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ABSTRACT
The popularity of social media websites like Flickr and Twitter has
created enormous collections of user-generated content online. La-
tent in these content collections are observations of the world: each
photo is a visual snapshot of what the world looked like at a par-
ticular point in time and space, for example, while each tweet is
a textual expression of the state of a person and his or her envi-
ronment. Aggregating these observations across millions of social
sharing users could lead to new techniques for large-scale moni-
toring of the state of the world and how it is changing over time.
In this paper we step towards that goal, showing that by analyzing
the tags and image features of geo-tagged, time-stamped photos we
can measure and quantify the occurrence of ecological phenomena
including ground snow cover, snow fall and vegetation density. We
compare several techniques for dealing with the large degree of
noise in the dataset, and show how machine learning can be used to
reduce errors caused by misleading tags and ambiguous visual con-
tent. We evaluate the accuracy of these techniques by comparing to
ground truth data collected both by surface stations and by Earth-
observing satellites. Besides the immediate application to ecology,
our study gives insight into how to accurately crowd-source other
types of information from large, noisy social sharing datasets.
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1. INTRODUCTION
The popularity of social networking websites has grown dramat-

ically over the last few years, creating enormous collections of
user-generated content online. Photo-sharing sites have become
particularly popular: Flickr and Facebook alone have amassed an
estimated 100 billion images, with over 100 million new images
uploaded every day [18]. People use these sites to share photos
with family and friends, but in the process they are creating im-
mense public archives of information about the world: each photo
is a record of what the world looked like at a particular point in time
and space. When combined together, the billions of photos on these
sites combined with metadata including timestamps, geo-tags, and
captions are a rich untapped source of information about the state
of the world and how it is changing over time.

Recent work has studied how to mine passively-collected data
from social networking and microblogging websites to make esti-
mates and predictions about world events, including tracking the
spread of disease [11], monitoring for fires and emergencies [9],
predicting product adoption rates and election outcomes [16], and
estimating aggregate public mood [5, 22]. In most of these stud-
ies, however, there is either little ground truth available to judge
the quality of the estimates and predictions, or the available ground
truth is an indirect proxy (e.g. since no aggregate public mood
data exists, [22] evaluates against opinion polls, while [5] com-
pares to stock market indices). While these studies have demon-
strated promising results, it is not yet clear when crowd-sourcing
data from social media sites can yield reliable estimates, or how to
deal with the substantial noise and bias in these datasets. Moreover,
these studies have largely focused on textual content and have not
taken advantage of the vast amount of visual content online.

In this paper, we study the particular problem of estimating geo-
temporal distributions of ecological phenomena using geo-tagged,
time-stamped photos from Flickr. Our motivations to study this par-
ticular problem are three-fold. First, biological and ecological phe-
nomena frequently appear in images, both because photographers
take photos of them purposely (e.g. close-ups of plants and ani-
mals) or incidentally (a bird in the background of a family portrait,
or the snow in the action shot of children sledding). Second, for
the two phenomena we study here, snowfall and vegetation cover,
large-scale (albeit imperfect) ground truth is available in the form
of observations from satellites and ground-based weather stations.
Thus we can explicitly evaluate the accuracy of various techniques
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Figure 1: Comparing MODIS satellite snow coverage data for North America on Dec 21, 2009 with estimates produced by analyzing
Flickr tags (best viewed on screen in color). Left: Original MODIS snow data, where white corresponds with water, black is missing
data because of cloud cover, grey indicates snow cover, and purple indicates no significant snow cover. Middle: Satellite data coars-
ened into 1 degree bins, where green indicates snow cover, blue indicates no snow, and grey indicates missing data. Right: Estimates
produced by the Flickr photo analysis proposed in this paper, where green indicates high probability of snow cover, and grey and
black indicate low-confidence areas (with few photos or ambiguous evidence).

for extracting semantic information from large-scale social media
collections.

Third, while ground truth is available for these particular phe-
nomena, for other important ecological phenomena (like the geo-
temporal distribution of plants and animals) no such data is avail-
able, and social media could help fill this need. In fact, perhaps no
community is in greater need of real-time, global-scale informa-
tion on the state of the world than the scientists who study climate
change. Recent work shows that global climate change is impacting
a variety of flora and fauna at local, regional and continental scales:
for example, species of high-elevation and cold-weather mammals
have moved northward, some species of butterflies have become ex-
tinct, waterfowl are losing coastal wetland habitats as oceans rise,
and certain fish populations are rapidly declining [23]. However
monitoring these changes is surprisingly difficult: plot-based stud-
ies involving direct observation of small patches of land yield high-
quality data but are costly and possible only at very small scales,
while aerial surveillance gives data over large land areas but cloud
cover, forests, atmospheric conditions and mountain shadows can
interfere with the observations, and only certain types of ecologi-
cal information can be collected from the air. To understand how
biological phenomena are responding to both landscape changes
and global climate change, ecologists need an efficient system for
ground-based data collection to give detailed observations across
the planet. A new approach for creating ground-level, continental-
scale datasets is to use passive data-mining of the huge number of
visual observations produced by millions of users worldwide, in the
form of digital images uploaded to photo-sharing websites.

Challenges. There are two key challenges to unlocking the ecolog-
ical information latent in these photo datasets. The first is how to
recognize ecological phenomena appearing in photos and how to
map these observations to specific places and times. Fortunately,
modern photo-sharing sites collect a rich variety of non-visual in-
formation about photos, including metadata recorded by the digital
camera — exposure settings and timestamps, for example — as
well as information generated during social sharing — text tags,
comments, and ratings, for example. Many sites also record the
geographic coordinates of where on Earth a photo was taken, as
reported either by a GPS-enabled camera or smartphone, or input
manually by the user. Thus online photos include the ingredients
necessary to produce geo-temporal data about the world, including
information about content (images, tags and comments), and when
(timestamp) and where (geotag) each photo was taken.

The second challenge is how to deal with the biases and noise
inherent in online data. People do not photograph the Earth evenly,

so there are disproportionate concentrations of activity near cities
and tourist attractions. Photo metadata is often noisy or inaccurate;
for example, users forget to set the clock on their camera, GPS units
fail to find fixes, and users carelessly tag photos. Even photos with-
out such errors might be misleading: the tag “snow” on an image
might refer to a snow lily or a snowy owl, while snow appearing in
an image might be artificial (as in an indoor zoo exhibit).

This paper. In this paper we study how to mine data from photo-
sharing websites to produce crowd-sourced observations of eco-
logical phenomena. As a first step towards the longer-term goal
of mining for many types of phenomena, here we study two in
particular: ground snow cover and vegetation cover (“green-up”)
data. Both are critical features for ecologists monitoring the earth’s
ecosystems. Importantly for our study, these two phenomena have
accurate fine-grained ground truth available at a continental scale in
the form of observations from aerial instruments like NASA’s Terra
earth-observing satellites [12, 19] or networks of ground-based ob-
serving stations run by the U.S. National Weather Service. This
data allows us to evaluate the performance of our crowd-sourced
data mining techniques at a very large scale, including thousands
of days of data across an entire continent. Using a dataset of nearly
150 million geo-tagged Flickr photos, we study whether this data
can potentially be a reliable resource for scientific research. An ex-
ample comparing ground truth snow cover data with the estimates
produced by our Flickr analysis on one particular day (December
21, 2009) is shown in Figure 1. Note that the Flickr analysis is
sparse in places with few photographs, while the satellite data is
missing in areas with cloud cover, but they agree well in areas
where both observations are present. This (and the much more ex-
tensive experimental results presented later in the paper) suggests
that Flickr analysis may produce useful observations either on its
own or as a complement other observational sources.

To summarize, the main contributions of this paper include:

— introducing the novel idea of mining photo-sharing sites for
geo-temporal information about ecological phenomena,

— introducing several techniques for deriving crowd-sourced
observations from noisy, biased data using both visual and
textual tag analysis, and

— evaluating the ability of these techniques to accurately mea-
sure these phenomena, using dense large-scale ground truth.

2. RELATED WORK
A variety of recent work has studied how to apply computational

techniques to analyze online social datasets in order to aid research



in other disciplines [20]. Much of this work has studied questions in
sociology and human interaction, such as how friendships form [8],
how information flows through social networks [21], how people
move through space [6], and how people influence their peers [4].
The goal of these projects is not to measure data about the physical
world itself, but instead to discover interesting properties of human
behavior using social networking sites as a convenient data source.

Crowd-sourced observational data. Other studies have shown the
power of social networking sites as a source of observational data
about the world itself. Bollen et al [5] use data from Twitter to try
to measure the aggregated emotional state of humanity, computing
mood across six dimensions according to a standard psychological
test. Intriguingly, they find that these changing mood states cor-
relate well with the Dow Jones Industrial Average, allowing stock
market moves to be predicted up to 3 days in advance. However
their test dataset is relatively small, consisting of only three weeks
of trading data. Like us, Jin et al [16] use Flickr as a source of
data for prediction, but they estimate the adoption rate of consumer
photos by monitoring the frequency of tag use over time. They find
that the volume of Flickr tags is correlated with with sales of two
products, Macs and iPods. They also estimate geo-temporal distri-
butions of these sales over time but do not compare to ground truth,
so it is unclear how accurate these estimates are. In contrast, we
evaluate our techniques against a large ground truth dataset, where
the task is to accurately predict the distribution of a phenomenon
(e.g. snow) across an entire continent each day for several years.

Crowd-sourced geo-temporal data. Other work has used online
data to predict geo-temporal distributions, but again in domains
other than ecology. Perhaps the most striking is the work of Gins-
berg et al [11], who show that by monitoring the geospatial distri-
bution of search engine queries related to flu symptoms, the spread
of the H1N1 flu can be estimated several days before the official
statistics produced by traditional means. DeLongueville et al [9]
study tweets related to a major fire in France, but their analysis is
at a very small scale (a few dozen tweets) and their focus is more
on human reactions to the fire as opposed to using these tweets to
estimate the fire’s position and severity. In perhaps the most related
existing work to ours, Singh et al [24] create geospatial heat maps
(dubbed “social pixels”) of various tags, including snow and green-
ery, but their focus is on developing a formal database-style algebra
for describing queries on these systems and for creating visualiza-
tions. They do not consider how to produce accurate predictions
from these visualizations, nor do they compare to any ground truth.

Citizen science. While some volunteer-based biology efforts like
the Lost Ladybug Project [3] and the Great Sunflower Project [2]
use social networking sites to organize and recruit volunteer ob-
servers, we are not aware of any work that has attempted to pas-
sively mine ecological data from social media sites. The visual
data in online social networking sites provide a unique resource for
tracking biological phenomena: because they are images, this data
can be verified in ways that simple text cannot. In addition, the
rapidly expanding quantity of online images with geo-spatial and
temporal metadata creates a fine-scale record of what is happening
across the globe. However, to unlock the latent information in these
vast photo collections, we need mining and recognition tools that
can efficiently process large numbers of images, and robust statisti-
cal models that can handle incomplete and incorrect observations.

3. OUR APPROACH
We use a sample of nearly 150 million geo-tagged, timestamped

Flickr photos as our source of user-contributed observational data

about the world. We collected this data using the public Flickr API,
by repeatedly searching for photos within random time periods and
geo-spatial regions, until the entire globe and all days between Jan-
uary 1, 2007 and December 31, 2010 had been covered. We ap-
plied filters to remove blatantly inaccurate metadata, in particular
removing photos with geotag precision less than about city-scale
(as reported by Flickr), and photos whose upload timestamp is the
same as the EXIF camera timestamp (which usually means that the
camera timestamp was missing).

For ground truth we use large-scale data originating from two
independent sources: ground-based weather stations, and aerial
observations from satellites. For the ground-based observations,
we use publicly-available daily snowfall and snow depth observa-
tions from the U.S. National Oceanic and Atmospheric Adminis-
tration (NOAA) Global Climate Observing System Surface Net-
work (GSN) [1]. This data provides highly accurate daily data, but
only at sites that have surface observing stations. For denser, more
global coverage, we also use data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument aboard NASA’s
Terra satellite. The satellite is in a polar orbit so that it scans
the entire surface of the earth every day. The MODIS instrument
measures spectral emissions at various wavelengths, and then post-
processing uses these measurements to estimate ground cover. In
this paper we use two datasets: the daily snow cover maps [12]
and the two-week vegetation averages [19]. Both of these sets of
data including an estimate of the percentage of snow or vegetation
ground cover at each point on earth, along with a quality score in-
dicating the confidence in the estimate. Low confidence is caused
primarily by cloud cover (which changes the spectral emissions
and prevents accurate ground cover from being estimated), but also
by technical problems with the satellite. As an example, Figure 1
shows raw satellite snow data from one particular day.

3.1 Estimation techniques
Our goal is to estimate the presence or absence of a given eco-

logical phenomenon (like a species of plant or flower, or a mete-
orological feature like snow) on a given day and at a given place,
using only the geo-tagged, time-stamped photos from Flickr. One
way of viewing this problem is that every time a user takes a photo
of a phenomenon of interest, they are casting a “vote” that the phe-
nomenon actually occurred in a given geospatial region. We could
simply look for tags indicating the presence of a feature – i.e. count
the number of photos with the tag “snow” – but sources of noise and
bias make this task challenging, including:

— Sparse sampling: The geospatial distribution of photos is
highly non-uniform. A lack of photos of a phenomenon in
a region does not necessarily mean that it was not there.

— Observer bias: Social media users are younger and wealthier
than average, and most live in North America and Europe.

— Incorrect, incomplete and misleading tags: Photographers
may use incorrect or ambiguous tags — e.g. the tag “snow”
may refer to a snowy owl or interference on a TV screen.

— Measurement errors: Geo-tags and timestamps are often in-
correct (e.g. because people forget to set their camera clocks).

A statistical test. We introduce a simple probabilistic model and
use it to derive a statistical test that can deal with some such sources
of noise and bias. The test could be used for estimating the presence
of any phenomenon of interest; without loss of generality we use
the particular case of snow here, for ease of explanation. Any given
photo either contains evidence of snow (event s) or does not contain
evidence of snow (event s̄). We assume that a given photo taken
at a time and place with snow has a fixed probability P (s|snow)



of containing evidence of snow; this probability is less than 1.0
because many photos are taken indoors, and outdoor photos might
be composed in such a way that no snow is visible. We also assume
that photos taken at a time and place without snow have some non-
zero probability P (s|snow) of containing evidence of snow; this
incorporates various scenarios including incorrect timestamps or
geo-tags and misleading visual evidence (e.g. man-made snow).

Let m be the number of snow photos (event s), and n be the
number of non-snow photos (event s̄) taken at a place and time of
interest. Assuming that each photo is captured independently, we
can use Bayes’ Law to derive the probability that a given place has
snow given its number of snow and non-snow photos,

P (snow|sm, s̄n) =
P (sm, s̄n|snow)P (snow)

P (sm, s̄n)

=

`
m+n

m

´
pm(1− p)nP (snow)

P (sm, s̄n)
,

where we write sm, s̄n to denote m occurrences of event s and n
occurrences of event s̄, and where p = P (s|snow) and P (snow)
is the prior probability of snow. A similar derivation gives the pos-
terior probability that the bin does not contain snow,

P (snow|sm, s̄n) =

`
m+n

m

´
qm(1− q)nP (snow)

P (sm, s̄n)
,

where q = P (s|snow). Taking the ratio between these two poste-
rior probabilities yields a likelihood ratio,

P (snow|sm, s̄n)

P (snow|sm, s̄n)
=

P (snow)

P (snow)

„
p

q

«m„
1− p
1− q

«n

. (1)

This ratio can be thought of as a measure of the confidence that a
given time and place actually had snow, given photos from Flickr.

A simple way of classifying a photo into a positive event s or
a negative event s̄ is to use text tags. We identify a set S of tags
related to a phenomenon of interest. Any photo tagged with at least
one tag in S is declared to be a positive event s, and otherwise it is
considered a negative event s̄. For the snow detection task, we use
the set S={snow, snowy, snowing, snowstorm}, which we selected
by hand.

The above derivation assumes that photos are taken indepen-
dently of one another, which is generally not true in reality. One
particular source of dependency is that photos from the same user
are highly correlated with one another. To mitigate this problem,
instead of counting m and n as numbers of photos, we instead let
m be the number of photographers having at least one photo with
evidence of snow, while n is the numbers of photographers who did
not upload any photos with evidence of snow.

The probability parameters in the likelihood ratio of equation (1)
can be directly estimated from training data and ground truth. For
example, for the snow cover results presented in Section 4, the
learned parameters are: p = p(s|snow) = 17.12%, q = p(s|snow) =
0.14%. In other words, almost 1 of 5 people at a snowy place take a
photo containing snow, whereas about 1 in 700 people take a photo
containing evidence of snow at a non-snowy place.

Figure 1 shows a visualization of the likelihood ratio values for
the U.S. on one particular day using this simple technique with
S={snow, snowy, snowing, snowstorm}. High likelihood ratio val-
ues are plotted in green, indicating a high confidence of snow in
a geospatial bin, while low values are shown in blue and indicate
high confidence of no snow. Black areas indicate a likelihood ratio
near 1, showing little conference either way, and grey areas lack
data entirely (having no Flickr photos in that bin on that day).

3.2 Learning features automatically
The confidence score in the last section has a number of lim-

itations, including requiring that a set of tags related to the phe-
nomenon of interest be selected by hand. Moreover, it makes no
attempt to incorporate visual evidence or negative textual evidence
— e.g., that a photo tagged “snowy owl” probably contains a bird
and no actual snow. We use machine learning techniques to address
these weaknesses, both to automatically identify specific tags and
tag combinations that are correlated with the presence of a phe-
nomenon of interest, and to incorporate visual evidence into the
prediction techniques.

Learning tags. We consider two learning paradigms. The first is to
produce a single exemplar for each bin in time and space consisting
of the set of all tags used by all users. For each of these exemplars,
the NASA and/or NOAA ground truth data gives a label (snow or
non-snow). We then use standard machine learning algorithms like
Support Vector Machines and decision trees to identify the most
discriminative tags and tag combinations. In the second paradigm,
our goal instead is to classify individual photos as containing snow
or not, and then use these classifier outputs to compute the number
of positive and non-positive photos in each bin (i.e., to compute m
and n in the likelihood ratio described in the last section).

Learning visual features. We also wish to incorporate visual ev-
idence from the photos themselves. There is decades of work in
the computer vision community on object and scene classification
(see [27] for a recent survey), although most of that work has not
considered the large, noisy photo collections we work with here.
We tried a number of approaches, and found that a classifier using
a simplified version of GIST augmented with color features [14,28]
gave a good trade-off between accuracy and tractability.

Given an image I , we partition the image into a 4× 4 grid of 16
equally-sized rectangular regions. In each region we compute the
average pixel values in each of the red, green, and blue color planes,
and then convert this color triple from sRGB space to the CIELAB
color space [15]. CIELAB has a number of advantages, including
separating greyscale intensity from the color channels and having
greater perceptual uniformity (so that Euclidean distances between
two CIELAB color triples are approximately proportional to the
human perception of difference between the colors). For each re-
gion R we also compute the total gradient energy E(R) within the
grayscale plane Ig of the image,

E(R) =
X

(x,y)∈R

||∇Ig(x, y)||

=
X

(x,y)∈R

p
Ix(x, y)2 + Iy(x, y)2,

where Ix(x, y) and Iy(x, y) are the partial derivatives in the x and
y directions evaluated at point (x, y), approximated as,

Ix(x, y) = Ig(x+ 1, y)− Ig(x− 1, y),

Iy(x, y) = Ig(x, y + 1)− Ig(x, y − 1).

For each image we concatenate the gradient energy in each of the
16 bins, followed by the 48 color features (average L, a, and b
values for each of the 16 bins), to produce a 64-dimensional feature
vector. We then learn a Support Vector Machine (SVM) classifier
from a labeled training image set.

4. EXPERIMENTS AND RESULTS
We now turn to presenting experimental results for estimating

the geo-temporal distributions of two ecological phenomena: snow



NYC Chicago Boston Philadelphia
Mean active Flickr users / day 65.6 94.9 59.7 43.7
Approx. city area (km2) 3,712 11,584 11,456 9,472
User density (avg users/unit area) 112.4 52.5 33.5 29.6
Mean daily snow (inches) 0.28 0.82 0.70 0.35
Snow days (snow>0 inches) 185 418 373 280
Number of obs. stations 14 20 41 26

Figure 2: Top: New York City geospatial bounding box used
to select Flickr photos, and locations of NOAA observation sta-
tions. Bottom: Statistics about spatial area, photo density, and
ground truth for each of the 4 cities.

and vegetation cover. In addition to the likelihood ratio-based score
described in Section 4 and machine learning approaches, we also
compare to two simpler techniques: voting, in which we simply
count the number of users that use one of a set S of tags related to
the phenomenon of interest at a given time and place, and percent-
age, in which we calculate the ratio of users that use one of the tags
in S over the total number of users who took a photo in that place
on that day.

4.1 Snow prediction in cities
We first test how well the Flickr data can predict snowfall at a lo-

cal level, and in particular for cities in which high-quality surface-
based snowfall observations exist and for which photo density is
high. We choose 4 U.S. metropolitan areas, New York City, Boston,
Chicago and Philadelphia, and try to predict both daily snow pres-
ence as well as the quantity of snowfall. For each city, we define
a corresponding geospatial bounding box and select the NOAA
ground observation stations in that area. For example, Figure 2
shows the the stations and the bounding box for New York City.
We calculate the ground truth daily snow quantity for a city as the
average of the valid snowfall values from its stations. We call any
day with a non-zero snowfall or snowcover to be a snow day, and
any other day to be a non-snow day. Figure 2 also presents some
basic statistics for these 4 cities. All of our experiments involve
4 years (1461 days) of data from January 2007 through December
2010; we reserve the first two years for training and validation, and
the second two years for testing.

Daily snow classification for 4 cities. Figure 3(a) presents ROC
curves for this daily snow versus non-snow classification task on
New York City. The figure compares the likelihood ratio confi-
dence score from equation (1) to the baseline approaches (voting
and percentage), using the tag set S={snow, snowy, snowing, snow-
storm}. The area under the ROC curve (AUC) statistics are 0.929,
0.905, and 0.903 for confidence, percentage, and voting, respec-
tively, and the improvement of the confidence method is statisti-
cally significant with p = 0.0713 according to the statistical test
of [29]. The confidence method also outperforms other methods
for the other three cities (not shown due to space constraints). ROC
curves for all 4 cities using the likelihood scores are shown in Fig-
ure 3(b). Chicago has the best performance and Philadelphia has
the worst; a possible explanation is that Chicago has the most active
Flickr users per day (94.9) while Philadelphia has the least (43.7).

These methods based on presence or absence of tags are simple

and very fast, but they have a number of disadvantages, including
that the tag set must be manually chosen and that negative corre-
lations between tags and phenomena are not considered. We thus
tried training a classifier to learn these relationships automatically.
For each day in each city, we produce a single binary feature vec-
tor indicating whether or not a given tag was used on that day. We
also tried a feature selection step by computing information gain
and rejecting features below a threshold, as well as adding the like-
lihood score from equation (1) as an additional feature. For all
experiments we used feature vectors from 2007 and 2008 for train-
ing and tested on data from 2009 and 2010, and used a LibLin-
ear classifier with L2-regularized logistic regression [10]. Table 1
presents the results, showing that information gain (IG) and confi-
dence scores (Conf) improve the results for all cities, and that the
classifier built with both IG and Conf generally outperforms other
classifiers, except for Boston. Figure 3(c) shows ROC curves from
different classifiers for NYC and Figure 3(d) compares ROC curves
for the 4 cities using the classifier using both feature selection and
confidence. Note that the machine learning-based techniques sub-
stantially outperform the simple likelihood ratio approach (com-
pare Figures 3(b) and (d)).

Predicting snow quantities. In addition to predicting simple pres-
ence or absence of a phenomenon, it may be possible to predict the
degree or quantity of that phenomenon. Here we try one particu-
lar approach, using our observation that the numerical likelihood
score of equation (1) is somewhat correlated with depth of snow
(R2=0.2972) — i.e., that people take more photos of more severe
storms (see Figure 4). Because snow cover is temporally correlated,
we fit a multiple linear regression model in which the confidence
scores of the last several days are incorporated. The prediction on
day t is then given by,(PT

i=0 αi log(conft−i) + β if conft ≥ 1

0 otherwise

where conft represents the likelihood ratio from equation (1) on
day t, T is the size of the temporal window, and the α and β pa-

Table 1: Daily snow clasification results for a 2 year period
(2009–2010) for four major metropolitan areas.

Features Accuracy Precision Recall F-Measure Baseline
NYC

Tags 0.859 0.851 0.859 0.805 0.85
Tags+Conf. 0.926 0.927 0.926 0.917 0.85

Tags+IG 0.91 0.906 0.91 0.898 0.85
Tags+IG+Conf. 0.93 0.93 0.93 0.923 0.85

Boston
Tags 0.899 0.897 0.899 0.894 0.756

Tags+Conf. 0.93 0.929 0.93 0.929 0.756
Tags+IG 0.91 0.911 0.91 0.91 0.756

Tags+IG+Conf. 0.923 0.923 0.923 0.923 0.756
Chicago

Tags 0.937 0.938 0.937 0.935 0.728
Tags+Conf. 0.949 0.952 0.949 0.948 0.728

Tags+IG 0.938 0.938 0.938 0.938 0.728
Tags+IG+Conf. 0.953 0.954 0.953 0.953 0.728

Philadelphia
Tags 0.849 0.851 0.849 0.815 0.805

Tags+Conf. 0.912 0.917 0.912 0.903 0.805
Tags+IG 0.903 0.899 0.903 0.897 0.805

Tags+IG+Conf. 0.927 0.926 0.927 0.924 0.805



(a) (b) (c) (d)

Figure 3: ROC curves for binary snow predictions: (a) ROC curves for New York City, comparing likelihood ratio confidence score
to voting and percentage approaches, (b) ROC curves for 4 cities using the likelihood scores, (c) ROC curves from SVM classifiers
with different features for New York City, and (d) ROC curves for 4 cities using the logistic regression (LibLinear) classifier with
tags, information gain and confidence features. (Best viewed in color.)

Figure 4: Time series of actual daily snow (top) and score esti-
mated from Flickr (bottom) for New York City, 2007–2010.

rameters are learned from the training data. We found that increas-
ing T generally improves performance on the 4 cities, but that no
additional improvement occurred with T > 3. We can measure the
error of our predictions with the root-mean-squared error between
the time series of our predictions and the actual snow data (follow-
ing [16]). We achieve an RMS error of between about 1 and 1.5
inches across the 4 cities; Philadelphia has the largest error (1.44),
followed by Boston (1.26), New York (1.15), and Chicago (1.06).
As an example, Figure 5 presents a visual comparison of the pre-
diction time series versus the actual snow time series for Chicago.

An alternative way of evaluating the snow quantity estimates is
to view it as a multi-way classification task. We follow an existing
snowfall impact scale [25] and quantize daily snow quantity into 7
buckets: no snow, 0-1 inches, 1-4 inches, 4-10 inches, 10-20 inches,
20-30 inches, or more than 30 inches. We then build a classifier to
predict the snow ranges for the four cities using the numbers of
snow and non-snow users. We include the numbers of users from
the previous three days as extra features. We use a Naive Bayesian
classifier [17], which performed best on this task. These multi-way
classification results are better than a majority class baseline, with
7-way correct classification rates at 87.5% for Philadelphia, 87.9%
for New York, 84.0% for Boston, and 83.7% for Chicago (versus
baselines of 80.5%, 85.1%, 75.6%, and 72.9%, respectively).

4.2 Continental-scale snow prediction
Predicting snow for individual cities is of limited practical use

because accurate meteorological data already exists for these highly

Figure 5: Comparing time series of actual daily snowfall (in
mm) for Chicago with estimates using Flickr, for Jan 2009–Dec
2010 and T = 3. Red dots show predictions, and vertical bars
show actual values.

populated areas. In this section we ask whether phenomena can
be monitored at a continental scale, a task for which existing data
sources are less complete and accurate. We use the photo data and
ground truth described in Section 4, although for the experiments
presented in this paper we restrict our dataset to North America
(which we defined to be a rectangular region spanning from 10 de-
grees north, -130 degrees west to 70 degrees north, -50 degrees
west). (We did this because Flickr is a dominant photo-sharing site
in North America, while other regions have other popular sites —
e.g. Fotolog in Latin America and Renren in China.)

The spatial resolution of the NASA satellite ground truth datasets
is 0.05 degrees latitude by 0.05 degrees longitude, or about 5 ×
5km2 at the equator. (Note that the surface area of these bins is
non-uniform because lines of longitude get closer together near
the poles.) However, because the number of photos uploaded to
Flickr on any particular day and at any given spatial location is
relatively low, and because of imprecision in Flickr geo-tags, we
produce estimates at a coarser resolution of 1 degree square, or
roughly 100 × 100km2. To make the NASA maps comparable,
we downsample them to this same resolution by averaging the high
confidence observations within the coarser bin. We then threshold
the confidence and snow cover percentages to annotate each bin
with one of three ground truth labels:

— Snow bin, if confidence is above 90 and coverage above 80,
— Non-snow bin, if confidence is above 90 and coverage is 0,
— Unknown bin, otherwise.

Our goal is to predict whether or not each geospatial bin had snow-
cover on each day, given the photos from Flickr.

Retrieving snow or non-snow bins. In many real applications,
ecologists would be satisfied in finding bins for which the phe-
nomenon is present, rather than actually classifying all bins. It is
thus useful to view this problem as a retrieval task, in which the
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Figure 6: Precision and recall curves for retrieving snow (top) and non-snow (bottom) instances, where an instance is a single geo-
spatial bin on a single day, using different techniques: (a) comparing the voting, percentage, and statistical confidence estimation
techniques, (b) comparing different temporal smoothing strategies, (c) using classifiers to reject falsely-tagged snow images using
visual and textual features.

goal is to identify bins likely to contain the phenomenon, or likely
not to contain it. We thus turn to evaluating the performance of our
estimation techniques using precision-recall curves, where

precision = |R∩G|
|R| recall = |R∩G|

|G| ,

where R is the set of retrieved bins and G is the set of correct
bins according to the ground truth. Precision-recall curves are also
easier to interpret in situations where the classification baselines
are so high, as in our case.

Figure 6(a) shows precision-recall curves for retrieving bins and
days containing snow (top) and those not containing snow (bot-
tom). In total, these curves involve classifying about 7 million ex-
emplars (each of which is a single geospatial bin on a single day),
of which 11.0% have ground truth. 82.2% of the bins with ground
truth are no-snow bins, while snow bins account for 17.8%. We ob-
serve that the confidence method performs significantly better than
the other two methods for retrieving snow bins, achieving about
98% precision at 0.2% recall, and about 80% precision at 1% re-
call. For retrieving non-snow bins the three techniques are almost
the same, and all three perform better than the random baseline.

While the precisions in these curves are high, the recall values
are alarming low. The main reason for this is that large areas
of North America, particularly most of Canada and Alaska, have
sparse populations resulting in a very limited number of photos up-
loaded in these areas. We showed in the last section that accurate
snow estimates can be inferred for highly populated cities; the low
recalls here are because of low photographic density in much of the
continent. Restricting to specific subsets significantly increases the
density of observations: for example, the average number of photos
per bin over our four years of data is nearly ten times larger for the
northeast US compared to all of North America (70,398 vs 8,134).
The performance is significantly better in these more densely popu-
lated areas; for example, in the Northeast US the precision is 96.3%
at a recall of 19.5% for snow retrieval, and 99.9% precision at 9.1%

recall for non-snow retrieval. Moreover, recall would naturally im-
prove as our dataset grows; our sample of 150 million images is less
than 3% of the photos on Flickr, and thus the recall would improve
significantly if we had access to the entire dataset.

Temporal smoothing. For many phenomena (including snow), the
existence of an event on one day is strongly correlated with its ex-
istence on the next day. Thus one way of addressing the sparsity
of Flickr photos in some locations is to propagate evidence forward
and backward in time. To do this, we apply a Gaussian filter on the
Flickr confidence values for each bin in an attempt to achieve better
recalls. We vary the degree of smoothing by using Gaussians with
different variance values. We tried smoothing with many different
parameters, including smoothing both forward and backwards in
time, or in only one direction. Figure 6(b) shows curves for several
of the best combinations that we found, including the raw confi-
dence score (blue X’s), 3 days before and after with variance 1.0
(brown triangles), 2 days before with variance 0.5 (red squares),
3 days before with variance 1.0 (blue circles), 5 days before with
variance 5.0 (purple stars), and 3 days after with variance 1.0 (yel-
low +’s). We find that temporal smoothing three days before and
after with variance 1.0 significantly improves performance for both
snow and non-snow retrieval, increasing snow retrieval precision
by about 7 percentage points at 1% recall.

Voting. Voting performs worse than the statistical confidence given
by the Bayesian likelihood ratio, but it is an interesting technique to
study in more detail because of its simplicity. Voting simply counts
the number of users who have annotated at least one photo in a
given bin and day with a snow-related tag. Figure 7 plots precision
versus the number of votes for snow retrieval. The shape of these
curve illustrates why crowd-sourced observations of the world can
be reliable, if enough people are involved: as the number of votes
for snow increases, it becomes progressively less likely that these
independent observations are coincidental, and more likely that



Figure 7: Precision vs number of votes for snow predictions
using the voting method.

Table 2: Taxonomy of manually-labeled false-positive photos
(which have at least one snow-related tag despite being taken
at a snowless time and place according to the ground truth).

Class Description # of photos
little or distant photos with trace amount of snow

or snow in the distance
585 (33.0%)

man made photos with snow made by humans
(e.g. at a ski slope)

152 (8.6%)

no snow photos without visible snow 737 (41.5%)
snow photos with significant snow 279 (15.7%)
not sure other photos 21 (1.2%)

they are caused by the presence or absence of an actual phenomenon.
It is interesting to notice that when there are 7 or more snow vot-
ers, snow prediction precision becomes 100%, while the same is
true for non-snow prediction when the number of non-snow voters
reaches 33 if there are no snow voters in the bin.

Case study of false positives. To understand the failure modes of
estimating attributes about the world from Flickr photos, we per-
formed a case study of false positives — bins and days in which
our Flickr mining predicted the presence of snow, but the NASA
ground truth indicated that there was no snow cover. In particular,
we studied snow false positives at the operating point at which the
likelihood ratio method gives a precision of 74.1% and a recall of
1.2% (i.e. when the threshold is 4). At this operating point, 34,323
total predictions are made (each corresponding to a single geospa-
tial bin on a single day), 2,208 of which have valid ground truth. Of
these 2,208 bins, 1,636 (74.1%) are correctly classified, while the
572 false positive bins have a total of 1,855 photos tagged with one
of the snow terms (despite the fact that they were taken at places
and times in which the NASA satellite did not record snow). We
manually examined these 1,855 false positive photos and classified
them into 5 different classes according to their visual content, as
shown in Table 2. Nearly 60% of these photos do actually appear
to contain some snow; of these, 33% either show trace amount of
snow or snow in the distance (usually on a distant mountain peak),
and 8.6% have man-made snow that would not show up on the
NASA maps (like in a zoo or ski slope), while only about 16% in-
clude a significant amount of natural snow. About 40% of the pho-
tos tagged with a snow-related term do not appear to contain any
snow at all; these are caused by mis-tagged images or snow-related
tags that are used to describe something else (like the interference
on a TV screen). Figure 8 shows some sample false positives from
each class.

For images that seem to contain natural snow, there are several
possible explanations for why the ground truth does not indicate

(a) (b)

(c) (d)

Figure 8: Sample photos that were not taken at a place and
time with snow according to the ground truth, but that were
uploaded with a snow-related tag: (a) photo with trace amounts
of snow, (b) photo with distant snow, (c) photo with man made
snow, and (d) photo with no snow (but with a “snowy egret”).

snow cover at that time and place. One is that the satellite passes
over at an unknown time of day, so it is possible that snowfall oc-
curred after the satellite’s observation was taken. Another cause are
photos with incorrect time stamps or geo-locations; we assume that
such errors occur frequently, although it is hard to quantify the fre-
quency just by looking at the photos. Other photos clearly contain
snow, but the amount is so little that it might not be visible from the
satellite (e.g. Figure 8(a)), or the snow is so far in the distance that
it is in a different geospatial bin (e.g. Figure 8(b)).

There are some cases where the Flickr evidence for snow is over-
whelming, but the NASA ground truth does not indicate snow. This
could be caused by the timing issue described above, or by satel-
lite resolution and confidence issues. For example, on February 21,
2008, 5 Flickr users reported snowfall in New York. This bin is
marked as a no-snow bin in the ground truth because the vast ma-
jority of it has zero snow coverage according to the satellite, but
there is a small area within the bin that has low confidence (due to
cloud cover) and probably corresponds to a snow squall.

Machine learning for tag selection. Many of the above error modes
can be addressed by training classifiers on textual tag and visual im-
ages features. As discussed in Section 3.1, we are interested in two
learning paradigms: the first is to learn combinations of tags that
classify geospatial bins well according to the NASA ground truth,
while the second task is to reduce false positives by rejecting pho-
tos that are tagged with a snow term but do not actually contain
snow.

In the first task, we want to learn to classify whether a given
bin contains snow on a given day, based on a binary feature vector
encoding the set of tags used by all users in that bin on that day.
We tried four different classifiers to address this problem: REP-
Tree, a fast decision tree learner which builds a decision tree using
information gain and variance and prunes it using reduced-error
pruning [13], Support Vector Machines (SVMs) [7], Discrimina-
tive Multinomial Naive Bayes (DMNB) [26] and LibLinear clas-
sifier with L2-regularized logistic regression [10]. To reduce the
large number of features (a total of 404324 tags), we compute in-
formation gain and keep all features (13442 tags) with information
gain greater than zero. Figure 9 presents ROC curves for this task,
showing that the learned classifier outperforms the likelihood ratio
from equation (1), and that feature selection with information gain



Figure 9: ROC curves for classifying whether a geo-bin has
snow on a given day, comparing the LibLinear classifier with
various tag features to the confidence method using hand-
selected tags.

Figure 10: ROC curve for classifying whether photos contain
snow, using decision trees with various features: AllTags in-
cludes all tags, IntersTags excludes tags corresponding to spe-
cific geographic areas, and AllTags+Time and IntersTags+Time
include the month of the year as an additional feature.

and using the confidence ratio as an additional feature all improve
performance.

Next we try the second learning paradigm, in which our goal is
to examine photos that have a snow-related tag, and use the other
tags as well as visual features to decide whether or not they actually
contain snow. For example, the classifier might learn that a photo
with “snowy” should be discarded if it also contains the tag “egret,”
since that photo is likely of a bird and not of actual snow. For train-
ing these classifiers, we had a human judge evaluate 1,855 images
and to annotate them as to whether or not they actually contain ev-
idence of snow.

We used decision trees for this task because it is easy to under-
stand and interpret what features the classifier is using. In initial
experimentation, we found that many of the most discriminative
features were place names, like “sandiego” or “canada.” These ge-
ographic tags are understandably strongly correlated with snowfall,
but we would like our classifier to base its decisions on the content
of an image (because, for example, climate change might cause
snowfall in San Diego some day, and we would like our classifier to
be able to detect this). To avoid selecting these tags, we first divide
North America into four regions (northeast, northwest, southeast,
southwest) and get the intersection of the sets of tags used in these
four regions. We then use only this set of intersected tags (“Inter-
sTags”) for building the decision tree. Besides tags, we also tried
including the photo’s timestamp month as an additional feature.

ROC curves are presented in Figure 10. We see that the time fea-
ture helps in improve the results, as does using all tags instead of
just the spatially-intersected ones. The baseline (majority class) is
86.3%. It is interesting to examine the top few levels of the trained
decision tree, to get a sense for which tags are most discrimina-

tive. The top decision node is “summer:” if this tag is present, then
the photo is classified as not snow. If summer is not present, then
the next few layers look at tags like “mountain,” “clouds,” “ski,”
“geese,” and “egret.”

Machine learning to suppress false positives. Finally, we consider
using the photo classifier as a filter while computing the likelihood
ratios of Section 3.1, in order to reject photos that are marked with
a snow tag but do not contain snow, using both visual and textual
features. For the textual features, we use the decision tree classi-
fier just described. For visual features, we trained an SVM using
the GIST-like visual features described in Section 3.1, on the same
hand-labeled dataset of about 2,000 images explained above. As
with all other experiments, the training and testing sets were kept
separate by training on data from 2007-2008 and testing on data
from 2009-2010. For the photos in these latter two years, we use
our decision tree to try to filter out false positives (photos tagged
“snow” but not containing snow), and then re-compute the likeli-
hood ratio confidence score. We find that using a classifier to reject
false positives based on tags increased precision by nearly 10 per-
centage points, as shown in Figure 6(f): at 1% recall, precision
increased from about 84% to to about 93% for snow retrieval. For
the visual features, we find a significant but more modest improve-
ment, from about 84% to 86% at this level of recall.

4.3 Estimating vegetation cover
Another important measure of the ecological state of the planet is

vegetation cover. We perform greenery versus no greenery predic-
tions similarly to snow and no snow predictions using the Flickr
confidence threshold method discussed in Section 3.1. As with
snow, the ground truth is obtained from down-sampling and thresh-
olding the NASA MODIS greenery data which has the same resolu-
tion as the snow cover data with similar coverage and quality (con-
fidence) values. The Flickr greenery confidence values of bins are
obtained in a similar way as with snow, except that we use a differ-
ent set of target tags, including “tree,” “trees,” “leaf,” “leaves”, and
“grass.” One important difference between the NASA greenery and
snow datasets is that the greenery data is an average of daily obser-
vations spanning 16 days. Thus our goal is to predict the geospatial
distribution of greenery for each 16-day period of the year.

We require a bin to have no less than 50% greenery coverage and
above middle quality to be considered as a ground truth bin. We re-
port experiments using two different definitions of non-green bins:
those having less than 1% coverage, and those having less than 5%
coverage. For the 50% and 1% threshold combination, 25.6% of
the bins with ground truth are greenery bins, while for the 50% and
5% threshold combination, 15.8% of the bin with ground truth are
greenery bins. As shown in Figure 11, both curves outperform a
random baseline for greenery prediction, but the estimates are not
as accurate as those observed during in snow predictions. There
seem to be several reasons for this drop in performance. One is that
the boundary between greenery and no greenery seems more vague
than the snow/no-snow boundary. Moreover, the greenery ground
truth data has a much coarser temporal resolution (16 days). Fi-
nally, it’s less clear which tags should be used to estimate greenery;
using color analysis of the visual content of images may be a better
approach, which we leave for future work. We also tried a learned
classifier to predict greenery/non-greenery bins based on the set of
tags used by all users in each bin and on each day. We used the
LibLinear classifier [10] because it performed well in case of snow
classification. Figure 12 presents the ROC curve for this classifica-
tion task, showing an equal-error rate of about 91.6%.



Figure 11: Greenery precision-recall curve using two different
ground truth thresholds.

Figure 12: ROC curve for classifying greenery of bins, using
tag features and LibLinear classifier.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose using the massive collections of user-

generated photos uploaded to social sharing websites as a source
of observational evidence about the world, and in particular as a
way of estimating the presence of ecological phenomena. As a first
step towards this long-term goal, we used a collection of 150 mil-
lion geo-tagged, timestamped photos from Flickr to estimate snow
cover and greenery, and compared these estimates to fine-grained
ground truth collected by earth-observing satellites and ground sta-
tions. We compared several techniques for performing the estima-
tion from noisy, biased data, including simple voting mechanisms
and a Bayesian likelihood ratio. We also tested several possible
improvements to these basic methods, including using temporal
smoothing and machine learning to improve the accuracy of esti-
mates. We found that while the recall is relatively low due to the
sparsity of photos on any given day, the precision can be quite high,
suggesting that mining from photo sharing websites could be a re-
liable source of observational data for ecological and other scien-
tific research. In future work, we plan to study additional features
including using more sophisticated computer vision techniques to
analyze visual content. Also we plan to study a variety of other eco-
logical phenomena, including those for which high quality ground
truth is not available, such as migration patterns of wildlife and the
distributions of blooming flowers.
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