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Abstract—Video anomaly detection (VAD) has been extensively studied for static cameras but is much more challenging in egocentric
driving videos where the scenes are extremely dynamic. This paper proposes an unsupervised method for traffic VAD based on future
object localization. The idea is to predict future locations of traffic participants over a short horizon, and then monitor the accuracy and
consistency of these predictions as evidence of an anomaly. Inconsistent predictions tend to indicate an anomaly has occurred or is
about to occur. To evaluate our method, we introduce a new large-scale benchmark dataset called Detection of Traffic Anomaly (DoTA)
containing 4,677 videos with temporal, spatial, and categorical annotations. We also propose a new VAD evaluation metric, called
spatial-temporal area under curve (STAUC), and show that it captures how well a model detects both temporal and spatial locations of
anomalies unlike existing metrics that focus only on temporal localization. Experimental results show our method outperforms
state-of-the-art methods on DoTA in terms of both metrics. We offer rich categorical annotations in DoTA to benchmark video action
detection and online action detection methods. The DoTA dataset has been made available at:
https:// github.com/ MoonBlvd/ Detection-of-Traffic-Anomaly
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1 INTRODUCTION

AUTONOMOUS driving has the potential to transform
the world as we know it, revolutionizing transporta-

tion to be faster, safer, cheaper, and less labor intensive. But
building autonomous systems that can accurately perceive
and safely react to the huge diversity of situations that are
encountered on real-world roadways is a major challenge.
Driving obeys a long-tailed distribution, such that a few
common situations make up the vast majority of what a
driver encounters, while a virtually infinite variety of rare
scenarios — animals running into the roadway, cars driving
on the wrong side of the street, etc. — make up the rest.
While each of these individual unusual scenarios is rare,
they can and do happen. In fact, the chances that one of
them will occur on any given day are actually quite high.

Much work in computer vision has studied detecting
anomalous events from dashboard-mounted cameras [1],
[2], [3]. Most of these methods focus on identifying frames
in which an anomaly is occurring, but do not attempt to
localize where in the frame the anomaly is happening or
to identify which road participants are involved — critical
information for real-world driving assistance systems. Other
work on spatio-temporal action recognition (STAR) ex-
plores simultaneously predicting the bounding boxes (called
“action tubes”) of action performers and their associated
classes [4], [5], [6], [7]. Applying these approaches to de-
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tecting anomalous events would require large-scale training
data for each of a pre-defined set of events. However, the
long-tailed distribution of driving events means that it may
be impossible to collect training data for rare scenarios,
or to even anticipate which scenarios might occur [8]. In
fact, some studies indicate that driverless cars would need
to be tested for billions of miles before enough of these
rare situations occur to even accurately measure system
safety [9], much less to collect sufficient training data to
make them work well.

This paper proposes an alternative approach based on
unsupervised video anomaly detection (VAD), which avoids
modeling all possible driving events by recognizing “nor-
mal” roadway conditions and then signaling an anomaly
when events that do not fit the model are observed. Any
observation that does not fit a normal model is assigned
a high anomaly score, regardless of its anomaly type. Un-
like fully-supervised classification-based work or STAR, this
unsupervised approach may not be able to identify exactly
which anomaly has occurred, but it can potentially capture
any type of anomalous event, even those not previously
observed during training [10]. Unsupervised VAD has been
widely applied to static surveillance camera datasets [11],
[12], [13], [8], [14], [15] by training deep neural networks
to reconstruct or predict video frames and computing the
reconstruction or prediction errors as anomaly scores. How-
ever, these methods do not generalize well to driving videos
since frame prediction and reconstruction are extremely
difficult when cameras are rapidly moving, as in the driving
scenario.

This paper side-steps the difficulty of predicting whole
future frames for traffic VAD by tracking objects and pre-
dicting their future locations as opposed to attempting pre-
diction of whole frames. We propose a novel approach that
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Fig. 1: Overview of our method based on future object localization (FOL) using a sample video from our DoTA dataset.
Annotated bounding boxes (filled) and predicted boxes are presented. For each time step, we collect FOL predictions of all
traffic participants from different past time steps and compute the bounding box standard deviation, called consistency, as
the anomaly score.

learns a future object localization (FOL) network for traffic
participants (e.g., cars, bikes, pedestrians, etc.) in the field
of view of a dashboard-mounted camera on a moving ego-
vehicle. Our FOL model consists of two modules: an ego-
motion Recurrent Neural Network (RNN) encoder-decoder
to predict future odometry of the ego-vehicle,and a two-
stream RNN encoder-decoder incorporating predicted ego-
motion into future object bounding box predictions. This
model can be easily learned from massive collections of
dashboard-mounted video of normal driving, and no man-
ual labeling is required thanks to well-performing off-the-
shelf object detectors and trackers.

Existing unsupervised VAD methods [11], [13], [16], [17],
[18], [8] compute prediction error with respect to ground
truth as the anomaly score, which may cause problems in
our case due to imperfect object detection and tracking.
To address this issue, we propose two alternatives. First,
we take object boxes as the foreground to generate binary
foreground-background masks and compute the IoU be-
tween predicted and ground truth masks as anomaly scores
to reduce the impact of imperfect tracking. Second, we
predict an object’s location at time t based on the observed
data from multiple previous time steps (e.g., t − 1, t − 2,
etc.), collect all these predicted boxes of an object, and
compute their consistency as the anomaly score. Such a
prediction consistency metric does not compare prediction
with detected objects, and therefore reduces the influence
of imperfect detection and tracking. We compare with pre-
diction accuracy methods and show the effectiveness of
prediction consistency in traffic VAD experiments.

This paper also introduces a new large-scale benchmark
dataset for traffic VAD called Detection of Traffic Anomaly
(DoTA). DoTA contains 4, 677 videos with 18 anomaly
categories [19] and multiple anomaly participants in differ-
ent driving scenarios. DoTA provides rich annotation for
each anomaly: type (category), temporal annotation, and
anomalous object bounding box tracklets. Current anomaly
datasets contain only temporal annotations, so they cannot
be used to evaluate the accuracy of spatial localization —
where in the frame an anomaly is occurring. However,

accurately locating the anomalous region is essential for
model explainability and downstream applications such as
collision avoidance. Taking advantage of this large-scale
dataset with rich anomalous object annotations, we propose
a novel VAD evaluation metric called Spatio-temporal Area
Under Curve (STAUC) as a complement to frame-level AUC
metrics. While AUC uses a per-frame anomaly score which
is usually averaged from a pixel-level or object-level score
map, STAUC takes the score map and computes its overlap
with the annotated anomalous region. This overlap ratio is
used as a weighting factor for true positive predictions with
STAUC such that AUC is an upper bound on STAUC. Our
STAUC can be considered as a combination of the mean
average-precision (mAP) metric used in STAR or semantic
segmentation evaluation and the traditional AUC metric
used in VAD evaluation. STAUC has the advantage of mAP
by computing the spatial overlap between prediction and
ground truth, and it also has the advantage of AUC so that
it is feasible for VAD evaluation tasks where the dataset is
highly imbalanced due to the rareness of anomalous events.
We benchmark existing VAD baselines and state-of-the-art
methods on DoTA using both AUC and STAUC, and show
the advantage of using STAUC.

The DoTA dataset can also be used for video action
recognition and online action detection given its categorical
annotations. Video action recognition takes a video clip as
input to predict its anomaly type, e.g. oncoming collision
or out-of-control vehicle, while online action detection pro-
cesses a video frame-by-frame to classify each frame as
normal or one type of anomaly. We provide benchmarks of
state-of-the-art methods such as SlowFast [20] and TRN [21]
on these two tasks. Experiments show that applying gener-
alized video action recognition and online action detection
methods to traffic anomaly understanding is far from per-
fect, motivating more research in this area.

This paper offers four contributions. First, we propose
a future object localization-based unsupervised traffic video
anomaly detection method and two anomaly score compu-
tation methods to address problems caused by imperfect
object detection and tracking. Second, we introduce DoTA,
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a large-scale egocentric traffic video dataset which, to the
best of our knowledge, is the largest traffic video anomaly
dataset to date and the first containing detailed temporal,
spatial, and categorical annotations. Third, we identify prob-
lems with the commonly-used AUC metric and propose a
new spatio-temporal evaluation metric (STAUC) to address
them. We benchmark state-of-the-art VAD methods with
both AUC and STAUC and show the advantages of our
new metric. Finally, we provide benchmarks of state-of-
the-art video action recognition and online action detection
algorithms on DoTA, which we hope will encourage further
research on challenging egocentric traffic video scenarios.

This paper is based on a preliminary version that was
published at the International Conference on Intelligent
Robots and Systems (IROS) [22]. We extend the previous
version by: 1) Providing a large-scale traffic VAD dataset,
called DoTA, with temporal, spatial, and categorical annota-
tions; 2) Introducing a new spatio-temporal evaluation met-
ric for VAD, called STAUC, with a number of advantages
over existing metrics; 3) Providing benchmarks of state-of-
the-art VAD, video action recognition, and online action
detection methods on the DoTA dataset; and 4) Introducing
FOL-Ensemble, a new and strong baseline for traffic VAD.

2 RELATED WORK

Existing Video Anomaly Detection (VAD) datasets are
typically from surveillance cameras. For example, UCSD
Ped1/Ped2 [23], CUHK Avenue [11], and ShanghaiTech [8]
were collected from campus surveillance cameras and in-
clude anomalies like prohibited objects and abnormal move-
ments, while UCF-Crime [24] includes accidents, robbery,
and theft. Anomaly detection in egocentric traffic videos has
very recently attracted attention. Chan et al. [1] propose the
StreetAccident dataset of on-road accidents with 620 video
clips collected from dashboard cameras. The last ten frames
of each clip are annotated as anomalous. Yao et al. [22]
propose the A3D dataset containing 1,500 anomalous videos
in which abnormal events are annotated with start and end
times. Fang et al. [3] introduce the DADA dataset for driver
attention prediction in accidents, while Herzig et al. [2] ex-
tract a collision dataset with 803 videos from BDD100K [25].
In very recent work, conducted contemporaneously to ours,
Bao et al. [26] collected a car crash dataset with 1,500
videos for traffic accident anticipation which contains en-
vironmental attributes and cause-of-accident annotations.
Our DoTA dataset is much larger (4,677 videos) and, more
importantly, contains richer annotations that support traffic
video anomaly analysis from spatial (location of anomalies),
temporal (start and end of anomalies), and categorical (type
of anomalies) perspectives.

Existing VAD models mainly focus on detecting the start
and end of anomalous events and only implicitly relate to
spatial localization. Hasan et al. [12] propose a convolutional
Auto-Encoder to model the normality of video frames by
reconstructing stacked input frames. A Convolutional LSTM
Auto-Encoder is used in [16], [17], [18] to capture regular
visual and motion patterns. Luo et al. [13] propose a stacked
RNN for temporally-coherent sparse coding. Liu et al. [8]
detect anomalies by looking for differences between pre-
dicted future frames and actual observations. Gong et al. [27]

propose a MemAE network to query pre-saved memory
units for reconstruction, while Wang et al. [28] design gen-
eralized one-class sub-spaces for discriminative regularity
modeling. Other work has recently studied object-centric
approaches. Ionescu et al. [15] cluster object features and
train multiple support vector machine (SVM) classifiers
using the confidence as an anomaly score. Morais et al. [14]
model human skeleton regularity with local-global autoen-
coders and compute per-object anomaly scores. Although
these methods have achieved promising results on VAD
tasks in surveillance cameras, egocentric traffic scenarios are
challenging due to the moving camera, dynamic foreground
and background, and complex scenes. Instead of modeling
the whole scene, we propose to predict future locations of
traffic participants and compute prediction consistency as
an anomaly score. We benchmark our method and state-of-
the-art VAD methods on our new DoTA dataset.

Trajectory Prediction has been extensively investigated in
computer vision research, and is often posed as a sequence-
to-sequence generation problem. In this paper, we propose
a VAD method based on trajectory prediction. Much work
in trajectory prediction has focused on social interaction
modeling [29], [30], multimodal prediction [31], [32], [33],
[34], [35], [36], and goal estimation [37], [38], [39]. However,
these methods are designed for third-person views from
static cameras, whereas trajectory prediction in first-person,
egocentric videos in which the camera itself is moving
(e.g., a dashboard camera) can be even more challenging.
Yagi et al. [40] incorporate different kinds of cues into a
convolution-deconvolution network to predict pedestrians’
future locations in first-person video. Yao et al. [41] extend
this work to autonomous driving scenarios by proposing a
multi-stream RNN encoder-decoder architecture with both
past vehicle locations and image features as inputs. Malla et
al. [42] and Rasouli et al. [43] use a similar structure and
introduce intention and action priors to boost trajectory
prediction accuracy. We propose a VAD method for driving
videos based on [41] and introduce a prediction consistency
metric to improve anomaly detection performance.

Action Understanding techniques can be applied to traffic
anomaly classification after an anomaly is detected (e.g., to
distinguish front-collision from turning-collision or vehicle-
pedestrian collision, etc.). Two-stream networks [44] and
temporal segment networks (TSN) [45] leverage RGB and
optical flow data. Tran et al. [46] proposed 3D convolutional
networks (C3D) for spatiotemporal modeling, followed by
an inflated model [47]. Recent work substitutes 3D convo-
lution with 2D and 1D convolution blocks (R(2+1)D [48]) to
improve effectiveness and efficiency. Feichtenhofer et al. [20]
propose the SlowFast model to extract video features from
low and high frame rate streams. For real-time applications
in untrimmed, streaming videos, online action detectors
have been developed to classify video frames with only past
observations [21], [49], [50], [51], [52], [53], [54], [55], [56]. In
this paper we benchmark video action recognition (VAR)
and online action detection (OAD) methods on our new
DoTA dataset to show how anomaly events can be classified
after being detected.

Recently, spatio-temporal action recognition (STAR) has
been proposed to detect objects and action types simul-
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taneously [4], [5], [6], [7], [57], [58] and has the potential
to be applied to driving videos. However, STAR requires
detailed annotations of each bounding box and action type
during training and only detects pre-defined categories; due
to the long-tailed distribution of traffic events, it is nearly
impossible to pre-define all the anomalous event categories
and to collect enough data for training [10], which makes
it difficult to apply STAR to anomaly detection. In contrast,
VAD does not require pre-defined anomaly categories be-
cause it models normality in the videos without supervision,
and then identifies events that do not follow typical patterns
as anomalies.

Video Object Detection (VOD) [59] is similar to detecting
objects in static images, but incorporates temporal con-
straints and tries to handle the unique challenges of video
such as motion blur. Early methods solved this problem
by detecting objects in each individual frame. To capture
the spatial-temporal nature of video and to increase the
accuracy and efficiency of detection, recent methods [60],
[61], [62], [63], [64], [65], [66] use deep learning. Some meth-
ods [67], [68] use Convolutional Long Short Term Memories
(LSTMs) [69] to model long-term relations and select impor-
tant features. Liu et al. [67] combine an image-based object
detector with a convolutional LSTM to add temporal infor-
mation to input features, in order to detect objects in videos.
They improve inference speed by using large and small
feature extractors in [68]. Other methods [61], [62], [63],
[64], [65], [66] use local feature aggregation for detection
in a given frame. Inspired by humans’ object localization
ability across multiple time steps, Chen et al. [70] jointly
consider global semantic information and key frame object
localization, and propose the Memory Enhanced Global-
Local Aggregation module, which achieves 85.4% on the
ImageNet VID dataset. Han et al. [71] propose the Hierarchi-
cal Video Relation Network which models the Inter-Video
Proposal Relation in addition to Intra-Video Proposal Rela-
tion. Although Video Object Detection is related to the VAD
task we consider here because they both involve spatial-
temporal modeling, our work is significantly different in
several ways: 1) VAD aims at localizing anomalous events in
video while VOD detects object bounding boxes and types;
2) our DoTA dataset focuses on the richness of anomalous
behaviors rather than only objects; 3) our DoTA dataset
provides labels for anomalous behaviors, not normal objects
and their behaviors.

3 METHOD

Autonomous vehicles must monitor the roadway for signs
of unexpected activity that may require evasive action. A
natural way to detect these anomalies is to look for unex-
pected or rare movements in the first-person perspective
of a front-facing, dashboard-mounted camera on a moving
ego-vehicle. Prior work [8] proposes monitoring for unex-
pected scenarios by using past video frames to predict the
current video frame, and then looking for major differences.
However, this does not work well for moving cameras on
vehicles, where the perceived optical motion in the frame
is induced by both moving objects and camera ego-motion.
More importantly, anomaly detection systems do not need
to accurately predict all information in the frame, since

Fig. 2: Overview of the future object localization model.
Blocks with dashed outlines are encoders, and solid lines are
decoders. The decoder recurrences are unfolded to visualize
the prediction horizon.

anomalies are unlikely to involve peripheral objects such
as houses or billboards by the roadside. This paper thus
assumes that an anomaly may exist if an object’s real-world
observed trajectory deviates from the predicted trajectory.
For example, when a vehicle should move through an in-
tersection but instead suddenly stops, a collision may have
occurred.

Our model is trained with a large-scale dataset of nor-
mal, non-anomalous driving videos. This allows the model
to learn normal patterns of object and ego motions, then
recognize deviations without the need to explicitly train
the model with examples of every possible anomaly. This
video dataset is easy to obtain and does not require hand
labeling since the object trajectories can be estimated using
off-the-shelf object detection and tracking algorithms [41].
Considering the influence of ego-motion on perceived object
location, we incorporate a future ego-motion prediction
module as an additional input. At test time, we use the
model to predict the current locations of objects based on the
last few frames of data and determine if an abnormal event
has happened based on three different anomaly detection
strategies, described in Section 3.2.

3.1 Future Object Localization (FOL)

3.1.1 Bounding Box Prediction

Following [41], we denote an observed object’s bounding
box Xt = [cxt , c

y
t , wt, ht] at time t, where (cxt , cyt ) is the loca-

tion of the center of the box and wt and ht are its width and
height in pixels, respectively. We denote the object’s future
bounding box trajectory for the δ frames after time t to be
Yt = {Yt+1, Yt+2, · · · , Yt+δ}, where each Yt is a bounding
box parameterized by center, width, and height. Given the
image evidence Ot observed at time t, a visible object’s
location Xt, and its corresponding historical information
Ht−1, our future object localization model predicts Yt.
This model is inspired by the multi-stream RNN encoder-
decoder framework of Yao et al. [41], but with a completely
different network structure [21] to allow for online training
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and inference. For each frame, [41] receives and re-processes
the previous ten frames before making a decision, whereas
our model only needs to process the current information,
making it much faster at inference time.

Our model is shown in Figure 2. Two encoders (Enc)
based on gated recurrent units (GRUs) receive an object’s
current bounding box and pixel-level spatiotemporal fea-
tures as inputs, respectively, and update the object’s hid-
den states. In particular, the spatiotemporal features are
extracted by a region-of-interest pooling (RoIPool) operation
using bilinear interpolation from precomputed optical flow
fields. The updated hidden states are used by a location
decoder (Dec) to recurrently predict the bounding boxes of
the immediate future. We train the FOL model using a mean
squared error loss between the predicted and target future
bounding boxes.

3.1.2 Ego-Motion Cue
Ego-motion information of the moving camera has been
shown necessary for accurate future object localization
[41], [72]. Let Et be the ego-vehicle’s pose at time t;
Et = {φt, xt, zt} where φt is the yaw angle and xt and
zt are positions along the ground plane with respect to
the vehicle’s starting position in the first video frame. We
predict the ego-vehicle’s odometry by using another GRU
encoder-decoder module to encode ego-position change
vector Et − Et−1 and decode future ego-position changes
E = {Êt+1−Et, Êt+2−Et, ..., Êt+δ−Et}. We use the change
in ego-position to eliminate accumulated odometry errors.
The output E is then combined with the hidden state of the
future object localization decoder using average pooling to
form the input into the next time step.

3.1.3 Missed Objects
We build a list of trackers Trks per [73] to record the
current bounding box Trks[i].Xt, the predicted future boxes
Trks[i].Ŷt, and the tracker age Trks[i].age of each object.
We denote all maintained track IDs as D (both observed
and missed), all currently observed track IDs as C , and the
missed object IDs as D − C . At each time step, we update
the observed trackers and initialize a new tracker when a
new object is detected. We use a temporarily-missing or
occluded object’s previously predicted bounding boxes to
estimate current location, running future object localization
with RoIPool features from predicted boxes (Algorithm 1).
Missing object handling is essential in our prediction-based
anomaly detection method to eliminate the impact of failed
object detection or tracking in any given frame. For example,
if an object with a normal motion pattern is missed for sev-
eral frames, the FOL model is still expected to give reason-
able predictions except for some accumulated deviations.
On the other hand, if an anomalous object is missed during
tracking [73], we make a prediction using its previously
predicted bounding box whose region can be substantially
displaced and can result in inaccurate predictions. In this
case, some false alarms and false negatives can be elimi-
nated by using the metrics presented in Section 3.2.3.

3.2 Traffic Anomaly Detection using FOL
Unsupervised anomaly detection methods compute
anomaly scores based on prediction or reconstruction

accuracy [12], [8], [14], [15]. In this section, we first
present the basic anomaly metric computed from predicted
bounding box accuracy. The key idea is that object
trajectories and locations in non-anomalous events can
be precisely predicted, while deviations from predicted
behaviors suggest an anomaly. Next we propose two
different strategies to compute anomaly scores using: 1) the
foreground-background mask generated from predictions
and 2) the prediction consistency.

3.2.1 Predicted Bounding Box Accuracy
One simple method for recognizing abnormal events is to
directly measure the similarity between predicted object
bounding boxes and their corresponding observations. The
FOL model predicts bounding boxes of the next δ future
frames, i.e., at each time t each object has a bounding
box predicted at each time from t − δ to t − 1. We first
average the positions of the δ bounding boxes, then com-
pute intersection over union (IoU) between the averaged
bounding box and the observed box location, where higher
IoU means greater agreement between the two boxes. We
average computed IoU values over all observed objects, and
then compute an aggregate anomaly score Lbbox ∈ [0, 1],

Lbbox = 1− 1

N

N∑
i=1

IoU
((1

δ

δ∑
j=1

Ŷ it,t−j

)
, Y it0

)
, (1)

where N is the total number of observed objects, and Ŷ it,t−j
is the predicted bounding box from time t − j of object i
at time t. This method, which we call FOL-IoU, relies upon
accurate object tracking to match predicted and observed
bounding boxes.

3.2.2 Predicted Box Mask Accuracy
Although tracking algorithms such as Deep-SORT [73] offer
reasonable accuracy, it is still possible to lose or mis-track

Algorithm 1: FOL-Track Algorithm

Input : Observed bounding boxes {X(i)
t } where

i ∈ C , observed image evidence Ot, trackers
of all objects Trks with track IDs D

Output: Updated trackers Trks
1 A is the maximum age of a tracker
2 for i ∈ C do // update observed trackers
3 if i /∈ D then
4 initialize Trks[i]
5 else
6 Trks[i].Xt = X

(i)
t

7 Trks[i].Ŷt = FOL(X
(i)
t , Ot)

8 end
9 end

10 for j ∈ D − C do // update missed trackers
11 if Trks[j].age > A then
12 remove Trks[j] from Trks
13 else
14 Trks[j].Xt = Trks[j].Ŷt−1
15 Trks[j].Ŷt = FOL(Trks[j].Xt, Ot)
16 end
17 end
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Fig. 3: Overview of our unsupervised VAD methods. The three brackets correspond to: (1) Predicted bounding box accuracy
method (green); (2) Predicted box mask accuracy method (orange); (3) Predicted bounding box consistency method (blue).
All methods use multiple previous FOL outputs to compute anomaly scores.

objects. We found that inaccurate tracking particularly hap-
pens in severe traffic accidents because of the twist and dis-
tortion of object appearances. Moreover, severe ego-motion
also results in inaccurate tracking due to sudden changes in
object locations. This increases the number of false negatives
of the metric proposed above, which simply ignores objects
that are not successfully tracked in a given frame. To solve
this problem, we first convert all areas within the predicted
bounding boxes to binary masks, with areas inside the boxes
having value 1 and backgrounds having 0, and do the same
with the observed boxes. We then calculate an anomaly
score as the IoU between these two binary masks,

I(u,v) =

{
1, if pixel (u, v) within box Xi, ∀i,
0, otherwise,

(2)

Lmask = 1− IoU
(
Ît,t−1, It

)
, (3)

where I(u,v) is pixel (u, v) on mask I , Xi is the i-th bound-
ing box, Ît,t−1 is the predicted mask from time t−1, and It is
the observed mask at t. In other words, while the bounding
box accuracy metric compares bounding boxes on an object-
by-object basis, this metric simply compares the bounding
boxes of all objects simultaneously. The main idea is that
accurate prediction results will still have a relatively large
IoU compared to the ground truth observation. We denote
the mask accuracy-based method FOL-Mask.

3.2.3 Predicted Bounding Box Consistency
The above methods rely on accurate detection of objects in
concurrent frames to compute anomaly scores. However,
the detection of anomaly participants is not always accurate
due to changes in appearance and mutual occlusions. We
hypothesize that visual and motion features related to an
anomaly do not only appear once it happens, but are usu-
ally accompanied by a salient pre-event. We thus propose
another strategy, called FOL-STD, to detect anomalies by
computing consistency of future object localization outputs
from several previous frames while eliminating the effect of
inaccurate detection and tracking.

As discussed in Section 3.2.1, for each object in video
frame at time t, we can collect δ bounding boxes predicted
from time t − 1, t − 2, .., t − δ. We compute the standard
deviation (STD) between all δ predicted bounding boxes to
measure their similarity,

Lpred =
1

N

N∑
i=1

max
{cx,cy,w,h}

STD([Ŷ
(i)
t,t−j ]

j=δ
j=1). (4)

where Ŷ (i)
t,t−j is the bounding box of the ith object in frame at

time t predicted from the frame at time t−j, and cx, cy, w, h
are the center coordinates and the width and height of a
bounding box. We compute the maximum standard devia-
tion over the four components of the bounding boxes since
different anomalies may be indicated by different effects on
the bounding box, e.g., suddenly stopped cross traffic may
only have large variance along the horizontal axis. A low
standard deviation suggests the object is following normal
movement patterns thus the predictions are stable, while a
high standard deviation suggestions abnormal motion. For
all three methods, we follow [8] to normalize computed
anomaly scores for evaluation.

3.3 Frame-object Ensemble Anomaly Detection
Our FOL based methods are object-centric by encoding-
decoding object information. Frame-level VAD methods
focus on appearance while object-centric methods focus
more on object motion. We are not aware of any method
combining the two. Appearance-only methods may fail
with large changes in lighting conditions, and motion-only
methods may fail when trajectory prediction is imperfect.
We combine FOL-STD with the frame prediction method
AnoPred [8], yielding what we call the FOL-Ensemble
method. AnoPred predicts one anomaly score per image
pixel while our method predicts one anomaly score per
object. We first map our object anomaly score to a per-
pixel score by putting a Gaussian function at the center
of each object (as introduced in Section 5). We train each
module of FOL-Ensemble independently and apply average
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pooling on the computed per-pixel scores from two modules
to compute a final anomaly score. We observed this late
fusion is better than fusing hidden features at an early stage
and training the two models together, since their hidden
features are scaled differently. AnoPred encodes one feature
per frame, while FOL-STD has one feature per object.

4 DETECTION OF TRAFFIC ANOMALY (DOTA)
DATASET

We introduce DoTA, the first publicly-available traffic video
anomaly dataset with temporal, spatial, and categorical
annotations. To build DoTA, we collected more than 6,000
video clips mainly from two YouTube channels1 which
provides traffic accident videos for driver education pur-
poses. We selected diverse dash camera accident videos
from different areas (e.g., East Asia, North America, Europe
etc.) under different weather (e.g., sunny, cloudy, raining,
snowing, etc.) and lighting conditions (day and night). We
avoided videos with accidents that were not visible or where
the camera dislodged during the accident, yielding 4,677
videos with 1280 × 720 resolution, each containing exactly
one anomalous event. Although the original videos are at
30 fps, we extracted frames at 10 fps for annotations and
experiments in this paper. Table 1 compares DoTA with
other ego-centric traffic anomaly datasets. We annotated the
dataset using a custom tool based on Scalabel.2 Labeling
traffic anomalies is subjective, especially for properties like
start and end times. To produce high quality annotations,
each video was labeled by three annotators, and the tem-
poral and spatial (categorical) annotations were merged by
taking average (mode) to minimize individual biases.

Temporal Annotations. Each DoTA video is annotated
with anomaly start and end times, which separates it into
three temporal partitions: precursor, which is normal video
preceding the anomaly, the anomaly window, and post-
anomaly, which is normal activity following the anomaly.
Duration distributions are shown in Fig. 5(a). Since early
detection is essential for on-road anomalies [1], [75], we
asked the annotators to estimate the anomaly start as the
time when the anomaly was inevitable. The anomaly end
was approximated as the time when all anomalous objects
are out of the field of view or are stationary. Our annotation
is different from [3] where a frame is marked as an anomaly
start if half of an anomaly participant appears in the camera
view; such a start time can be too early because anomaly
participants often appear for a while before they start to
behave abnormally. Our annotation is also distinct from [1]
and [22] where the anomaly start is marked when a crash
happens, which does not support early detection.

Spatial Annotations. DoTA is the first traffic anomaly
dataset to provide detailed spatio-temporal annotation of
anomalous objects. Each anomaly participant is assigned a
unique track ID, and each participant’s bounding box is la-
beled from anomaly start to anomaly end or until the object
is out of view. We consider seven common traffic participant
categories: person (pedestrian), car, truck, bus, motorcycle,

1. https://youtube.com/user/CarCrashesTime and
https://youtube.com/channel/UC-Oa3wml6F3YcptlFwaLgDA

2. https://scalabel.ai/

bicycle, and rider, following the BDD100K style [25]. Statis-
tics of object categories and per-video anomalous object
numbers are shown in Fig. 5(c) and 5(d). DADA [3] also
provides spatial annotations by capturing video observers’
eye-gaze for driver attention studies. However, they have
shown that eye-gaze does not always coincide with the
anomalous region, and that gaze can have a 1-2 second delay
from anomaly start. Our tracklets thus provide improved
annotation for spatio-temporal anomaly detection studies.

Anomaly Categories. Each DoTA video is assigned one of
the 9 categories listed in Table 2 as defined in [19]. We have
observed that even within the same anomaly category, dif-
ferent viewpoints cause large visual variation (e.g., whether
the ego-vehicle is a participant in the accident or if it is
simply observing it), as shown in Fig. 4. Therefore we split
each category into ego-involved and non-ego (marked with
*), resulting in 18 categories total. Sometimes the category
can be ambiguous, particularly when one anomaly is fol-
lowed by another. For example, an oncoming out-of-control
(OO*) vehicle might result in an oncoming collision (OC)
with the ego vehicle. In such cases, we annotate the anomaly
category as the dominant one in the video, i.e, the one that
lasts longer during the anomaly period. The distribution of
videos in each category is shown in Fig. 5(b).

5 A NEW VAD EVALUATION METRIC

5.1 Critique of Current VAD Evaluation

Most VAD methods compute an anomaly score for each
frame, and evaluate by plotting receiver operating charac-
teristic (ROC) curves using temporally concatenated scores
and computing area under curve (AUC). AUC measures
how well a VAD method locates an anomaly along the
temporal axis but ignores accuracy on spatial axes since an
averaged anomaly score lacks spatial information. Frame-
level AUC does not evaluate the performance of spatial
localization [76], while anomaly region localization is neces-
sary in VAD. We argue AUC is insufficient to fully evaluate
VAD performance.

In computing AUC, a true positive occurs when the
model predicts a high anomaly score for a positive frame.
Fig. 6 shows two positive frames and their corresponding
score maps computed by the four benchmarked VAD meth-
ods. Although the maps are different, the anomaly scores
averaged from these maps are similar, meaning they are
treated similarly in AUC evaluation. This results in similar
AUCs among all methods, which leads to a conclusion that
all perform similarly. However, AnoPred (Fig. 6(b)) predicts
high scores for trees and other noise, while AnoPred+Mask
and FOL-STD (Fig. 6(c) and 6(d)) predict high scores for
unrelated vehicles. Ensemble (Fig. 6(e)) alleviates these
problems but still has high anomaly scores outside the
labeled anomalous regions. (Note that FOL-STD and Ensem-
ble are pseudo-maps introduced in Section 5.2.) Although
these methods yield similar AUCs, VAD methods should
be distinguished by their abilities to localize anomalous
regions. Anomalous spatial localization is essential because
it improves reaction to anomalies — permitting collision
avoidance, for example — and allows for model explain-
ability. This motivates a new metric to evaluate how well a
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TABLE 1: Comparison of published driving video anomaly datasets.

Dataset type # anomaly videos # frames Annotations

UCSD Ped1/2 [74]

Surveillance

98 18560 (30fps) temporal
CUHK Avenue [11] 37 30,652 (30fps) temporal
UCF-Crime [24] 1,900 13,769,300 (30fps) temporal
ShanghaiTech [13] 437 317,398 (30fps) temporal

StreetAccident [1]

Dashcam

620 62,000 (20fps) temporal
A3D [22] 1,500 128,175 (10fps) temporal
CCD [26] 1,500 75,000 (10fps) temporal, spatial (tracklets), causation
DADA [3] 2,000 648,476 (30fps) temporal, spatial (eye-gaze)
DoTA 4,677 731,932 (10fps) temporal, spatial (tracklets), categories

Fig. 4: DoTA Samples. Spatial annotations are shown as shadowed bounding boxes. Short anomaly category labels with *
indicate non-ego anomalies.

TABLE 2: Traffic anomaly categories in the DoTA dataset.

Label Anomaly Category

ST Collision with another vehicle that starts, stops, or is stationary
AH Collision with another vehicle moving ahead or waiting
LA Collision with another vehicle moving laterally in same direction
OC Collision with another oncoming vehicle
TC Collision with another vehicle that turns into or crosses a road
VP Collision between vehicle and pedestrian
VO Collision with an obstacle in the roadway
OO Out-of-control and leaving the roadway to the left or right
UK Unknown

model detects both the temporal and spatial location of the
anomaly.

5.2 Spatial-Temporal Area Under Curve (STAUC) Metric
For each positive frame, we first calculate the true anoma-
lous region rate (TARR), which is a scalar describing how
much of the anomaly score is located within the true anoma-
lous region,

TARRt =

∑
i∈mt

∆I(i)∑
i∈M ∆I(i)

, (5)

where ∆I(i) is the anomaly score at pixel i, M represents
all frame pixels, and mt is the annotated anomalous frame

region (i.e., the union of all annotated bounding boxes) at
time t. TARR is inspired by anomaly segmentation tasks
where the overlap between prediction and annotation is
computed [77]. Another metric related to TARR is inter-
section over union (IoU) used in object detection, where
the predicted box has IoU equal to 1.0 if it is the same as
the labeled box. However, in contrast to object detection,
not all pixels in an anomalous event region are necessarily
anomalous: the tree pixels or street surface pixels in the
car bounding boxes in Fig. 6(a), for example. The proposed
TARR value measures how well a model concentrates on
the true anomalous region but does not require it to predict
high anomaly scores for all pixels within the true anomalous
region, thus making it more appropriate to the anomalous
event detection task.

Next, we calculate the spatio-temporal true positive rate
(STTPR),

STTPR =

∑
t∈TP TARRt
|P |

, (6)

where TP represents all true positive predictions and P
represents all ground truth positive frames. STTPR is a true
positive rate where each true positive is weighted by its
TARR. We then use STTPR and the false positive rate to
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(a) Duration distribution (b) Anomaly category distribution

(c) Object categories (d) # anomalous objects (e) Ego-car involvement

Fig. 5: DoTA dataset statistics.

(a) GT image (b) AnoPred (c) AnoPred+Mask (d) FOL-STD (e) FOL-Ensemble

Fig. 6: Anomaly score maps computed by four methods. Ground truth anomalous regions are labeled by bounding boxes.
Brighter color indicates higher score.

plot an ROC curve (which we call Spatial-Temporal ROC or
STROC) and calculate the area under the curve, which gives
the STAUC. Note that STAUC≤AUC; the two are equal in
the best case where TARRt = 1 ∀t.

Object-centric VAD [14], [15], [22] computes per-object
anomaly scores sk instead of an anomaly score map ∆I .
To generalize the STAUC metric to object-centric methods,
we first create pseudo-anomaly score maps as illustrated in
Fig. 6(d). Each object has a 2D Gaussian distribution cen-
tered in its bounding box. The pixel score is then computed
as the sum of the scores calculated from all boxes it occupies,

∆Ipseudo(i) =
∑

∀k,i∈Bk

sk e
− |ix−xk|

2

2wk
− |iy−yk|

2

2hk , (7)

where ix and iy are coordinates of pixel i and [xk, yk, wk, hk]
are center location, width, and height of object bounding
box Bk. For the Ensemble method, we take the average of
∆I and ∆Ipseudo as the anomaly score map in Fig. 6(e). This
map is used as ∆I in Eq. (5) to compute TARR and STAUC.

TARR is not robust to anomalous region size mt. When
mt � M , TARR could be small even though all anomaly
scores are high in mt. We thus propose selecting the top N%
of pixels with the largest anomaly scores as candidates, and
compute TARR from these candidates instead of all pixels.

An extremely small N such as 0.01 may result in a biased
candidate set dominated by false or true detections such
that TARR = 0 or 1. To address this issue, we compute an
adaptive N for each frame based on the size of its annotated
anomalous region,

Nadaptive =
number of pixels in anomalous region

Total number of pixels
× 100.

(8)

The average Nadaptive of the test data in DoTA is 11.12 with
a standard deviation 13.09. The minimum and maximum
Nadaptive values are 0.005 and 95.8, showing extreme cases
where the anomalous object is very small (far away) or large
(nearby).

A critical consideration for any new metric is its ro-
bustness to hyper parameters. We have tested STAUC with
N = [1, 5, 10, 20, 50, 100, Nadaptive] for different VAD meth-
ods. As shown in Fig. 7(a), STAUC slightly decreases with
increasing N but stabilizes when N is large, indicating that
STAUC is relatively robust. Fig. 7(b) shows that STROC
curves with different N are close, especially when N ≥ 5,
and their upper bound is the traditional ROC. Nadaptive is
selected for our benchmarks based on each frame’s annota-
tion and its corresponding mid-range STAUC value.
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(a)

(b)

Fig. 7: (a) STAUC values of different methods using different
top N%; (b) ROC curve and STROC curves of the Ensemble
method with different top N%.

5.3 Comparison with Spatio-temporal Action Recogni-
tion Metrics

Two existing evaluation metrics related to our STAUC are
the supervoxel-AUC [78], [79] and mean average preci-
sion (mAP) [4] used for spatio-temporal action recognition
(STAR).

Supervoxel-AUC uses an overlap threshold between pre-
dicted and ground truth supervoxels to determine whether
a supervoxel is considered positive or negative. The authors
report multiple AUC values at different overlap thresholds
(e.g. 10%, 20%, etc.). However, most VAD methods predict
pixel-level anomaly score maps rather than supervoxels,
therefore supervoxel-AUC cannot be directly applied to
VAD evaluation. Our STAUC, on the other hand, uses TARR
as a measure of how positive a frame is so that we do not
need to evaluate STAUC under different thresholds, mak-
ing STAUC more universal than supervoxel-AUC. Another
advantage of STAUC is that it can evaluate different output
and ground truth formats: STAUC can be applied to pixel-
level object-level and, essentially, supervoxel-level output
since it computes how well anomaly scores locate within
the ground truth region regardless of the region format.

Mean Average Precision (mAP) has been used for evaluat-
ing object-level action recognition. mAP computes the IoU

between detected and ground truth bounding boxes and
uses a fixed IoU threshold (e.g., 0.5 in [4]) to categorize into
positives and negatives. The AP is then computed for each
action type and the mean value is reported. However, the
precision-recall curve used to compute AP can perform dif-
ferently for balanced versus unbalanced data distributions,
which makes mAP less appropriate for VAD tasks where
anomalous events are rare compared to normal events. Our
STAUC can be considered as a combination of the mAP idea
and the AUC metric so that it evaluates spatial accuracy and
can be applied to imbalanced data.

Compared to supervoxel-AUC and mAP, our STAUC
is specifically designed to extend VAD evaluation from
temporal to spatio-temporal.

6 EXPERIMENTS

We benchmarked VAD baselines and our methods on the
new DoTA dataset. DoTA also provides categorical anno-
tations to suit video action recognition (VAR) and online
action detection tasks, thus we provide extra benchmarks
for state-of-the-art methods for these two tasks using the
DoTA dataset. We randomly partitioned DoTA into 3,275
training and 1,402 test videos and use these splits for all
tasks. Unsupervised VAD models must be trained only with
non-anomalous data, so we use the precursor frames from
each video for training. VAR and online action detection
models are fully-supervised and thus are trained using all
training data.

6.1 Task 1: Video Anomaly Detection (VAD)

6.1.1 Benchmarked Methods
We benchmark three frame-level VAD method, Con-
vAE [12], ConvLSTMAE [17], and AnoPred [8] and their
variants as baselines. Frame-level methods detect anomalies
by either reconstructing past frames or predicting future
frames, and computing the reconstruction or prediction
error as the anomaly score.

ConvAE [12] is a spatio-temporal autoencoder model which
encodes temporally stacked images with 2D convolutional
encoders, and decodes with deconvolutional layers to re-
construct the input (Fig. 8(a)). The per-pixel reconstruction
error forms an anomaly score map ∆I , and mean squared
error (MSE) is computed as a frame-level anomaly score. To
further compare the effectiveness of image and motion fea-
tures, we implemented ConvAE(gray) and ConvAE(flow)
to reconstruct the grayscale image and dense optical flow,
respectively. The input to ConvAE(flow) is a stacked his-
torical flow map with size 20 × 227 × 227 acquired from
pre-trained FlowNet2 [80]. We trained both variants using
AdaGrad with learning rate 0.01 and batch size 24.

ConvLSTMAE [17] is similar to ConvAE but models spatial
and temporal features separately. A 2D CNN encoder first
captures spatial information from each frame, then a multi-
layer ConvLSTM recurrently encodes temporal features.
Another 2D CNN decoder then reconstructs input video
clips (Fig. 8(b)). We implemented ConvLSTMAE(gray) and
ConvLSTMAE(flow). We trained both variants using Ada-
Grad with learning rate 0.01 and batch size 24.
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(a) ConvAE [12] (b) ConvLSTMAE [17] (c) AnoPred [8]

Fig. 8: Network architectures of methods for video anomaly detection.

AnoPred [8] is a frame-level VAD method that takes four
contiguous previous RGB frames as input and applies UNet
to predict a future RGB frame (Fig. 8(c)). AnoPred boosts
prediction accuracy with a multi-task loss incorporating im-
age intensity, optical flow, gradient, and adversarial losses.
AnoPred was proposed for surveillance cameras. How-
ever, traffic videos are much more dynamic, making future
frame prediction difficult. Therefore we also benchmarked
a variant of AnoPred to focus on video foregrounds. We
used Mask-RCNN [81] pre-trained on Cityscapes [82] to
acquire object instance masks for each frame, and apply
instance masks to input and target images, resulting in
an AnoPred+Mask method that only predicts foreground
objects and ignores noisy backgrounds such as trees and
billboards. In contrast to [12], [17], AnoPred uses Peak Sig-
nal to Noise Ratio as the anomaly score with better results.
Both variants are trained based on the original paper.

Implementation Details We used the published imple-
mentations of ConvAE, ConvLSTMAE, and AnoPred and
modified the input layer size to suit grayscale or optical
flow input. All these models were trained according to
the original papers. Our FOL-based methods use hidden
size 128 for all GRU modules and are trained using the
RMSprop [83] optimizer with batch size 16, learning rate
0.0001, and no weight decay. All models are trained and
evaluated on NVidia Titan XP GPUs. For evaluation, we
ignore videos with unknown category or without objects,
resulting in 1,305 test videos.

6.1.2 Results

Overall Results. The top four rows of Table 3 show per-
formance of ConvAE and ConvLSTMAE with grayscale or
optical flow inputs. Generally, using optical flow achieves
better AUC, indicating that motion is an informative feature
for this task. However, all baselines achieve low STAUC,
meaning that they cannot localize anomalous regions well.
AnoPred achieves 67.5 AUC but only 24.4 STAUC, while
AnoPred with masked RGB input (AnoPred+mask) has 2.7
lower AUC but 17.7 higher STAUC. By applying instance
masks, the model focuses on foreground objects to avoid
computing high scores for the background, resulting in
slightly lower AUC but much higher STAUC. This supports
our hypothesis that higher AUC does not always imply a

TABLE 3: Comparison of video anomaly techniques on the
DoTA dataset, according to the AUC and STAUC metrics.

Method Input AUC ↑ STAUC ↑

ConvAE [12]
Gray 64.3 7.4
Flow 66.3 7.9

ConvLSTMAE [17]
Gray 53.8 12.7
Flow 62.5 12.2

AnoPred [8] RGB 67.5 24.4
Masked RGB 64.8 42.1

FOL-IoU Box + Flow + Ego 61.2 34.6
FOL-Mask Box + Flow + Ego 64.0 35.0

FOL-STD

Box 66.7 40.9
Box + Ego 67.8 42.1
Box + Flow 69.1 43.1
Box + Flow + Ego 69.7 43.7

FOL-Ensemble RGB + Box + Flow + Ego 73.0 48.5

better VAD model, while STAUC better captures the ability
to localize anomalous regions.

Table 3 also shows evaluations of four variants of our
methods: FOL-IoU (prediction accuracy), FOL-Mask (pre-
diction mask accuracy), FOL-STD (prediction consistency),
and FOL-Ensemble, where FOL-Ensemble is an ensemble
model of FOL-STD and AnoPred+Mask. FOL-Mask outper-
forms FOL-IoU as it is more robust to inaccurate object
tracking. FOL-STD outperforms FOL-IoU and FOL-Mask by
a large margin, which shows the effectiveness of our pro-
posed consistency metric over the existing accuracy based
metric. Its higher STAUC also shows that FOL-STD is more
robust to scenarios where objects are not accurately detected
or tracked. FOL-STD outperforms AnoPred on both met-
rics by specifically focusing on object motion and location,
both of which are important indicators of traffic anomalies.
An ablation study for FOL-STD is also shown in Table 3
to evaluate the effectiveness of different modules in the
FOL network. Although FOL-STD with bounding box input
serves as a reasonable baseline, adding ego motion and
optical flow streams further boosts the AUC and STAUC
values, indicating the effectiveness of our multi-stream FOL
network. Finally, the FOL-Ensemble method achieves the
best AUC and STAUC among all methods, indicating that
combining frame-level appearance and motion features is a
direction worth investigating in future VAD research.
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TABLE 4: Video anomaly detection results for each type of anomaly class. ST: collision with another vehicle that starts,
stops, or is stationary; AH: ahead collision; LA: lateral collision; OC: oncoming collision; TC: turning or crossing collision;
VP: vehicle-pedestrian collision; VO: vehicle-obstacle collision; OO: out-of-control; UK: unknown. Ego-involved and non-
ego (*) anomalies shown separately. VO and OO are not shown because they do not contain anomalous traffic participants.

Ego involved anomaly classes Non-ego involved anomaly classes

ST AH LA OC TC VP ST* AH* LA* OC* TC* VP* VO* OO*

Individual Anomaly Class AUC:
AnoPred [8] 69.9 73.6 75.2 69.7 73.5 66.3 70.9 62.6 60.1 65.6 65.4 64.9 64.2 57.8
AnoPred [8]+Mask 66.3 72.2 64.2 65.4 65.6 66.6 72.9 63.7 60.6 66.9 65.7 64.0 58.8 59.9
FOL-STD 67.3 77.4 71.1 68.6 69.2 65.1 75.1 66.2 66.8 74.1 72.0 69.7 63.8 69.2
FOL-Ensemble 73.3 81.2 74.0 73.4 75.1 70.1 77.5 69.8 68.1 76.7 73.9 71.2 65.2 69.6

Individual Anomaly Class STAUC:
AnoPred [8] 37.4 31.5 32.8 34.3 33.6 24.9 25.9 15.0 12.5 13.0 20.9 14.0 8.2 8.8
AnoPred [8]+Mask 51.8 51.9 45.1 50.3 47.5 41.0 45.3 31.1 33.8 42.5 40.3 25.3 22.9 33.8
FOL-STD 47.4 55.6 46.3 52.2 47.2 26.6 45.1 33.6 38.5 46.9 39.3 25.6 29.0 44.4
FOL-Ensemble 54.4 60.3 53.8 56.5 54.9 35.2 52.4 36.4 40.8 51.9 44.7 28.6 28.6 43.5

Per-class Results. Table 4 shows results of AnoPred,
AnoPred+Mask, FOL-STD, and FOL-Ensemble broken out
according to the type of anomaly. We observe that STAUC
(unlike AUC) can break out results by anomaly type.
For example, Ensemble has comparable AUCs on the
ego-involved OC (oncoming collision) and VP (vehicle-
pedestrian) anomalies (73.4 vs 70.1) but significantly dif-
ferent STAUCs (56.6 vs 35.2), showing that anomalous
region localization is harder for vehicle-pedestrian. Similar
trends exist for the non-ego AH* (ahead collision), LA* (lat-
eral collision), VP* (vehicle-pedestrian), and VO* (vehicle-
obstacle) anomalies. Second, frame-level and object-centric
methods compensate each other in VAD as shown by the
Ensemble method’s highest AUC and STAUC values in
most columns. Third, localizing anomalous regions in non-
ego anomalies (marked with *) is more difficult, perhaps
because ego-involved anomalies have better dashcam vis-
ibility and larger anomalous regions. We also note that
certain classes are especially challenging for various reasons;
for example: pedestrians in vehicle-pedestrian (VP) videos
become occluded or disappear quickly after an anomaly
happens, the impacting vehicle in non-ego ahead (AH*) is
often occluded by the vehicle it impacts, obstacles in non-
ego vehicle-obstacle (VO*) such as bumpers or traffic cones
are often occluded or not detected, and vehicles in non-ego
lateral (LA*) usually move toward each other slowly until
they collide and stop, making the anomaly relatively subtle.

Qualitative Results. Fig. 9(a) shows per-frame anomaly
scores and TARRs of three methods on a video in which they
all achieve high AUCs. AnoPred+Mask has low TARR along
the video, indicating failure to localize anomalous regions.
FOL-STD computes high anomaly scores but low TARR in
the left example due to inaccurate trajectory prediction for
the left car. In the right image, it finds an anomalous car but
marks an unrelated car by mistake. Ensemble combines the
benefits of both with scores for the 20-30th anomaly frames
always higher than normal frames. It yields high TARR
during the 10-20th anomaly frames as shown in the left
score map. The right map shows a failure case combining
the failure of AnoPred+Mask and FOL-STD. Although these
methods achieve high AUC, their spatial localization is
limited according to TARR. Fig. 9(b) shows an ego-involved
ahead collision (AH). AnoPred+Mask incorrectly computes

a high anomaly score in the early frames because the pre-
diction of the left car is inaccurate. FOL-STD computes a
low anomaly score for this frame, so the Ensemble method
benefits. The right example shows that FOL-STD computes
a high score correctly for the car ahead but incorrectly for
the bus. Ensemble benefits from AnoPred+Mask so that it
focuses more attention on the car instead of the bus.

6.2 Task 2: Video Action Recognition (VAR)

VAD detects the temporal range of an anomalous event
but does not understand the anomaly type. The goal of
Video Action Recognition (VAR) is to classify each video
clip into one anomaly category. Taking advantage of the rich
categorical annotation of the DoTA dataset, we benchmark
seven VAR methods: C3D [46], I3D [47], R3D [48], MC3 [48],
R(2+1)D [48], TSN [45], and SlowFast [20]. The previous
training/test split is used. Unknown UK(*) anomalies are
ignored, yielding 3216 training and 1369 test videos. We
trained all models with SGD, learning rate 0.01 and batch
size 16 on NVidia Titan XP GPUs. Models are initialized
with pre-trained weights from Sports-1M [84] for C3D and
Kinetics [85] for the other methods; 0.5 probability random
horizontal flips create data augmentation. For evaluation,
we randomly selected ten clips from each test video (as in
[20]), except for TSN which uses 25 clips per video.

Table 5 shows the results. Although newer methods
R(2+1)D and SlowFast achieve higher average accuracy, all
suffer from low accuracy on DoTA, indicating that traffic
anomaly classification is challenging. First, distant anoma-
lies and occluded objects create difficulties; VO (vehicle-
obstacle) and VO* are particularly hard to classify due
to low visibility and diverse obstacle types (as seen in
Section 6.1). AH* (ahead collision) and OC* (oncoming
collision) are also difficult since oncoming vehicles are often
occluded. Second, some anomalies are visually similar. For
example, ST (start/stop/stationary) and ST* are rare and
look similar to AH (ahead) and AH* or LA (lateral) and
LA* (Figure 4) — the only difference is whether the vehicle
is starting, stopping, or stationary. Third, the anomaly cate-
gory is often determined near the anomaly start time, while
the later frames do not reveal this category clearly. We have
observed 2-4% accuracy improvement when testing models
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(a)

(b)

Fig. 9: Per-frame anomaly scores and TARRs of three methods for two different videos. The left and right columns show
sample video frames and corresponding score maps, with an arrow indicating their temporal position within the video.
Note that TARR only exists in positive frames.

only on the first half of each clip. Additional benchmarks
are available in our supplementary material.

6.3 Task 3: Online Action Detection (OAD)
Finally we provide benchmarks for online video action de-
tection on the DoTA dataset. OAD recognizes the anomaly
type by only observing the current and past frames, making
it suitable for autonomous driving applications. Since OAD
does not have a full observation of the whole video se-
quence, it is more difficult than traditional VAR. We bench-

mark four OAD methods: FC, LSTM, Encoder-decoder, and
TRN. The classifiers are designed to predict one out of the 16
anomaly categories. We use the same training configurations
as in [21]. Table 6 shows the per-class average precision
(AP) and the mean average prediction (mAP). We observe
that although TRN, a state-of-the-art method, achieves the
highest mAP, all methods suffer from low precision on
DoTA. Similar to what we have observed in the VAD and
VAR experiments, online action detection is also difficult
for ST (start/stop/stationary), ST*, VP (vehicle-pedestrian),
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TABLE 5: Video action recognition per-class and mean top-1 accuracies on DoTA. See Table 4 caption for class abbreviations.

Ego involved anomaly classes Non-ego involved anomaly classes

Method Backbone ST AH LA OC TC VP VO OO ST* AH* LA* OC* TC* VP* VO* OO* AVG

TSN ResNet50 18.2 67.2 52.9 53.8 71.0 0.0 0.0 61.6 0.0 14.7 25.3 6.7 48.1 9.5 0.0 53.4 30.2
C3D VGG16 25.5 61.8 43.9 47.8 57.9 3.3 4.4 52.9 1.2 18.4 36.0 6.7 55.9 8.6 6.0 33.2 29.0
I3D InceptionV1 10.0 62.4 45.8 45.8 62.2 2.8 6.9 66.6 2.4 28.1 24.5 4.7 60.3 9.5 5.0 37.6 29.7
R3D ResNet18 0.0 56.5 49.6 49.8 66.6 4.4 6.2 47.7 1.8 17.6 32.2 1.0 48.3 15.2 6.5 48.0 28.2
MC3D ResNet18 6.4 62.9 40.1 57.7 64.5 16.7 0.0 61.5 2.4 18.1 20.2 4.0 62.2 4.8 6.5 45.6 29.6
R(2+1)D ResNet18 4.5 64.7 42.8 47.6 68.7 25.6 5.6 64.4 9.4 14.3 24.3 2.3 64.7 9.5 0.0 47.8 31.0
SlowFast ResNet50 0.0 70.0 46.0 48.9 67.2 5.6 13.1 68.3 5.9 24.9 37.2 3.3 64.0 0.0 0.0 41.3 31.0

TABLE 6: Online video action detection average precisions on DoTA. See Table 4 caption for class abbreviations.

Ego involved anomaly classes Non-ego involved anomaly classes

Method ST AH LA OC TC VP VO OO ST* AH* LA* OC* TC* VP* VO* OO* mAP

FC 2.5 13.9 10.6 6.2 16.3 0.8 1.2 21.0 0.6 2.9 3.0 0.6 8.0 1.2 0.7 7.6 9.9
LSTM 0.6 19.9 15.1 9.2 25.3 2.4 0.6 34.3 0.6 3.8 5.0 1.5 11.0 1.2 0.5 13.3 12.9
Encoder-Decoder 0.5 20.1 15.6 10.4 28.1 2.9 0.7 39.9 0.8 3.7 7.4 2.5 14.7 1.2 0.5 13.2 14.5
TRN 1.0 22.8 20.6 15.5 30.0 1.5 0.7 32.3 0.7 4.0 10.2 2.9 17.0 1.2 0.7 13.8 15.3

VP*, VO (vehicle-obstacle), and VO*. AH* (ahead) an OC*
(oncoming) are also difficult due to the highly occluded
front of a typical oncoming vehicle. We also observe that
ego-involved anomalies are easier to recognize than non-
ego anomalies due to their higher visibility.

7 CONCLUSION AND FUTURE WORK

This paper proposed a novel FOL-based unsupervised video
anomaly detection (VAD) method for driving videos. A
prediction consistency metric was introduced for computing
anomaly scores which is robust to inaccurate object detec-
tion and tracking in driving videos. We further introduce
an ensemble method to combine object- and frame-level
VAD methods to boost performance. We also introduced
DoTA, a large-scale dataset containing temporal, spatial,
and categorical annotations and benchmarked state-of-the-
art VAD methods. We proposed a new spatial-temporal area
under curve (STAUC) metric to better evaluate VAD perfor-
mance. Experimental results show that our method achieves
state-of-the-art results on DoTA in terms of both AUC and
STAUC. Our DoTA dataset also enables research on video
action recognition (VAR) and online action detection in
driving scenarios; both of these problems are far from solved
according to experimental results. Future work will include
but not limited to spatio-temporal localization of anomalies
in driving scenarios, early detection of traffic accidents, and
validation and verification of autonomous driving systems.
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