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Abstract

The performance of a distillation-based compressed network
is governed by the quality of distillation. The reason for
the suboptimal distillation of a large network (teacher) to a
smaller network (student) is largely attributed to the gap in
the learning capacities of a given teacher-student pair. While
it is hard to distill all the knowledge of a teacher, the quality of
distillation can be controlled to achieve better performance.
Our experiments show that the quality of distillation is largely
governed by the quality of teacher’s response, which in turn is
heavily affected by the presence of similarity information in
its response. A well-trained large capacity teacher loses sim-
ilarity information between classes in the process of learning
fine-grained discriminative properties for classification. The
absence of similarity information causes the distillation pro-
cess to be reduced from one example-many class learning to
one example-one class learning, thereby throttling the flow
of diverse knowledge from the teacher. With the implicit as-
sumption that only the instilled knowledge can be distilled,
instead of focusing only on the knowledge distilling process,
we scrutinize the knowledge inculcation process. We argue
that for a given teacher-student pair, the quality of distillation
can be improved by finding the sweet spot between batch size
and number of epochs while training the teacher. We discuss
the steps to find this sweet spot for better distillation. We also
propose the distillation hypothesis to differentiate the behav-
ior of the distillation process between knowledge distillation
and regularization effects. We conduct our experiments on
three different datasets.

1 Introduction
Wider and deeper deep learning (DL) models have helped
us build sophisticated AI systems across a broad range of ar-
eas (LeCun, Bengio, and Hinton 2015). But the huge com-
putation and memory requirements of these models create
hurdles in deploying them on edge devices (Simonyan and
Zisserman 2015; Howard et al. 2017). A number of network
compression techniques have been developed to compress
large DL models into more efficient models with compara-
ble performance, like model quantization (Wu et al. 2016),
model binarization (Courbariaux, Bengio, and David 2016),
parameter sharing (Han et al. 2015; Wang and Yoon 2021),
low-rank factorization (Denton et al. 2014; Yu et al. 2017),
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Figure 1: (a) Sweet spot between batch size and number of
epochs for a given teacher-student pair for effective KD. (b)
and (c) Difference in teacher’s response in presence and ab-
sence of similarity information, respectively.

convolution filter compression (Zhai et al. 2016), and knowl-
edge distillation (KD) (Buciluǎ, Caruana, and Niculescu-
Mizil 2006; Hinton, Vinyals, and Dean 2015). KD has two
basic steps, knowledge extraction and distillation. Knowl-
edge extraction can be response-based, feature-based, or
relation-based and its distillation can be offline, online, or
self-distillation (Gou et al. 2021). In this paper, we explore
the KD process that uses a teacher’s response to distill the
knowledge in an offline manner to achieve network com-
pression.

Recent advances suggest that the performance of the
response-based offline knowledge distillation (RBKD) pro-
cess is largely affected by the gap in learning capacities of
the teacher-student pair (Yuan et al. 2020; Mirzadeh et al.
2020; Gao et al. 2020). However, we argue that this gap is
not the root cause of the poor distillation.

Our experiments suggest that the quality of distillation



Figure 2: The distillation hypothesis

is largely controlled by the amount of ”similarity informa-
tion” about classes that a teacher provides in its responses.
In other words, teachers provide a distribution over the pos-
sible class labels for any given example. A highly-confident
teacher produces a ”hard” result that has a peak response
for exactly one class, whereas a less-confident teacher pro-
vides a more spread, higher-entropy distribution. We find,
somewhat counter-intuitively, that the less-confident teacher
provides the student more information about the relation-
ships between classes through the non-zero responses to the
other classes. We find that careful training of the teacher can
largely offset the negative effect of the gap between models.
Fig. 1 (a) presents the idea. For a given teacher-student pair
of any capacity gap, we can find a balance between batch
size and number of epochs of training a teacher to retain sim-
ilarity information in its response. Fig. 1 (b) and (c) show
the fundamental difference in the quality of a teacher’s re-
sponse in the presence and absence of similarity informa-
tion, respectively. A good response has relevant information
about similarity between two classes and a poor response
lacks this information. The RBKD process is fast and effec-
tive with the similarity-rich response as it learns about more
than one class from a single input - one example-many class
learning. It requires fewer examples per class to learn about
the whole distribution of examples. In contrast, the process
is slow, less effective, and requires more examples per class
when similarity information is absent.

We also observe that for a fixed student network, as
the teacher model becomes more powerful, and wider and
deeper in size, it loses the rich similarity information present
in the soft labels and behaves like a label smoothing (LS)
(Müller, Kornblith, and Hinton 2019; Szegedy et al. 2016)
process. We use this observation to differentiate the nature
of the distillation process between KD and regularization ef-
fect through the distillation hypothesis shown in Fig. 2. We
argue that any distillation process with little or no similar-
ity information in the teacher’s response brings more of a
regularization effect than the distillation effect and when it
completely lacks similarity information, the KD process is
equivalent to LS.

Our contributions are as follows: (i) We show that rich
similarity information in teacher’s response can facilitate
one example-many classes learning and accelerates KD. (ii)
We argue that the gap in teacher-student pair is not the root
cause or the dominating factor of poor distillation, and pro-
vide a method to carefully train any teacher to retain more
similarity information in its response to achieve better dis-
tillation. (iii) We also propose the distillation hypothesis to
understand the underlying nature of the distillation process.

2 Related Work
Buciluǎ, Caruana, and Niculescu-Mizil (2006) devise a

method of network compression by distilling the knowledge
of a teacher network, input to the softmax layer, to a student
network. Hinton, Vinyals, and Dean (2015) popularized this
idea by introducing a temperature term T , qi =

exp(
zi
T )∑

j exp(
zj
T )

class probabilities (qi) and logits (zi), in softmax that con-
trols the softness of response. Increasing T decreases qi for
correct class, indicating decrease in the confidence of net-
work’s response, while increasing qi for incorrect classes,
indicating increase in similarity information in network’s re-
sponse.

The response-based network compression is a very effec-
tive tool to instill the knowledge of a cumbersome model
into an efficient model to achieve uncompromised network
compression. A common understanding is that a more pow-
erful teacher should be able to provide more knowledge to
its student. But it is observed that wider and deeper networks
do poor distillation (Mirzadeh et al. 2020; Yuan et al. 2020;
Gao et al. 2020). Kim and Kim (2017) and Müller, Korn-
blith, and Hinton (2019) ascribe the effectiveness of RBKD
being similar to the effectiveness of LS. Ding et al. (2019)
explain RBKD as the regularization effect brought about by
the response of the teacher model. However, the RBKD pro-
cess relies on the teacher’s response and can not properly
explain the hidden-layer supervision (Gou et al. 2021). We
argue that whether RBKD behaves as regularization, distil-
lation, or LS, depends on the presence of similarity infor-
mation in the teacher’s response. This, in tern, affects the
extent of network compression that can be achieved by this
method.

Mirzadeh et al. (2020) attribute the gap in learning ca-
pacities of teacher-student pair as the only reason for poor
distillation, and propose a teacher assistant (TA) model,
with a learning capacity in between teacher and student, to
address this problem. The knowledge from the teacher is
routed through one or more TA(s) to the student. While TAs
improve the distillation performance but it also makes the
whole process of network compression computationally ex-
pensive.

With a similar hypothesis, Yuan et al. (2020) propose a
teacher-free KD (TFKD) process to reduce the gap between
teacher-student pairs. The TFKD process distills its knowl-
edge to itself during training. Theoretically, TFKD reduces
the gap to zero, but its knowledge is limited by its learning
capacity and extent of training. It also deviates from the net-
work compression task.

Gao et al. (2020) propose residual KD to distill the knowl-
edge by introducing an assistant model to learn the resid-
ual error between teacher and assistant models. This method
also tries to reduce the gap between teacher-student pairs.
This method is also effective, but it does bring additional
computational costs with added networks to achieve network
compression.

All the above methods try to find a solution to reduce the
gap between the teacher-student pair. They focus specifically
on the distillation process and not on the knowledge incul-
cation process. In this paper, we show that the quality of
knowledge distillation can be controlled by controlling the
quality of knowledge inculcation in a teacher. We also ex-



Input class Response of LS process

0 1 2 3 4 5 6 7 8 9

digit 6 0.06 0.06 0.06 0.06 0.06 0.06 0.46 0.06 0.06 0.06
0.06 0.06 0.06 0.06 0.06 0.06 0.46 0.06 0.06 0.06
0.06 0.06 0.06 0.06 0.06 0.06 0.46 0.06 0.06 0.06

Table 1: The LS labels for different input images of same
class at αLS = 0.6. It shows that the distribution of soft-
labels in the absence of similarity information. This distri-
bution promotes one example-one class learning.

plain how the nature of KD changes with a change in simi-
larity information in the teacher’s response with the distilla-
tion hypothesis.

3 Response Based Techniques
Label Smoothing
The LS process uses a less confident form of one-hot label
to train a model. It decreases the model confidence about
the correct class and treats all other classes as equal, provid-
ing no similarity information (Müller, Kornblith, and Hinton
2019; Szegedy et al. 2016). The LS labels are computed as,

yLS
c = (1− αLS)yc + αLS

1

C
(1)

where, yc is the one-hot vector, c is the number of classes,
and 1/c is a uniform distribution. Examples are shown in
Table 1. To calculate the cross-entropy over these labels, we
denote the true soft-label distribution q(c|x) (x is input) as
q
′

for LS process, q for RBKD process and use p to denote
distribution p(c|x) generated by model (Yuan et al. 2020).
The loss function is then,

LLS = (1− αLS)H(q, p) + αLSDKL(u, p) (2)

where H(u) is a fixed entropy value of uniform distribu-
tion and DKL is the Kullback-Leibler divergence (KL),

H(q
′
, p) = −

c∑
c=1

q
′
log(p)

= (1− αLS) H(q, p) + αLSH(u, p)

= (1− αLS) H(q, p) + αLS(DKL(u, p)

+H(u))

(3)

The soft-labels on the LS process is shown in Table 1. The
LS process use a fixed distribution to produce ”hard” result
that has a peak response for exactly one class, and assigns all
other classes equal value without considering the similarity
between classes. This paradigm promotes one example-one
class learning (Fig. 1 (c)) i.e. each example provides useful
information only about its class and treat all other classes
equally.

Response-Based Knowledge Distillation
The RBKD process has the teacher produce probabilis-
tic distribution for each class at a temperature T . It con-
tains rich similarity information between classes to support

Input class Soft-labels by small learning capacity teacher

0 1 2 3 4 5 6 7 8 9

Digit 6

0.087 0.048 0.095 0.093 0.077 0.144 0.206 0.051 0.122 0.078
0.087 0.048 0.089 0.1 0.090 0.119 0.177 0.056 0.114 0.095
0.090 0.078 0.089 0.097 0.115 0.091 0.179 0.071 0.108 0.082
0.107 0.068 0.089 0.076 0.104 0.1 0.229 0.070 0.086 0.071
0.118 0.079 0.095 0.075 0.101 0.081 0.210 0.069 0.098 0.073

Table 2: Soft-labels generated by small capacity teacher
model with 3 hidden layers on MNIST data.

Input class Soft-labels by large learning capacity teacher

0 1 2 3 4 5 6 7 8 9

Digit 6

0.078 0.069 0.063 0.059 0.070 0.135 0.356 0.039 0.078 0.053
0.083 0.077 0.073 0.056 0.078 0.107 0.339 0.042 0.090 0.053
0.077 0.067 0.068 0.047 0.073 0.086 0.425 0.034 0.079 0.044
0.076 0.062 0.057 0.039 0.059 0.090 0.485 0.027 0.065 0.039
0.077 0.067 0.061 0.043 0.068 0.089 0.450 0.031 0.075 0.041

Table 3: Soft-labels generated by a large capacity teacher
model with 6 hidden layers on MNIST data

one examples-many classes learning (Fig. 1 (b)) (Hinton,
Vinyals, and Dean 2015). These information-rich labels are
used to distill the knowledge to the student by minimizing
the weighted sum of KL divergence and cross-entropy losses
as,

LKD = (1− αKD)H(p, q) + αKDDKL(p
t
T , pT ) (4)

where H(p, q), p, pT , and ptT denote the cross-entropy loss
for student with true labels (q), output of student model, out-
put of student model softened at T and output of teacher
model softened at T , respectively. αKD is the contribution
factor for loss function.

The loss functions of RBKD and LS processes have sim-
ilar formulations as shown in Equation (2) and (4), but they
use different methods for generating soft-labels. The only
difference is the ptT in DKL(p

t
T , pT ), which is generated

by a teacher model, and u in DKL(u, p), which is a uni-
form distribution (Yuan et al. 2020). This difference decides
the extent of similarity information in the response, and that
governs the nature of the distillation process. We discuss this
later in Section 4. It is safe to conclude that LS is a special
case of the RBKD process in which soft labels are gener-
ated by a constant distribution as prior knowledge instead of
learned-knowledge of a pre-trained teacher.

Quality of Teacher’s Response
The student mimics the teacher’s response by minimizing
the KL divergence between their response at T . The RBKD
loss, Equation (4), is weighed higher αKD, 0.99, for KD.
Each example generates two types of soft-labels, for itself
- confidence label, and for all other classes - similarity la-
bels. The confidence label shows the confidence of a teacher
for the correct class and the similarity labels provide a prob-
abilistic value of similarity of all other classes with input
class. Tables 1, 2, and 3 show the confidence label in bold
text and similarity labels in plain text. The hyper-parameter
αLS is 0.6 for LS process in Table 1, while temperature T is
9 for RBKD process in Tables 2 and 3.

The quality of distillation is controlled by the similarity
information in the teacher’s response, which can be con-



MNIST F-MNIST CIFAR-10

Figure 3: Average entropy of teacher’s response for MNIST,
Fashion-MNIST and CIFAR-10 datasets.

Missing KD by small capacity teacher KD by large capacity teacher
class Student accuracy(%) on removed class Student accuracy(%) on missing class

T=3 T=6 T=9 T=12 T=15 T=20 T=3 T=6 T=9 T=12 T=15 T=20
Digit 0 99.18 99.28 99.48 99.18 98.67 98.57 2.8 0.20 0.61 0.0 0.0 0.0
Digit 1 98.67 98.67 98.67 98.59 98.50 98.23 0.0 0.26 0.0 0.26 0.08 0.0
Digit 2 95.73 96.80 96.12 95.83 94.86 94.76 2.5 0.38 0.58 0.48 1.25 0.19
Digit 3 98.11 98.41 98.31 98.11 98.01 97.92 0.0 0.79 1.38 6.23 2.47 2.27
Digit 4 98.47 98.67 98.57 98.67 98.37 96.94 0.10 0.10 0.0 0.0 0.0 0.0
Digit 5 96.86 97.53 97.30 97.19 96.41 97.86 0.67 0.56 1.35 2.80 2.46 4.26
Digit 6 97.39 97.49 97.28 97.18 97.18 96.65 17.32 2.08 12.83 7.09 18.58 7.41
Digit 7 96.10 96.30 96.40 95.91 94.84 95.03 0.29 0.29 3.50 0.58 0.77 1.84
Digit 8 97.12 96.71 97.22 96.61 96.40 96.09 0.00 0.10 0.0 0.0 0.0 0.0
Digit 9 96.13 96.63 96.23 95.83 95.63 94.25 0.00 0.69 0.10 1.48 1.28 2.18

Table 4: Student accuracy on missing class (MNIST) when
distilled with small and large learning capacity teacher

trolled through T . But the increase and decrease in simi-
larity information are not linear with T , but instead depen-
dent on the similarity relation learned by the teacher during
knowledge inculcation. The teacher perceives each example
differently, even within the same class, and assigns a dif-
ferent confidence and similarity labels in its response. This
introduces a variation in confidence and similarity labels —a
variance in response, as shown row-wise and column-wise
in Tables 2 and 3. More variance in similarity is desirable
for KD as it provides knowledge about which classes are
most similar to others. A highly confident teacher produces
less variance as compared to a less confident teacher in its
response, degrading the quality of distillation.

The behavior of a highly confident teacher model is anal-
ogous to the LS process. The similarity labels are treated
equally with a little or no variance in response, providing
neither similarity information nor variance in response. We
describe this observation through the distillation hypothesis.

The Distillation Hypothesis
The distillation hypothesis, Figure 2, defines the nature of
distillation by observing the quality of similarity labels and
variance in response of a teacher. It states that for a given
student network, as the learning capacity of the teacher net-
work increases, the nature of the distillation process starts to
move away from a similarity label-based RBKD process to
a non-similarity-based LS process. The shift towards the LS
process is caused by the loss of similarity information and
variance in response of a teacher and leads to poor distilla-
tion. In other words, the nature of the knowledge distillation
process shifts away from one example-many classes learning
to one example-one class learning.

Since the quality of distillation is directly dependent on
the knowledge inculcation process of a teacher. We argue
that any teacher model can be trained to retain more simi-
larity information by finding a sweet spot between the batch

Missing KD by small capacity teacher KD by large capacity teacher
class Student accuracy(%) on removed class Student accuracy(%) on missing class

T=3 T=6 T=9 T=12 T=15 T=20 T=3 T=6 T=9 T=12 T=15 T=20
T-shirt 84.70 77.20 62.8 46.70 32.69 23.70 0.6 6 7.6 7 8.4 9
Trouser 94.90 94.19 92.90 91.39 88.09 89.99 0.0 4.2 15.4 19.2 23.2 16.8
Pullover 64.89 53.79 44.20 28.99 17.49 15.00 0.0 0.0 0.1 0.1 0.1 0.1
Dress 84.50 82.09 76.70 69.99 60.50 46.90 0.8 0.7 1.8 1.0 1.7 1.4
Coat 79.19 71.49 59.79 44.49 28.40 16.20 0.3 0.4 0.4 1.4 1.0 1.6
Sandal 91.50 92.00 90.49 87.30 84.89 82.30 0.2 0.4 0.4 0.4 0.4 0.5
Shirt 55.80 42.30 30.30 17.49 6.40 2.70 0.2 0.7 1.1 1.7 2.1 1.9
Sneaker 91.79 87.69 83.30 69.99 63.89 57.09 0.1 0.0 0.0 0.0 0.0 0.0
Bag 95.20 95.20 94.19 91.60 88.80 86.19 0.0 0.5 0.4 0.4 0.9 0.4
boot 91.29 89.99 87.99 83.39 79.69 74.00 1.1 2.6 4.4 3.6 3.7 3.7

Table 5: Student accuracy on missing class (Fashion-
MNIST) when distilled with small and large learning capac-
ity teacher

Missing KD by small capacity teacher KD by large capacity teacher
class Student accuracy(%) on removed class Student accuracy(%) on missing class

T=3 T=6 T=9 T=12 T=15 T=20 T=3 T=6 T=9 T=12 T=15 T=20
plane 70.99 66.6 52.1 42.6 39.7 31.5 1.79 0.89 0.49 0.70 0.80 0.60
Auto 80.8 77.5 70.6 63.8 55.8 45 2.09 0.70 0.30 0.20 0.30 0.10
Bird 48.1 41.8 35 26.9 25.7 14 0.89 0.60 0.30 0.40 0.30 0.20
Cat 50.8 42.1 33 22.6 8.7 4.6 0.80 0.70 0.49 0.30 0.30 0.10
Deer 61.59 53.2 55.7 43.1 26.2 16.2 0.99 1.49 0.89 0.60 0.80 0.40
Dog 67.4 55.6 29.1 20.2 16 10.8 0.70 0.70 0.40 0.20 0.30 0.20
Frog 79.5 76.3 65.9 60.5 47.1 37.7 2.30 1.89 1.60 1.99 1.4 2.09
Horse 67.69 63.8 63.2 54.2 52.7 40 0.80 0.20 0.40 0.40 0.20 0.49
Ship 73.79 70.3 67.5 59.7 54 46.3 3.99 2.09 1.49 1.09 1.09 0.49
Truck 79.4 75.4 73.3 66.8 55.1 43.3 3.09 2.99 1.09 0.80 0.09 0.80

Table 6: Student accuracy on missing class (CIFAR 10)
when distilled with small and large learning capacity teacher

size and the number of epochs for a given teacher-student
pair (see Figure 1 (a)). The blue region symbolizes the right
balance between the batch size and the number of epochs for
better knowledge distillation.

Every DL model has an optimal batch size for optimum
learning. The optimal batch size is the number of examples
that the model is effectively able to process. If the batch size
is larger than its optimal value, then the model is not able to
process all the information at once and takes more epochs
to achieve high confidence. These two factors can be itera-
tively balanced to reach the optimal batch size and number
of epochs for knowledge inculcation of a teacher.

4 Experiments and Results
First, we present empirical results to support the distilla-
tion hypothesis, and then show the results of improved dis-
tillation achieved using our proposed method on MNIST,
Fashion-MNIST, and CIFAR-10 datasets.

Similarity Information in Teacher’s Response
The entropy of the soft labels is directly proportional to the
presence of similarity information in the teacher’s response.
It is calculated as ESoft−labels = −

∑C
i=1 pilog(pi) where

C is the number of classes in the dataset, pi is the proba-
bilistic value from teacher. We use two different capacities
of teachers, one with large learning capacity and the sec-
ond with small learning capacity, to study this behavior. We
argue that small capacity teachers having fewer parameters
are not able to learn the fine-grained discriminative proper-
ties between classes and retain more similarity information
in their response as compared to the large capacity teacher
which can learn fine-grained properties and lose similarity
information in the process.

We show two experiments to support our argument. First,
we compare the average entropy in teachers’ responses for



Figure 4: Entropy based example selection for knowledge
distillation. RBKD process is more efficient if it requires
lesser number of examples per class to distill the knowledge.

Figure 5: Penultimate layer representation of small and large
capacity teacher models.

both small and large capacity teachers at different T , see Fig-
ure 3. At all T the average entropy of small capacity teachers
remains higher than large capacity teachers. In other words,
it is safe to say that a moderately confused teacher is bet-
ter for knowledge distillation as compared to a well-trained
large capacity teacher.

Second, we scrutinize the impact of similarity information
for KD. We remove one out of N classes from distillation
set during the KD process, and then check the performance
of the student on the removed class, see Tables 4, 5, and 6.
For the student network, the missing class is something it
has never seen during training. It learns about the removed
class only through the probabilistic value of the similarity
information in the teacher’s response.

The impact of similarity information on the quality of dis-
tillation is visible in Table 4, 5 and 6. Each table is divided
into two columns, KD by the small and large capacity teach-
ers. For each teacher, we perform KD on the same student
and check its accuracy on the removed class on all three
datasets. KD by the small teacher is very effective through-
out but KD by the large teacher significantly under-performs
on the removed class test. This shows that the quality of
KD is controlled by the presence of similarity information
in the teacher’s response. In presence of similarity-rich soft
responses to classes, the student can learn about more than
one class from a single input example (one example- many
class learning), while it can learn about only one class from
one input example if the response is ”hard”. We further ar-
gue that this critical information in soft labels defines the
nature of distillation to be KD, regularization, or LS. We use
entropy as an indicator of similarity information in the rest

Figure 6: Variation in average entropy of soft-label vs tem-
perature. Left, for different batch sizes at epoch 50. Right,
for different epochs at batch size 4096 on MNIST dataset.

Figure 7: Improved penultimate layer representation for
large capacity teach on MNIST. (a) shows the tight clusters,
(b) and (c) shows similar clustering for different batch sizes
and number of epochs.

of the paper.

KD is one example-many class learning
We established that similarity labels are the most critical in-
formation for KD. Now, we show that similarity informa-
tion accelerates the KD process and only requires a handful
of examples to distill knowledge from the teacher. With two
different capacity teacher models and using entropy as an
indicator at T = 9, we select different number of examples
varying from 5 to 2000 per class for KD. We compare the
highest validation accuracy achieved by the student network
at each step as shown in Figure 4. The validation accuracy
of the student network distilled by a large capacity teacher
always remains smaller than by a small capacity teacher on
each dataset.

For MNIST, distillation by a large capacity teacher re-
quires 10 times more examples per class to achieve similar
accuracy, and this gap increases for more complex datasets
(15 times for Fashion-MNIST and 18 times for CIFAR-10).
This shows that a large capacity teacher with less similarity
information in its response fails to distill its knowledge us-
ing one example-many class learning and requires a much
larger transfer set to achieve the same performance. This
also establishes that one example-many class learning is a
very important component of a good KD process.

Penultimate Layer Representation
Müller, Kornblith, and Hinton (2019) presents a visualiza-
tion technique to understand the effects of the LS process on
penultimate layer representations of a model. This method
uses the linear projection of the activation of the penultimate
layer to understand the change in representation. Müller, Ko-
rnblith, and Hinton (2019) argue that clusters that are rela-
tively spread carry more similarity information in their re-
sponse as compared to compact clusters.



Figure 8: Improved number of examples required per class
for distillation on MNIST

The distillation hypothesis says that with the increase in
learning capacity of a teacher model it loses similarity in-
formation in its response. This loss of similarity indicates
that the nature of distillation shifts towards the nature of the
LS process. We use this experiment to corroborate the dis-
tillation hypothesis by showing the change in clustering of
penultimate layer projection which directly relates to simi-
larity information in soft labels.

We randomly select three classes and then choose 300 ex-
amples from each class randomly. We extract its activation
from the penultimate layer of both small and large capacity
models and plot its projection, see Figure 5. We observe that
the penultimate layer representation of the stronger teacher
model forms tighter clusters as compared to small capacity
teachers for each dataset. The spread-out clusters indicate
that the presence of similarity information between classes
that transcends to soft-labels generated by respective teach-
ers, whereas the tighter cluster indicates the absence of sim-
ilarity information between classes. This provides strong ev-
idence for the distillation hypothesis.

5 Similarity-Rich Knowledge Inculcation
We already established the importance of similarity informa-
tion in a teacher’s response. But instead of trying to improve
the KD process, we focus on the knowledge inculcation pro-
cess - training the teacher. We carefully calibrate the opti-
mum value of batch size and number of epochs to train the
teacher described in section 3. We show improvement for
each experiment shown before.

Based on our hypothesis, we show the change in average
entropy of teachers’ responses for different batch sizes and
number of epochs in Figure 6. It shows that to increase the
entropy of soft labels, we can either increase in batch size at
a fixed epoch or we can decrease the number of epochs for
given batch size. By carefully and iteratively balancing these
two factors, we can find one of the many possible sweet
spots suited for KD. This controls the extent of similarity
information in the teacher’s response, which is responsible
for the quality of KD and network compression in this pro-
cess.

Next, we show the improvement in penultimate layer rep-
resentation of the large capacity teacher by adapting to our
method of knowledge inculcation in Figure 7. Figure 7(a)

Figure 9: Improved performance on training with suitable
batch size and epochs,

shows tight clusters, indicating a lack of similarity infor-
mation. These clusters spread out for many combinations of
batch sizes and number of epochs indicating more similarity
information in the teacher’s response. A similar clustering is
observed for batch size 4096 - epochs 50 and for batch size
8192 - epochs 40 in Fig. 7(b) and (c), respectively. We can
conclude that there can be many combinations of batch size
and number of epochs for a given teacher-student pair for a
more efficient KD.

With all these improvements in the quality of teachers’
responses, the minimum number of examples needed to
achieve optimal performance should also reduce for large
teachers. As shown in Fig. 8, we improve around 5 times
in the minimum number of examples required per class to
achieve similar performance, decreased from 500 to 100 ex-
amples per class, for efficient KD. This provides further sup-
port to our idea of focusing on the knowledge inculcation
process for achieving better and faster distillation, leading
to better network compression.

Even with the above empirical results supporting our hy-
pothesis, we still wanted to test our hypothesis for extreme
teacher-student pair situations by maximizing the learning
capacity gap between them. To achieve this, we use a single-
layer student (baseline student) model with only a classifica-
tion layer (we provide detail of models used in this paper in
Table 7). We retrain the same large capacity teacher models
for each dataset but train it differently - with different batch



Dataset Capacity Conv Dense Dropout BN Total Params
MNIST Large 3 3 Yes × 2,560,906

Small 2 1 × × 1,433,610
F-MNIST Large 4 4 Yes × 2,339,850

Small 3 1 × × 1,558,538
CIFAR-10 Large 8 3 Yes Yes 26,902,442

Small 3 1 × × 5,674,634
Dataset Student Type Conv Dense Dropout BN Total Params
MNIST General 2 1 × × 20,490

Baseline × 1 × × 7,850
F-MNIST General 2 1 × × 50,186

Baseline × 1 × × 7,850
CIFAR-10 General 3 1 × × 534,666

Baseline × 1 × × 30,730

Table 7: Details of teacher and student models for different
datasets. Conv, Dense, Dropout, and BN denote the number
of convolution layers, number of Dense layers, dropout lay-
ers, and Batch Normalization layers, respectively.

Figure 10: The distillation hypothesis in terms of average
entropy of soft-labels.

sizes and number of epochs, to accommodate for the larger
gap in model capacities and use it for KD to the baseline stu-
dent. We also use the small capacity teacher model to show
the relative improvements in Fig. 9. The black, blue, and red
lines in Fig. 9 shows the performance of baseline students on
RBKD by small, and large capacity teachers trained with dif-
ferent batch size and epochs at different temperatures. The
gap between the red and the blue line shows the improve-
ment in KD performance by a single-layer student.

6 Summary and Conclusion
For building intuition about the nature of distillation, we
present the entropy-version of the distillation hypothesis
(previously shown in Fig. 2) to approximate the nature of
the distillation process in Figure 10. For all the processes
lying on the extreme ends in Fig. 2, we can imaging multi-
ple lines with different entropy spread across, as shown in
Fig. 10. We can draw an imaginary line (the dashed line in
the figure) that separates the RBKD process and the LS pro-
cess. For efficient distillation from any teacher to any stu-
dent, the corresponding entropy line should lie in the RBKD
region. This can be achieved using our proposed method of
knowledge inculcation during teacher’s training. We empha-
size that this representation is to develop an intuitive under-
standing of the KD process.

We discuss that the quality of distillation can be controlled
at various stages of the KD process. While most works fo-
cuses on perfecting the distillation step of the KD process,
we focus on controlling the quality of distillation by im-
proving the knowledge inculcation process of the teacher
model. Our experiments suggest that similarity information
in a teacher’s response plays a dictating role in determin-
ing the quality of distillation. We show the role of similarity
information in accelerating the distillation process through
one example-many class learning, making the KD process
more effective and efficient. The distillation hypothesis can
help in approximating the nature of the KD process to be
RBKD, regularization, or LS process and to help make the
process more effective. While we argue that the distillation
performance of any teacher-student pair can be improved by
our method of knowledge inculcation, we do not explore the
extent to which the KD process can be improved. We believe
that the factor of improvement should be different for each
teacher-student pair. We leave this for future exploration.

7 Acknowledgements
This work was supported in part by the Naval Engineering
Education Consortium (NAVSEA) through grant N00174-
19-1-0010 with support of NSWC Crane Division, and by
the Office of Naval Research under award N00014-19-1-
2655.

References
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