
absolute camera orientations, estimating camera and point
positions involves minimizing Eq. (7). We use a modified
pairwise distance function dT based on the cross product
between vectors, which allows us to efficiently compute BP
messages using distance transforms [5]:

dTapprox(ta, tb, tab) = ρT (||tab × (tb − ta)||) (9)
= ρT (||tb − ta|| ||tab|| sin(θab)),

with θab= angleof(tb − ta, tab) and ρT (x)= min(x,KT )2

with KT set to about 10m. This approximation is related to
the linear approach of [8], which uses a non-robust version
of dTapprox and estimates translations by solving a sequence
of reweighted least squares problems. We note that such ap-
proaches are sensitive to outliers, as without the truncation
each term is unbounded and grows with ||tj − ti||2.

3.3. Refining poses using non-linear least squares

Using the coarse estimates of rotations or translations
determined by BP, we apply continuous optimization to
the objective functions in equations (5) and (7), using the
Levenberg-Marquardt (LM) algorithm for non-linear least
squares [18]. Instead of defining a robust objective for LM,
we simply remove edges and geotags from the reconstruc-
tion graph that disagree with the BP estimates more than a
threshold, then run LM with a sum-of-square residual ob-
jective. These NLLS steps are related to bundle adjustment
in that both minimize a non-linear objective by joint esti-
mation of camera and (in the case of translations) point pa-
rameters. However, our NLLS stages separate rotation es-
timation from translation estimation, and integrate camera-
camera constraints in addition to point-camera constraints.

4. A large-scale reconstruction system
We now show how to use the approach described in the

last section to perform SfM on large unstructured image col-
lections. Our method consists of the following main steps:

1. Build the reconstruction graph G through image
matching and two-view relative pose estimation.

2. Compute priors from geotags and vanishing points.
3. Solve for camera orientations, R, using discrete BP

followed by continuous optimization.

2R0(v) is unique unless v is straight up or down; such cases were
uncommon enough not to have a significant effect on the optimization.
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4. Estimate the camera and 3D point positions, T , again
using BP followed by continuous optimization.

5. Perform a single stage of bundle adjustment, with the
pose estimates from steps 3 and 4 as initialization.

We now describe these five steps in detail.

Step 1: Producing pairwise transformations. We use
SIFT matching [13] and two-frame SfM [17] to estimate
correspondence and pairwise constraints between images.
We tried two approaches to avoid matching all pairs of im-
ages: first, a simplification of [1] that uses a vocabulary
tree [16] to find, for each image, a set of 80 candidate im-
ages to match; second, using geotags to find, for each im-
age, 20 nearby images as initial candidates [6], sampling
additional pairs from different connected components of
the match graph, and densifying the graph using query ex-
pansion [1]. For matched pairs, we use the 5-point algo-
rithm [17] followed by bundle adjustment to estimate rel-
ative pose. Since the 5-point algorithm requires intrinsi-
cally calibrated cameras, we only use images having focal
lengths in the Exif metadata. We also apply a heuristic to
remove high-twist images by finding images for which the
relative twist of most pairwise transformations is above 20◦.
In addition, we remove images with unusual aspect ratios,
as these are often panoramas or cropped images.

Step 2: Computing prior evidence. We compute unary
cost functions on camera pose using geotags and vanishing
points. For an image Ii with geotag gi, we define the posi-
tional cost function dGi as a robust distance from the geotag,

dGi (ti) = ρT (|| en(gi)− π(ti)||), (10)

where ρT is a truncated quadratic, π is a projection of 3D
camera positions into a local Cartesian plane tangent to
the surface of the earth, and en maps geotags in latitude-
longitude coordinates to this plane.3 The robustified dis-
tance function is essential because geotags are typically
quite noisy and contaminated with outliers [27]. For images
without geotags we use a uniform function for dGi .

For rotations, we use a cost function dOi for image Ii that
is a sum of distances over the three rotation dimensions,

dOi (Ri) = dθi (Ri) + dψi (Ri) + dφi (Ri), (11)

where dθi , dψi , and dφi measure the error between an abso-
lute camera rotation Ri and prior pose information in pan,
twist, and tilt, respectively. For dφi (Ri), we estimate the
tilt φi using vertical vanishing point (VP) detection and pe-
nalize the tilt of Ri as a function of angular distance to φi.
We detect vertical VPs as in [24], except that we use Hough
voting instead of RANSAC to find VPs. Given a vertical
VP estimate with sufficient support, we compute the corre-
sponding tilt angle φi; if no vertical VP is found, we use

3This coordinate frame is often called local east-north-up; we use only
the 2D east and north coordinates because geotags do not include altitudes.

a uniform function for dφi . To estimate pan angle we ob-
serve that equation (2) constrains the absolute orientation
Ri of camera Ii, given absolute positions of cameras Ii and
Ij and the relative translation between them. Using geotags
as estimates of the camera positions, we obtain a weak cost
distribution for camera pan (heading direction),

dθi (Ri) =
∑

j∈N(i)

wgiw
g
j min(||Ritij −

gij
||gij ||

||,KG)2,

where N(i) are the neighboring cameras of Ii, gij =
en(gj)− en(gi), w

g
i and wgj indicate whether Ii and Ij

have geotags, and KG is a constant set empirically to 0.7.
Our current BP implementation assumes that cameras have
zero twist (see sec. 3), so we ignore the twist error term dψi .

Step 3: Solving for absolute rotations. We use discrete
loopy belief propagation (BP) [19] to perform inference on
our MRFs. For rotations, we parameterize the unit sphere
into a 3D grid with 10 cells in each dimension, for a total of
L = 1000 labels for each camera. The advantage of this pa-
rameterization is that the distance function in equation (8)
becomes separable into a sum over dimensions, which al-
lows the use of distance transforms to compute each mes-
sage in linear time [5]. (Note that cells not intersecting the
surface of the unit sphere are invalid and thus are assigned
infinite cost.) We then run non-linear least squares to op-
timize equation (4) (using a squared distance), initializing
the twist angles to 0 and the viewing directions to those es-
timated by BP. Inside this optimization, we represent dis-
placement rotations using Rodrigues parameters, allowing
the twist angles to vary. We used Matlab’s lsqnonlin, us-
ing its sparse preconditioned conjugate gradients solver.

Step 4: Solving for translations and points. Having es-
timated rotations, we next apply discrete BP to estimate
camera and point positions. To reduce the label space, dur-
ing BP we solve for 2D positions, as for most scenes camera
and point positions vary predominantly over the two dimen-
sions in the ground plane. (The later NLLS and BA stages
remove this constraint.) We discretize this space depending
on the geographic size of the region being reconstructed,
using a 300 × 300 grid where each cell represents an area
of about 1-4 meters square, for a total of L = 90000 la-
bels. We use discrete BP to minimize (7) using the approx-
imate distance function (9), with a modification to allow
the use of the distance transform: when sending a message
from camera i to j, instead of using the pairwise distance
function α2(dT(ti, tj , t̂ij) + dT(tj , ti, t̂ji)) suggested by
Eq. (7), we use 2α2d

T(ti, tj , t̂ij). For the NLLS optimiza-
tion, we used lsqnonlin to minimize the squared residuals
in Eq. (7), allowing cameras and points to vary in height as
well as ground position. We generate a set of scene points
by finding point tracks [1]; to reduce the size of the op-
timization problem, we greedily select a subset of tracks
that covers each camera-camera edge in the reconstruction
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Figure 1. Translation estimates for CentralRome. Camera positions after BP, after NLLS refinement, and after final bundle adjustment.

Figure 2. CentralRome reconstruction, using incremental bundle adjustment (left) and our technique (right), shown as top views projected
on a map. Black points are cameras; blue points are scene points. There is a large drift in scale in the IBA solution (left), due to several
weak connections between different parts of the reconstruction. For instance, the Colosseum (lower right) is smaller than it should be given
the scale of the reconstructed Il Vittoriano monument (upper left). In addition, the inside and outside of the Colosseum do not align. The
scale and alignment of the scene in our solution (right) is much more consistent.

graph at least k1 times, and that covers each image at least
k2 ≥ k1 times (we used k1 = 5 and k2 = 10).

Step 5: Bundle adjustment. We use the estimates for the
cameras and a sparse set of 3D points obtained in the last
step as initialization to a global bundle adjustment stage in
which all parameters including camera twist and height are
refined simultaneously. We bundle adjust the cameras and
the subset of 3D points selected in the previous step, trian-
gulate the remaining points with reprojection error below a
threshold, and run a final bundle adjustment. We use the
preconditioned conjugate gradients bundle adjuster of [2]
and a robust Huber norm on the reprojection error.

5. Results

We have applied our approach to four large datasets,
summarized in Table 1, including one with over 15,000 im-
ages in the largest connected component of the reconstruc-
tion graph. The Acropolis, Dubrovnik, and CentralRome
datasets consist of images downloaded from Flickr via the
public API, while Quad consists of photos of the Arts Quad
at Cornell University taken by several photographers over
several months. For each dataset we ran the approach de-
scribed in Section 4, including the discrete BP, continuous
NLLS, and a final bundle adjustment. For these problems,
we note that simple initializations to BA or NLLS perform

poorly. We tried both random initialization of parameters,
as well as initializing translations using the geotags, but
both resulted in reconstructions with large errors. This high-
lights the fact that good initialization is critical, as well as
the large degree of noise in the geotags.

Comparison to Incremental BA (IBA). To compare our
approach to a state-of-the-art technique that uses IBA, we
ran the datasets through a version of Bundler [25] that uses
an efficient bundle adjuster based on preconditioned con-
jugate gradients [2], then georegistered the results by us-
ing RANSAC to align the model with the geotags. Table 2
summarizes results of this comparison, including distances
between corresponding camera positions and viewing direc-
tions. It is important to note that the IBA solution has errors
and is thus not ground truth, but it does represent the state-
of-the-art in SfM and is thus a useful comparison. These
results show that the raw geotags are quite noisy, with a me-
dian translation error of over 100 meters for some datasets.
The estimates from BP are significantly better, and results
from the full process (including a final bundle adjustment
step) agree with the IBA solution within a meter for all
datasets except CentralRome. The differences for Central-
Rome are large because IBA produced poor results for this
set, as discussed below. The median differences between
point positions for the two methods are also less than 1m
for all sets except CentralRome. For the camera orienta-
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Total Images in largest Cam-cam edges Cam-pt edges % Scene size Reconstructed
Dataset images CC (|V |) (|EC |) (|EP |) geotagged (km2) images
Acropolis 2,961 463 22,842 42,255 100.0% 0.1×0.1 454
Quad 6,514 5,520 444,064 551,670 77.2% 0.4×0.3 5,233
Dubrovnik 12,092 6,854 1,000,178 835,310 56.7% 1.0×0.5 6,532
CentralRome 74,394 15,242 864,758 1,393,658 100.0% 1.5×0.8 14,754

Table 1. Summary of datasets: Total number of photos; number of images, camera-camera edges, and camera-point edges in the largest
connected component; fraction of images with geotags; approximate scene size; and number of reconstructed images using our approach.

Rotational difference Translational difference Point difference
Our approach Linear approach [8] Our approach Our approach

Dataset BP NLLS Final BA Linear NLLS Geotags BP NLLS Final BA Final BA
Acropolis 14.1◦ 1.5◦ 0.2◦ 1.6◦ 1.6◦ 12.9m 8.1m 2.4m 0.1m 0.2m
Quad 4.7◦ 4.6◦ 0.2◦ 41◦ 41◦ 15.5m 16.6m 14.2m 0.6m 0.5m
Dubrovnik 9.1◦ 4.9◦ 0.1◦ 11◦ 6◦ 127.6m 25.7m 15.1m 1.0m 0.9m
CentralRome 6.2◦ 3.3◦ 1.3◦ 27◦ 25◦ 413.0m 27.3m 27.7m 25.0m 24.5m

Table 2. Median differences between our camera pose estimates and those produced by incremental bundle adjustment.

tions, the median angle between viewing directions of the
IBA solution and the output of BP is between about 5◦and
14◦, with the continuous optimization decreasing the differ-
ence below 5◦, and the final BA step further reducing it to
less than 1.5◦(and below 0.5◦for all datasets except Central-
Rome). We thus see that our approach produces reconstruc-
tions that are quantitatively similar to incremental methods
in cases where IBA produces reasonable results.

We also tried the batch approach of [8] on these datasets.
The rotation estimates produced by this linear technique
were reasonable for the densely-connected Acropolis and
Dubrovnik sets, but poor for the other two sets (as shown in
the table), even when we ran NLLS on the output of [8]. The
translations estimates were very poor for all of the datasets,
even when we modified [8] to include geotag priors. This
suggests that the robustness used by our approach is im-
portant in getting good results on large, noisy datasets (as
existing evaluations of linear approaches like [8] and [24]
were on much simpler, more homogeneous datasets).

Running times. As shown in Table 3, our approach is sig-
nificantly faster than incremental bundle adjustment on all
of the datasets that we study. The improvement is particu-
larly dramatic for the larger datasets; for CentralRome for
example, our approach took about 13 hours compared to
about 82 hours for IBA, or a more than 6x speed-up. One
of the reasons for this speed-up is that BP (unlike IBA) is
easily parallelizable. The running times reported here used
a multi-threaded implementation of rotations BP on a single
16-core 3.0GHz machine and a map-reduce implementation
of translations BP on a 200-core 2.6GHz Hadoop cluster.
NLLS was single-threaded and run on a 3.0GHz machine.
For BA and IBA we used the highly-optimized implemen-
tation of [1], which uses a parallel BLAS library to achieve
some parallelism, on a single 16-core 3.0GHz machine.

The asymptotic running time of our approach also com-

pares favorably to that of IBA. In contrast to the the worst
case O(n4) running time of IBA (using dense linear alge-
bra), where n is the number of images, our approach is
O(n3): each application of belief propagation takes time
O(n2L) per iteration, where L is the size of the label space,
and the final bundle adjustment step takesO(n3) time in the
worst case. Memory use of BP is also O(n2L), although
messages can be compressed and stored on disk between
iterations (as our Hadoop implementation does).

Comparison to ground truth. To evaluate our results
against ground truth, we collected highly accurate geotags
(with error less than 10cm) for a subset of 348 photos for the
Quad, based on survey points found using differential GPS.
We also collected geotags using consumer GPS (an iPhone
3G); the precise geotags are used for ground-truth, while
the consumer geotags are used as priors in the optimization.

Table 4 compares the error of camera pose estimates pro-
duced by IBA to those of the various stages of our method.
IBA produces slightly better estimates than our approach,
but the difference is quite small (1.01m versus 1.16m). The
table also studies the sensitivity of our approach to the frac-
tion of photos having geotags. As the fraction of geotagged
images decreases below about 10%, the accuracy starts to
decrease. This seems to be due to less accurate global ro-
tation estimates, indicating that weak orientation informa-
tion is helpful for getting good results. We also tested us-
ing only the camera-camera edges or only the camera-point
edges during the translations estimation with 40% of im-
ages geotagged (by setting α2 or α3 to 0 in equation (7));
using only camera-point edges increased error from 1.21m
to 1.9m, while using only camera-camera edges increased
error by a factor of 3 (from 1.21m to 3.93m).

Qualitative results. Figure 1 shows views of the Cen-
tralRome dataset at different stages of our approach. Be-
cause our recovered cameras (and points) are reconstructed
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Our approach Incremental
Dataset Rot BP Rot NLLS Trans BP Trans NLLS Bund Adj Total BA

Acropolis 50s 16s 7m 24s 49s 5m 36s 0.2 hours 0.5 hours
Quad 40m 57s 8m 46s 53m 51s 40m 22s 5h 18m 00s 7.7 hours 62 hours
Dubrovnik 28m 19s 8m 28s 29m 27s 7m 22s 4h 15m 57s 5.5 hours 28 hours
CentralRome 1h 8m 24s 40m 0s 2h 56m 36s 1h 7m 51s 7h 20m 00s 13.2 hours 82 hours

Table 3. Running times of our approach compared to incremental bundle adjustment.

% geotags BP NLLS Final BA
80% 7.50m 7.24m 1.16m
40% 7.67m 7.37m 1.21m
16% 7.66m 7.63m 1.22m

8% 8.27m 8.06m 1.53m
4% 18.25m 16.56m 5.01m

Table 4. Median error in camera position with respect to ground
truth for the Quad dataset, with geotags for about 40% of images.
The median error of IBA was 1.01m.

in an absolute coordinate system, they can be displayed on
a map. Figure 2 shows the CentralRome reconstruction
for both our approach and IBA. IBA produced a poor re-
construction for this dataset, while our approach produced
much more reasonable results, likely because prior informa-
tion like geotags helped to avoid problems with sparsely-
connected components of the reconstruction graph.
Conclusion We have presented a new approach to SfM
that avoids solving sequences of larger and larger bundle
adjustment problems by initializing all cameras at once us-
ing hybrid discrete-continuous optimization on an MRF. It
also integrates prior pose evidence from geotags and van-
ishing points into the optimization. Our approach is faster
than incremental SfM both in practice and asymptotically,
and gives better reconstructions on some scenes, especially
when the reconstruction graph is weakly connected. As fu-
ture work, we would like to further characterize the perfor-
mance and tradeoffs of our algorithm, including studying its
scalability to even larger collections (with hundreds of thou-
sands of images) and characterizing its robustness to various
properties of the scene and dataset. We would also like to
study improvements to our approach, including solving for
rotations and translations in a single optimization step.
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