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Abstract—Real-time object detection is crucial for many ap-
plications of Unmanned Aerial Vehicles (UAVs) such as recon-
naissance and surveillance, search-and-rescue, and infrastructure
inspection. In the last few years, Convolutional Neural Networks
(CNNs) have emerged as a powerful class of models for recog-
nizing image content, and are widely considered in the computer
vision community to be the de facto standard approach for
most problems. However, object detection based on CNNs is
extremely computationally demanding, typically requiring high-
end Graphics Processing Units (GPUs) that require too much
power and weight, especially for a lightweight and low-cost drone.
In this paper, we propose moving the computation to an off-board
computing cloud, while keeping low-level object detection and
short-term navigation onboard. We apply Faster Regions with
CNNs (R-CNNs), a state-of-the-art algorithm, to detect not one
or two but hundreds of object types in near real-time.

I. INTRODUCTION

Recent years have brought increasing interest in autonomous
UAVs and their applications, including reconnaissance and
surveillance, search-and-rescue, and infrastructure inspection
[1]–[5]. Visual object detection is an important component
of such UAV applications, and is critical to develop fully
autonomous systems. However, the task of object detection
is very challenging, and is made even more difficult by the
imaging conditions aboard low-cost consumer UAVs: images
are often noisy and blurred due to UAV motion, onboard
cameras often have relatively low resolution, and targets are
usually quite small. The task is even more difficult because
of the need for near real-time performance in many UAV
applications.

Many UAV studies have tried to detect and track certain
types of objects such as vehicles [6], [7], people including
moving pedestrians [8], [9], and landmarks for autonomous
navigation and landing [10], [11] in real-time. However, there
are only a few that consider detecting multiple objects [12], de-
spite the fact that detecting multiple target objects is obviously
important for many applications of UAVs. In our view, this gap
between application needs and technical capabilities are due
to three practical but critical limitations: (1) object recognition
algorithms often need to be hand-tuned to particular object and
context types; (2) it is difficult to build and store a variety of
target object models, especially when the objects are diverse in
appearance, and (3) real-time object detection demands high
computing power even to detect a single object, much less
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Fig. 1. A drone is able to detect hundreds of object categories in near real-
time with our hybrid approach. Convolutional Neural Network-based object
detection runs on a remote cloud, while a local machine plays a role in
objectness estimation, short-term navigation and stability control.

when many target objects are involved.
However, object recognition performance is rapidly improv-

ing, thanks to breakthrough techniques in computer vision that
work well on a wide variety of objects. Most of these tech-
niques are based on “deep learning” with Convolutional Neural
Networks, and have delivered striking performance increases
on a range of recognition problems [13]–[15]. The key idea is
to learn the object models from raw pixel data, instead of using
hand-tuned features as in tradition recognition approaches.
Training these deep models typically requires large training
datasets, but this problem has also been overcome by new
large-scale labeled datasets like ImageNet [16]. Unfortunately,
these new techniques also require unprecedented amounts of
computation; the number of parameters in an object model
is typically in the millions or billions, requiring gigabytes of
memory, and training and recognition using the object models
requires high-end Graphics Processing Units (GPUs). Using
these new techniques on low-cost, light-weight drones is thus
infeasible because of the size, weight, and power requirements
of these devices.

In this paper, we propose moving the computationally-
demanding object recognition to a remote compute cloud,
instead of trying to implement it on the drone itself, let-
ting us take advantage of these breakthroughs in computer



vision technology without paying the weight and power costs.
Commercial compute clouds like Amazon Web Services also
have the advantage of allowing on-demand access to nearly
unlimited compute resources. This is especially useful for
drone applications where most of the processing for navigation
and control can be handled onboard, but short bursts of intense
computation are required when an unknown object is detected
or during active object search and tracking. Using the cloud
system, we are able to apply Faster R-CNNs [17], a state-
of-the-art recognition algorithm, to detect not one or two but
hundreds of object types in near real-time. Of course, moving
recognition to the cloud introduces unpredictable lag from
communication latencies. Thus, we retain some visual pro-
cessing locally, including a triage step that quickly identifies
region(s) of an image that are likely to correspond with objects
of interest, as well as low-level feature matching needed for
real-time navigation and stability. Fig. 1 shows the image
processing dataflow of this hybrid approach that allows a low-
cost drone to detect hundreds of objects in near real-time. We
report on experiments measuring accuracy, recognition time,
and latencies using the low-cost Parrot AR Drone 2.0 as a
hardware platform, in the scenario of the drone searching for
target objects in an indoor environment.

II. RELATED WORK

A. Deep Learning Approaches in Robotics

We apply object detection based on Convolutional Neural
Networks (CNNs) [13], [18] for detecting a variety of objects
in images captured from a drone. These networks are a type
of deep learning approach that are much like traditional multi-
layer, feed-forward perceptron networks, with two key struc-
tural differences: (1) they have a special structure that takes
advantage of the unique properties of image data, including
local receptive fields, since image data within local spatial
regions is likely to be related, and (2) weights are shared across
receptive fields, since the absolute position within an image is
typically not important to an object’s identity. Moreover, these
networks are typically much deeper than traditional networks,
often with a dozen or more layers [18]. CNNs have been
demonstrated as a powerful class of models in the computer
vision field, beating state-of-the-art results on many tasks such
as object detection, image segmentation and object recognition
[13]–[15].

Recent work in robotics has applied these deep learning
techniques to object manipulation [19], hand gesture recogni-
tion for Human-Robot Interaction [20], and detecting robotic
grasps [21]. These studies show the potential promise of apply-
ing deep learning to robotics. However, it is often difficult to
apply recent computer vision technologies directly to robotics
because most work with recognition in the computer vision
community does not consider hardware limitation or power
requirements as an important factors (since most applications
are focused on batch-mode processing of large image and
video collections like social media). In our work we explore
using cloud computing to bring near real-time performance

Fig. 2. We use the Parrot AR.Drone2.0 as our hardware platform (top),
adding a mirror to the front-facing camera in order to detect objects on the
ground (bottom).

to robotics applications, without having to compromise on
accuracy or the number of object classes that can be detected.

B. Cloud Robotics

Since James Kuffner introduced the term “Cloud Robotics”
in 2010, numerous studies have explored the benefits of
this approach [22], [23]. Cloud computing allows on-demand
access to nearly unlimited computational resources, which
is especially useful for bursty computational workloads that
periodically require huge amounts of computation. Although
the idea of taking advantage of remote computers in robotics
is not new, the unparalleled scale and accessibility of modern
clouds has opened up many otherwise unrealistic applications
for mobile robot systems. For example, automated self-driving
cars can access large-scale image and map data through the
cloud without having to store or process this data locally [22].
Cloud-based infrastructures can also allow robots to commu-
nicate and collaborate with one another, as in the RoboEarth
project [24].

However, a key challenge in using remote cloud resources,
and especially commodity cloud facilities like Amazon Web
Services, is that they introduce a number of variables that are
beyond the control of the robot system. Communicating with a
remote cloud typically introduces unpredictable network delay,
and the cloud computation time itself may depend on which
compute resources are available and how many other jobs
are running on the system at any given moment in time.
This means that although the cloud may deliver near real-
time performance in the average case, latencies may be quite
high at times, such that onboard processing is still needed
for critical tasks like stability control. Here we move target
recognition to the cloud, while keeping low-level detection,



short-term navigation and stability control local. This hybrid
approach allows a low-cost quadcopter to recognize hundreds
of objects in near real-time on average, with limited negative
consequences when the real-time target cannot be met.

C. Objectness Estimation

While modern object recognition may be too resource-
intensive to run on a lightweight drone, it is also unrealistic to
transfer all imagery to a remote cloud due to bandwidth limita-
tions. Instead, we propose locally running a single, lightweight
“triage” object detector identifies images and image regions
that are likely to contain some object of interest, which then
can be identified by a more computationally-intensive, cloud-
based algorithm. To do this, we evaluate ‘objectness’ [25],
which is measure of how likely a certain window of an image
contains an object of any class. Most recent object detectors
in the computer vision field use one of the objectness esti-
mation techniques (or object proposal methods) for reducing
computation instead of using brute-force sliding windows that
run detectors at every possible image location [13], [26].

Several object proposal methods have been recently pro-
posed, each with strengths and weaknesses [27]. We apply
the Binarized Normed Gradients (BING) algorithm to measure
objectness on input frames as a first step process in our hybrid
object detection system [28]. While it is not the most accurate
technique available [27], it is one of the simplest and fastest
proposal methods (1 ms / image on a CPU), and thus can run
in real-time on local machine.

III. HARDWARE PLATFORM

We use a Parrot AR.Drone 2.0 as a low-cost hardware
platform [29] to test our cloud-based recognition approach.
The AR.Drone costs about US$300, is small and lightweight
(about 50cm × 50cm and 420g including the battery), and can
be operated both indoors and outdoors.

A. Hardware Specifications

The AR.Drone 2.0 is equipped with two cameras, an Inertial
Measurement Unit (IMU) including a 3-axis gyroscope, 3-axis
accelerometer, and 3-axis magnetometer, and pressure- and
ultrasound-based altitude sensors. The front-facing camera has
a resolution of 1280 × 720 at 30fps with a diagonal field of
view of 92◦, and the lower-resolution downward-facing camera
has a resolution of 320 × 240 at 60fps with a diagonal field
of view of 64◦. We use both cameras, although we can only
capture images from one of the two cameras at the same time
due to firmware limitations.

Because the front-facing camera has a higher resolution and
wider field of view than the downward-facing one, we use the
front-facing camera for object detection. To allow the drone
to see objects on the ground, which is needed for most UAV
applications like search and rescue, we mounted a mirror at a
45◦ angle to the front camera (see Fig. 2).
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Fig. 3. System Overview: Our approach consists of four main components:
BING based objectness estimation, a position estimation for localization, PID
control for navigation, and R-CNNs based object detection. All components
are implemented under the ROS framework, so each component can com-
municate with every other via the ROS network protocol (top). Given input
video, the local machine detects generic objects in every frame with BING,
then takes a high resolution image and sends it to the cloud server if the
frame contains generic objects. The cloud server then runs R-CNNs based
object detection to find a target object (bottom).

B. Embedded Software

The AR.Drone 2.0 comes equipped with a 1 GHz ARM
Cortex-A8 as the CPU and an embedded version of Linux
as its operating system. The embedded software on the board
measures horizontal velocity of the drone using its downward-
facing camera and estimates the state of the drone such as roll,
pitch, yaw and altitude using available sensor information. The
horizontal velocity is measured based on two complementary
computer vision features, one based on optical flow and the
other based on tracking image features (like corners), with the
quality of the speed estimates highly dependent on the texture
in the input video streams [29]. All sensor measurements are
updated at 200Hz. The AR.Drone 2.0 can communicate with
other devices like smartphones or laptops over a standard WiFi
network.

IV. APPROACH

A. System Overview

Our approach consists of four main components shown at
top in Fig. 3. Each component is implemented as a node in the
Robot Operating System (ROS), allowing it to communicate
with others using the ROS transport protocol [30]. Three
components, the objectness estimator, the position estimator
and PID controller, are run on a laptop (with an Intel Core i7
Processor running at 2.4 GHz), connected to the drone through
the AR.Drone device driver package of ROS, over a WiFi link.
The drone is controlled by the control commands with four
parameters, the roll Φ, the pitch Θ, the vertical speed z, and
the yaw Ψ. The most computationally demanding component,
the R-CNN-based object detection node, runs on a remote
cloud computing server that the laptop connects to via the
open Internet.

The bottom of Fig. 3 shows the pipeline of image processing
in our hybrid approach. The drone takes off and starts to



search for target objects with the downward-facing camera.
Given input video taken from this downward-facing camera,
the objectness estimator node runs the BING algorithm to
detect generic objects on every frame, and then takes a high
resolution image with the front-facing camera if it detects
candidate objects in the frame [28]. Consequently, only the
“interesting” images that have a high likelihood to contain
objects are sent to the cloud server, where the R-CNN-based
object detection node is run to recognize the target objects in
the environment.

B. Position Estimation and PID Controller for Navigation

We employ an Extended Kalman Filter (EKF) to estimate
the current position of the drone from all available sensing
data. We use a visual marker detection library, ArtoolkitPlus,
in our update step in order to get accurate and robust abso-
lution position estimation results within the test environment
[31]. (It would be more realistic if the drone estimated its
current position without these artificial markers, but position
estimation is not the focus of this paper so we made this
simplification here.)

Furthermore, since our test environment is free of obstruc-
tions, we assume that the drone can move without changing
altitude while it is exploring the environment to look for target
objects. This is a strong assumption but again is reasonable for
the purposes of this paper, and it makes the position estimation
problem much easier because this assumption reduces the state
space from 3D to 2D. Note that this assumption does not mean
that the drone never changes its altitude — in fact, it can and
does change altitude to get a closer view of objects, when
needed, but it does so in hovering mode and returns back to the
canonical altitude before flying elsewhere in the environment.

In order to generate the control commands that drive the
drone towards its desired goal locations, we employ a standard
PID controller. Thus, the PID controller generates the control
commands to drive the drone according the computed error
values, and finally, the drone changes operation mode to
hovering mode when the drone reaches within a small distance
of the desired goal position.

C. Objectness Estimation with BING

The quadrocopter starts its object detection mission with
the downward-facing camera, which takes video at 60fps with
320 × 240 image resolution. Given this video input, the local
objectness estimation node decides whether the current input
frame contains a potential object of interest. We apply the
Binarized Normed Gradients (BING) algorithm to measure
this objectness on every input frame [28].

We trained the BING parameters on the Pascal VOC 2012
dataset [16], and used the average score of the top 10 bounding
boxes for making a decision. In order to set a decision
threshold for our approach, we collected background images
having no object using our quadrocopter. Using the threshold,
the object estimator node measures the objectness of each
frame, then takes a high resolution image with the front-
facing camera if the score is above the threshold. Finally, the

Fig. 4. An example of R-CNNs-based object detection with an image taken
by our drone.

node sends the images to the cloud server with its position
information.

D. Cloud-based R-CNNs for Object Detection

After receiving an image of a candidate object, we apply the
Faster R-CNN algorithm for object detection [17]. R-CNNs are
a leading approach for object detection that combines a fast
object proposal mechanism with CNN-based classifiers [13],
and Faster R-CNN is a follow-up approach by the same authors
that increases accuracy while reducing the running time of
the algorithm. Very briefly, the technique runs a lightweight,
unsupervised hierarchical segmentation algorithm on an im-
age, breaking the image into many (hundreds or thousands
of) overlapping windows that seem to contain “interesting”
image content that may correspond to an object, and then each
of these windows is classified separately using a CNN. R-
CNNs have shown leading performance in datasets for object
detection challenges, but these images are usually collected
from social media (e.g. Flickr), and to our knowledge, have not
been applied to robotic applications. The main reason for this
is probably that CNNs demand very high computational power,
typically in the form of high-end GPUs, even though their
recent approach only requires around 200 ms for processing
per image with GPUs. We therefore move the R-CNNs based
object detection part to a cloud system.

Besides the computational cost, another major challenge
with using CNNs is their need for very large-scale training
datasets, typically in the hundreds of thousands or millions
of images. Because it is unrealistic for us to capture this
scale dataset for our application, we used R-CNN models
trained for the 200 object types of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC13) dataset [16]. A
disadvantage of this approach is that the training images were
mostly collected from sources like Google Images and Flickr,
and thus are largely consumer images and not the aerial-type
images seen by our drone. We could likely achieve much better
recognition accuracies by training on a more representative
dataset; one option for future work is to take a hybrid approach
that uses the ILSVRC13 data to bootstrap a classifier fine-
tuned for our aerial images. Nevertheless, our approach has



TABLE I
OBJECT DETECTION RESULTS ON OUR AERIAL IMAGES COLLECTED BY THE DRONE.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Fast YOLO 87.5 84.6 0.0 50.0 65.5 100.0 87.9 80.0 92.3 47.1 60.0 75.0 88.9 100.0 76.6 100.0 54.5 100.0 66.7 84.6 78.3
YOLO 60.9 88.2 80.0 80.0 92.3 100.0 87.2 100.0 70.4 50.0 40.0 81.0 77.8 93.4 88.7 100.0 45.2 100.0 81.8 79.2 79.4
SSD300 60.0 94.1 20.0 100.0 90.0 100.0 100.0 100.0 75.0 47.8 50.0 66.7 81.3 92.9 92.9 100.0 66.7 100.0 85.7 82.6 81.6
SSD500 66.7 88.2 50.0 88.9 100.0 92.9 93.2 100.0 72.1 65 85.7 69.6 88.9 93.8 81.7 100.0 66.7 89.5 66.7 100.0 82.6
Faster R-CNN 70.6 93.8 83.3 85.7 91.9 92.9 89.7 100.0 87.2 62.5 - 77.3 100.0 93.8 81.7 66.7 72.7 100.0 100.0 62.5 83.9

the advantage of giving our robot the ability to detect several
hundred types of objects “for free,” without much additional
investment in dataset collection. We use the Faster R-CNN
implementation in Caffe [32], a C++ deep learning framework
library.

An example of our detection results with an image taken
by the drone is shown in Fig. 4. Here, the numbers above
the box are the confidence scores of detected object, with
greater score meaning greater confidence. The drone detected
four different types of objects correctly, even though one
object, a computer mouse, has a relatively low confidence.
However, an advantage of robotic applications is that when
such uncertainty is detected, the drone can choose to approach
the computer mouse and take more pictures from different
angles and distances, in order to confirm the detection. For
example, if a detection score decreases while approaching the
object and falls under some threshold, the drone can decide
that the object is not the target.

V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to demonstrate
that our approach performs successfully in a realistic but
controlled environment. In the first set of experiments, we
focus on testing the accuracy of recent deep network based
object detectors with aerial images taken by the drone, and
specifically the viability of our idea of applying object models
trained on consumer images (from ImageNet) to a robot
application. In the second set of experiments, we evaluate the
speed of our cloud based object detection approach, comparing
with running time of the fastest deep learning based object
detector on a local laptop. Finally, we verify our approach
with the scenario of a drone searching for a target object in
an indoor environment, as a simple simulation of a search-
and-rescue or surveillance application.

The first two sets of experiments were conducted on our
aerial image dataset and the last experiment was conducted
in an indoor room of about 3m × 3m. We did not make
any attempt to control for illumination or background clutter,
although the illumination was fixed (overhead fluorescent
lighting) and the background was largely composed of the
navigation markers mentioned above.

A. Object Detection Accuracy

We first compared the ability of Faster R-CNNs with two
recent state-of-the-are object detectors (YOLO [33] and SSD
[34]) to recognize aerial images taken by the drone. YOLO and
SSD are approaches that are designed to speed up classifier-
based object detection systems through eliminating the most
computationally demanding part (generating region proposals

and computing CNN features for each region). Both methods
showed accurate mean average precision (mAP) on Pascal
VOC 2007 dataset (YOLO: 69.0% vs. SSD300: 74.3%) with
real-time performance (faster than 30 FPS) on GPU.

To make a fair comparison, we used models that were all
pre-trained on the same dataset (Pascal VOC 2007 and Pascal
VOC 2012). We collected 294 aerial images of 20 object
classes and annotated 578 objects in the images. The images
had the same object classes as the Pascal VOC 2007 dataset
and were collected from two sources (some of them taken
by ourselves and the others were collected from 31 publicly
available Youtube videos taken by the same drone as ours).
Table I shows average precision of each algorithm on this
dataset. Here, the SSD300 model and SSD500 model have the
same architecture and the only difference is the input image
size (300 × 300 pixels vs. 500 × 500 pixels). YOLO and
Fast YOLO also use similar architectures except Fast YOLO
uses fewer convolutional layers (24 convolutional layers vs. 9
convolutional layers for Fast YOLO).

On this dataset, Faster R-CNN acheived 83.9% mAP com-
pared to YOLO models (78.3% and 79.4%) and two SSD
models (81.6% and 82.6%). All models achieved higher mAP
on our aerial image dataset than their detection results on
Pascal VOC2007 since images of some object classes such
as cats and plants are very distinctive with clean backgrounds.
The first row of Fig. 8 shows these “easy” images on this
dataset, and the second row presents some “hard” examples
which were taken at high altitude.

As discussed above, we applied Faster R-CNN trained on
ImageNet consumer images and fine-tuned with Pascal VOC
dataset to our drone scenario. This time, we did not limit
the objects to those 20 object categories of VOC 2007, but
instead we looked at the results among the 200 categories
Faster R-CNN provided. We did this though the aerial drone
images look nothing like most consumer images, because we
did not have the large-scale dataset needed to train a CNN from
scratch. This can be thought of as a simple case of transfer
learning, and likely suffers from the usual mismatch problem
when training sets and testing sets are sampled from different
distributions. We took other 74 images like bottom two rows
of Fig. 8, and achieved 63.5% of accuracy.

B. Recognition Speed on Cloud System
Our second set of experiments evaluated the running time

performance of the CNN-based object recognition, testing the
extent to which cloud computing could improve recognition
times, and the variability of cloud-based recognition times due
to unpredictable communication times. For these experiments
we used the same set of images and objects collected in
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Fig. 5. A running time comparison of recent state-of-the-art object detectors
on our aerial images.

the previous section, and compared the speed of each algo-
rithm using Graphics Processing Unit (GPU) on a simulated
cloud machine at first. We measured the running time includ-
ing image loading, pre-processing, and output parsing (post-
processing) time, since those times are important in real-time
applications.

Fig. 5 shows the running time of each algorithm as a
function of its accuracy. Even though all recent state-of-the-
art methods showed reasonable speed with high-accuracy, for
instance, SSD 300 models showed 6.55 FPS with mAP 81.6,
the result shows detection speed and accuracy are still in
inverse related. Fast YOLO showed the highest speed (57.4
FPS) with the lowest accuracy (mAP 78.3), while Faster
R-CNN had the lowest speed (3.48 FPS) with the highest
accuracy (mAP 83.9).

In the second experiment, we thus compared Fast YOLO
on a local laptop versus Faster R-CNN on a remote server as
a simulated cloud. A comparison of these computing facilities
are shown in Table II. Fig. 6 shows the running time of Fast
YOLO and Faster R-CNN on the two different machines.

The average running time of Fast YOLO on the local
machine was 7.31 seconds per image, while the average time
on the cloud machine based Faster R-CNN was 1.29 seconds,
including latencies for sending each image to the cloud
computer (which averaged about 600ms), and for exchanging
detected results and other command messages (which averaged
0.41ms). Thus the cloud-based recognition performed about
5.7 times faster than the local Fast YOLO on average. The
average running time on our single-server simulated cloud
is not fast enough to be considered real time, but is still
fast enough to be useful in many applications. Moreover,
recognition could be easily made faster by parallelizing object
model evaluations across different machines.

Fast YOLO on Local Faster R−CNN on Cloud
0

1

2

3

4

5

6

7

8

ob
je

ct
 d

et
ec

io
n 

tim
e 

(s
ec

on
ds

)

Running time of object detection on each machine

 

 
sending an image to cloud
communication latency
running time of algorithm

Fig. 6. Running time of object detection on each machine.

C. Target Search with a Drone

In this section, we demonstrate our approach with a simple
scenario of the drone searching for a target object in an indoor
environment. We assume that a drone is supposed to find a
single target object in a room in a building. There are several
different types of objects in the room, but fortunately there are
no obstacles.

In the test scenario, we used a screwdriver as a target
object and scattered various distractor objects on the floor in
the indoor test room. The drone started this object searching
mission with lower-resolution downward-facing camera, and
ran the BING algorithm for finding generic objects given the
input video. At the same time, the position estimator node
estimated the drone’s position continuously. When the drone
found any “interesting” objects on the floor, it switched to the
front-facing camera to capture a photo at a higher resolution
and with a wider angle, then took picture of the candidate area
and sends it to the cloud system (t = 3 s and t = 8 s). Then,
the drone switched the camera back to the downward-facing
camera for localization and stability control, and proceeded
to the other candidate positions. In the meantime, the cloud
system performed recognition then sent results to the drone.
The drone performed the same steps until it found a target
object, at which point the mission was completed (t = 17 s).

TABLE II
HARDWARE COMPARISON BETWEEN LOCAL AND CLOUD MACHINE

local computer cloud computer

CPUs one Intel Core
i7-4700HQ @ 2.4GHz

two Intel Xeon
E5-2680 v3 @ 2.5GHz

GPUs one Nvidia
GeForce GTX 770M two Nvidia Tesla K40

RAM 16 GB 128 GB



t = 0 s t = 3 s t = 8 s t = 13 s t = 17 s

Fig. 7. Target Search with a Drone: First rows show movements of the drone during the experiment, and second and third rows indicate detection results
from BING and R-CNNs respectively. At t = 0 s the drone started to search for a target object and did not find generic objects with BING. At t = 3 s, t =
8 s, the drone found generic objects with BING, thus took high resolution pictures and sent them to cloud server. However, R-CNNs did not detect a target
object in those images. At t = 17 s, the drone found generic objects again, thus it took the high resolution picture and sent it to cloud server. Then, finally
R-CNNs based object detector found a target object.

Fig. 7 shows a sequence of images taken during the drone’s
search for a target object in our test scenario. It shows that
the drone only took pictures and sent them when there were
“interesting” objects on the floor, and finally found the target
object, a screwdriver, with the cloud-based R-CNNs object
detector.

VI. CONCLUSION

In this paper, we proposed to use Convolutional Neural Net-
works to allow UAVs to detect hundreds of object categories.
CNNs are computationally expensive, however, so we explore
the hybrid approach that moving the recognition to a remote
computing cloud while keeping low-level object detection
and short-term navigation onboard. Our approach enables the
UAVs, especially lightweight, low-cost consumer UAVs, to use
state-of-the-art object detection algorithms, despite their very
large computational demands. The (nearly) unlimited cloud-
based computation resources, however, come at the cost of
potentially high and unpredictable communication lag and
highly variable system load. We tested our approach with a
Parrot AR.Drone 2.0 as a low-cost hardware platform in a
real indoor environment. The results suggest that the cloud-
based approach could allow speed-ups of nearly an order of
magnitude, approaching real-time performance even when de-
tecting hundreds of object categories, despite these additional
communication lags. We demonstrated our approach in terms
of recognition accuracy and speed, and in a simple target
searching scenario.
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