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Abstract

Recognizing people by faces and other biometrics has
been extensively studied in computer vision. But these tech-
niques do not work for identifying the wearer of an ego-
centric (first-person) camera because that person rarely (if
ever) appears in their own first-person view. But while one’s
own face is not frequently visible, their hands are: in fact,
hands are among the most common objects in one’s own
field of view. It is thus natural to ask whether the appear-
ance and motion patterns of people’s hands are distinctive
enough to recognize them. In this paper, we systemati-
cally study the possibility of Egocentric Hand Identification
(EHI) with unconstrained egocentric hand gestures. We ex-
plore several different visual cues, including color, shape,
skin texture, and depth maps to identify users’ hands. Ex-
tensive ablation experiments are conducted to analyze the
properties of hands that are most distinctive. Finally, we
show that EHI can improve generalization of other tasks,
such as gesture recognition, by training adversarially to en-
courage these models to ignore differences between users.

1. Introduction
Vision-based person identification has many practical

applications in safety and security applications, so devel-
oping techniques to identify individual people is among the
most-studied computer vision problems [22]. After decades
of research, some vision-based biometric technologies are
now commonplace, with retina and and palm recognition
routinely used in high-security applications such as border
control [11], while even consumer smartphones feature fin-
gerprint [25] and face recognition [12]. Other techniques
that identify more subtle distinguishing features, such as
gait [47] or keystroke dynamics [5], have also been used
in some applications.

User identification for egocentric cameras presents an in-
teresting challenge, however, because the face and body of
the camera wearer are rarely seen within their own first-

(a) Medical surgery with hands [1]

(b) RGB frames

(c) Depth frames

Figure 1: (a) If multiple people are collaborating on a task
assisted by VR devices, can we tell whose hand is whose
in the first person view? (b,c) Sample input frames. Our
results suggest that even egocentric depth data can give ev-
idence about who is whom.

person field of view. There is a notable exception, however:
we use our hands as a primary means of manipulating, in-
teracting with, and sensing the physical world around us,
and thus our hands are frequently in our field of view [4].
In fact, our own hands may be the objects that we see most
frequently throughout the entire span of our lives and thus
may even play a special role in our visual systems, includ-
ing in how children develop object perception [41].

We hypothesize that it is possible to recognize individ-
uals based only on their hand appearances and motion pat-
terns. If correct, this hypothesis would have numerous po-
tential applications. A VR/AR device shared among mem-
bers of a household could tailor its behavior to a specific
user’s preferences. Some wearable cameras need user au-



thentication (e.g., verifying the wearer of a police body
camera [42]), and this could provide one signal. When mul-
tiple people are interacting or collaborating on a manual
task, such as surgery (Figure 1a), the field of view may be
full of hands, and understanding the activities in the scene
would involve identifying whose hand is whose.

Some existing work has studied using properties of
hands, such as shape, to uniquely identify people, in-
cluding classic papers that use manually-engineered fea-
tures [38, 48]. However, these techniques require hand im-
ages with a clearly visible palm, and are not applicable for
unconstrained egocentric videos.

This paper, to our knowledge for the first time, studies
the task of Egocentric Hand Identification (EHI). Since this
is the first work, we focus on establishing baselines and an-
alyzing which factors of the egocentric video contribute to
the recognition accuracy. Specifically, we demonstrate that
standard computer vision techniques can learn to recognize
people based on egocentric hand gestures with reasonable
accuracy even from depth images alone. We then conduct
ablation studies to determine which feature(s) of inputs are
most useful for identification, such as 2D/3D shape, skin
texture (e.g. moles), and skin color. We do this by measur-
ing recognition accuracy as a function of manipulations of
the input video; e.g. we prepare gray-scale video of hand
gestures (Figure 2 (4)), and binary-pixel video composed of
hand silhouettes only (Figure 2 (3)), and regard the accu-
racy increase between gray-scale videos and hand silhou-
ettes as the contribution of skin texture. Our results indicate
that all these elements (2D hand shape, 3D hand shape, skin
texture, and skin color) carry some degree of distinctive in-
formation.

We further conjectured that this task of hand identifica-
tion could improve other related tasks such as gesture recog-
nition. However, we found that the straightforward way
of doing this – training a multi-task CNN to jointly recog-
nize identity and gesture – was actually harmful for gesture
recognition. While perhaps surprising at first, this result is
intuitive: we want the gesture classifier to generalize to un-
seen subjects, so gesture representations should be predic-
tive of gestures but invariant to the person performing ges-
tures. We use this insight to propose an adversarial learning
framework that directly enforces this constraint: we train a
primary classifier to perform gesture recognition while also
training a secondary classifier to fail to recognize who per-
forms gestures. Our experiments indicate that the learned
representation is invariant to person identity, and thus gen-
eralizes well for unseen subjects.

In summary, the contributions of this paper are as fol-
lows:

1. To our knowledge, we are the first to investigate if it
is possible to identify people based only on egocentric
videos of their hands.

2. We perform ablation experiments and investigate
which properties of gesture videos are key to identi-
fying individuals.

3. We propose an adversarial learning framework that can
improve hand gesture recognition by explicitly encour-
aging invariance across person identities.

2. Related Work
Egocentric vision (or first-person vision) develops com-

puter vision techniques for wearable camera devices. In
contrast to the third-person perspective, first-person cam-
eras have unique challenges and opportunities for research.
Previous work on egocentric computer vision has concerned
object recognition [6,26,28], activity recognition [3,10,29,
31, 34, 37, 39, 50], gaze prediction [21, 27, 43, 51], video
summarization [19, 35, 40], head motion signatures [36],
and human pose estimation [23, 49]. In particular, many
papers have considered problems related to hands in ego-
centric video, including hand pose estimation [16,30], hand
segmentation [4,46], handheld controller tracking [33], and
hand gesture recognition [8]. However, to our knowledge,
no prior work has considered egocentric hand-based person
identification. The closest work we know of is extracting
user identity information from optical flow [20, 44], which
is complementary to our work — integrating optical flow
into our study would be future work.

In a broad sense, using hands to identify people has been
well-studied, particularly for fingerprint identification [25],
but it is not realistic to assume that we can extract finger-
prints from egocentric video. Outside of biometrics, some
classic papers have shown the potential to identify subjects
based on hand shapes and geometries. Sanchez-Reillo et al.
use palm and lateral views of the hand, and define features
based on widths and heights of predefined key points [38].
Boreki et al. propose 25 geometric features of the finger and
palm [7], while Yoruk et al. use independent component
analysis on binary hand silhouettes [48]. However, these
studies use very clean scans of hands with the palm clearly
visible, often with special scanning equipment specifically
designed for the task [38]. Views of hands from wearable
cameras are unconstrained, much noisier, and capture much
greater diversity of hand poses, so these classic methods are
not applicable. Instead, we build on modern computer vi-
sion to learn features effective for this task in a data-driven
manner.

We are aware of two studies that apply modern com-
puter vision for hand identification. Mahmoud [2] applies
CNNs for learning representations from controlled hand im-
ages with the palm clearly visible. Uemori et al. use mul-
tispectral images of skin patch from hands, and train 3D
CNNs to classify the subjects [45]. The underlying assump-
tion for this approach is that each individual has distinctive



(1) Original RGB.

(2) Original Depth.

(3) Binary Hand: Binarized depth map that approximates
the shapes of hands.

(4) Gray Hand: Grayscale images masked with hands.

(5) Color Hand: Color images with hands.

Figure 2: Controlled Inputs

skin spectra due to the unique chromophore concentrations
within their skin [14]. Although this method does not have
any constraints for hand pose, it requires a multispectral
sensors, which are not usually available in consumer de-
vices. Moreover, it assumes images of the hands are clear,
not blurry, and with good lighting conditions, which are not
practical assumptions for egocentric vision.

3. Methodology
Our goal is to investigate if it is possible to identify a

camera wearer from an egocentric video clip of them per-
forming hand gestures. Our goal is not to engineer a new
method but to investigate whether a simple end-to-end tech-
nique can learn to perform this task. Specifically, we build
upon a standard convolutional neural network [17] for video
classification, and train an end-to-end subject classifier from
video clips. Our approach uses the raw inputs from RGB
or depth sensors directly, and intentionally does not em-
ploy hand-pose or hand-mesh recognition because we do
not want our method to depend on the recognition results of
other tasks (which would complicate the method and make
it vulnerable to failures of those subtasks).

3.1. Egocentric Hand Identification (EHI)

Our focus is to understand the influence of various
sources of evidence — RGB, depth, etc. — on the classi-
fication decisions. This is important due to the data-driven
nature of deep learning and difficulty in collecting large-
scale egocentric video datasets that are truly representative
of all people and environments: it is possible for a classifier

to cheat by learning bias of the training data (e.g., if all ges-
tures of a subject are recorded in the same room, the classi-
fier could memorize the background). We try to avoid this
by making sure the training and testing videos are recorded
in different places, but we also try to identify the types of
features (e.g. hand shapes, skin texture, skin color) that are
important for CNNs to identify the subjects. In order to
factor out each element, we ablate the input video and grad-
ually increase information starting from the silhouettes of
hands to the full-color images of hands. In the remainder
of this section, we discuss the above-mentioned points in
detail, starting from the RGB and Depth inputs available to
us.

RGB. We have RGB video clips of gestures against various
backgrounds. The RGB data implicitly captures 2D hand
shape, skin texture, and skin color. We show a sample clip
in Figure 2 (1), containing not only hands but also a doll.
In fact, the same doll appears in other gesture videos of the
same subject, which is problematic if the person classifica-
tion model learns to rely on this background information.
This is not just a dataset problem, but a practical problem
for possible real-world applications of egocentric vision: a
user may record videos in their room to register their hands
in the system but still want the device to recognize hands
elsewhere. To simulate this point, we train on indoor videos
and evaluate on outdoor videos.

Depth. We also have depth video synchronized with the
RGB clips (Figure 2 (2)). The depth images contain infor-
mation about 3D hand shape in addition to shapes of ob-
jects in the background. A clear advantage of using depth
is that it allows for accurate depth-based segmentation of
the hands from the background, just by thresholding on dis-
tance from the camera. Although less sensitive to the back-
ground problem, there is still a chance that depth sensors
capture the geometries of the background (e.g. rooms). In
order to eliminate background, we apply Otsu’s binarization
algorithm [32] to separate the background and foreground.
It is reasonable to assume that hands are distinctively closer
to the device, so the foreground mask corresponds to bi-
nary hand silhouettes – an approximation of the hand shapes
without 3D information. These hand silhouettes are a start-
ing point for our ablative study.

Binary Hand. We obtain binary hand silhouettes by bina-
rizing the depth maps as discussed above. We show an ex-
ample in 2 (3). This only contains hand shape information
and is the input with the least information in our study. We
prepare several other inputs by adding more information to
this binary video and use the accuracy gain to measure the
contribution of additional information, as described below.

3D Hand. We apply the binary mask to the depth images
and extract the depth corresponding to the hand region only.
The accuracy increase from Binary Hand is a measure of the



importance of 3D hand shape for identifying the subjects.

Gray Hand. We apply the binary mask to the grayscale
frame converted from RGB; see example in Figure 2 (4).
This adds hand texture information to the 2D Hands. The
accuracy gain from Binary Hand indicates the importance
of textures of hands (including moles and nails).

Color Hand. We extract the hand from RGB frames, elim-
inating the background. We show an example in Figure 2
(5). The accuracy gain from Gray Hand is the contribution
of skin color.

3D Color Hand. This is the combination of all available
information where hands are extracted from RGBD frames.
The accuracy indicates synergies of 2D hand shape, 3D
hand shape, skin texture, and skin color.

3.2. Improving gesture recognition

We hypothesize that our technique is not only useful for
identifying people from hands, but also for assisting in other
gesture recognition problems. This hypothesis is based on
results on other problems that show that multi-task training
can perform each individual task better, perhaps because the
multiple tasks help to learn a better feature representation.
A naive way to implement the idea of jointly estimating ges-
ture and identity is to train gesture classification together
with subject classifier, sharing the feature extraction CNN.
Then, we can minimize a joint loss function,

min
(F,Cg,Cp)

(Lg + Lp) , (1)

where F,Cg, Cp,Lg,Lp are the shared CNNs for feature
extraction, the classifier to recognize the gestures, the clas-
sifier to recognize identity, the loss for gesture recognition,
and the loss for recognizing subjects, respectively.

However, and somewhat surprisingly, we empirically
found that minimizing this joint loss decreases the accuracy
of gesture recognition. Our interpretation is that because the
gesture classification is trained and tested on disjoint sub-
jects, learning a representation that is predictive of person
identity is harmful in classifying the gestures performed by
new subjects. We hypothesized that a model trained for the
“opposite” task, learning a representation invariant to iden-
tity, should better generalize to unseen subjects. This can
be expressed as a min-max problem of the two tasks,

min
(F,Cg)

max
Cp

(Lg + Lp) . (2)

Intuitively, this equation encourages the CNN to learn
the joint representation (F ) that can predict gestures (Cg)
but cannot predict who performs the gestures (Cp). This
min-max problem is the same as that used in adversarial
domain adaptation [15], because the gesture classifier is
trained adversarially with the subject classifier. Following

the original method [15], we re-write equation 2 into an al-
ternating optimization of two equations,

min
(F,Cg)

(Lg − λLp) (3)

max
Cp

Lp, (4)

where λ is a hyper-parameter.

4. Experiments
We perform our primary experiments on the EgoGes-

ture [8, 52] dataset, which is a large dataset of hands taken
both indoors and outdoors. We also perform secondary
experiments on the relatively small Green Gesture (GGes-
ture) [9] dataset.

Implementation Details. We use ResNet18 [18] with 3D
convolutions [17]. We initialize the model with weights pre-
trained from the Kinetics dataset, and fine-tune with mini-
batch stochastic gradient descent using Adam [24] with
batch size of 32 and initial learning rate of 0.0001. We iter-
ate over the dataset for 20 epochs and decrease the learning
rate by a factor of 10 at the 10th epoch. The spatiotemporal
input size of the model is 112× 112× 16, corresponding to
width, height, and frame lengths respectively. In order to fit
arbitrary input clips into this resolution, we resize the spa-
tial resolution into 171×128 via bilinear interpolation, then
apply random crops for training and center crops for test-
ing. For the temporal dimension, we train with randomly-
sampled clips of 16 consecutive frames and test by averag-
ing the prediction of 16 consecutive sliding windows with 8
overlapping frames. If the number of frames is less than 16,
we pad to 16 by repeating the first and last frames.

4.1. Experiments on EgoGesture

The EgoGesture [8, 52] dataset includes 24,161 egocen-
tric video clips of 83 gesture classes performed by 50 sub-
jects, recorded both indoors and outdoors. Our task is to
classify each video into one of 50 subjects. As discussed
in Sec 3.1, we use indoor videos for training, and outdoor
videos for evaluation, so that we can prevent leaking user
identities based on the backgrounds. The dataset has 16,373
indoor clips, which are used for training, and 7,788 outdoor
clips of which we use 3,892 for validation and 3,896 for
testing.

4.1.1 Subject Recognition Results

We summarize the subject recognition results in Table 1.
The original inputs of RGB and Depth can achieve accura-
cies (%) of 6.29 and 11.47. Because a random guess base-
line is 2%, our results indicate the potential to recognize
people based on egocentric hand gestures. In order to un-
derstand where this information comes from, we factor the



Information Accuracy

2D Shape 3D Shape Skin Texture Skin Color Background EgoGesture GGesture

RGB X - X X X 6.29 61.09
Depth X X - - X 11.47 -

Binary Hand X - - - - 11.11 51.13
3D Hand X X - - - 12.04 -
Gray Hand X - X - - 14.22 61.09
Color Hand X - X X - 18.53 64.71

3D Color Hand X X X X - 19.53 -

Table 1: Subject recognition accuracy (%) for each ablated input on EgoGesture dataset and GGesture dataset.

(1) A training gesture clip recorded indoor.

(2) CAM showing that prediction is cuing on background.

(3) CAM focuses on hands if we mask out the background.

(4) A test clip recorded outdoors.

(5) CAM focusing on background.

(6) CAM focuses on hands when background is masked out.

Figure 3: Class Activation Maps (CAMs)

input into different components and discuss the results be-
low.

The accuracy on Binary Hand is 11.11%. This input con-
tains only hand silhouettes, indicating that it is possible to
recognize a person’s identity to some degree using 2D shape
alone. This is the starting point of our analysis as we grad-
ually add additional information. Adding depth informa-
tion to the binary mask (3D hand) increases the accuracy
to 12.04%. This indicates that 3D information, including
the distance from a camera to hands, contributes to better
identify the subjects. The gray-scale images of hands (Gray

(a) RGB (b) Color Hand (c) Actual Hand

Figure 4: (a) Average CAM produced by the model trained
from raw images with hand and background. (b) Average
CAM produced by the model trained from the images only
with hand. (c) Average of the actual hand masks. Over-
all, CAM by the hand-only model has its peak closer to the
actual hand location.

Hands) achieve an accuracy of 14.22%, suggesting that the
texture of skin carries some information. RGB images of
hands (Color Hand) can achieve an accuracy of 18.53%,
suggesting that skin color also conveys information about
personal identity.

The results so far show that 2D shapes of hands, 3D
shapes of hands, skin texture, and skin color carry infor-
mation about the identity of a subject. We can combine all
of them with RGBD frames masked with hand segmenta-
tion maps (3D Color Hand), and this achieves the highest
accuracy of 19.53%. This indicates that each property con-
tributes at least some additional, complementary informa-
tion.

4.1.2 Background overfitting via CAM Visualization

In terms of unmodified inputs, the accuracy of RGB
(6.29%) is significantly worse than depth (11.47%). This
is somewhat surprising given that our ablative study shows
that RGB images only with hands have much higher accu-
racy (18.53%) and that skin color and texture information
are important cues. We suspect the reason lies in the way
we design the task: because we train on indoor videos and



Input Acc Diff from 3D CNN

Binary Hand 12.09 +0.98
3D Hand 11.14 −0.90
Gray Hand 12.86 −1.36
Color Hand 16.84 −1.69

Table 2: Difference in subject recognition accuracy when
swapping 3D convolution with 2D convolution.

(a) Gesture 80. A gesture that is easy to recognize subject.

(b) Gesture 36. A gesture that is hard to recognize subject.

(c) Gesture 52. A gesture that is hard to recognize subject.

Figure 5: Sample gestures that are (a) easy and (b,c) hard
for recognizing subjects.

test on outdoor videos, the CNNs can overfit on background
specific to the subjects.

To test this hypothesis, we perform experiments with
class activation maps (CAM) [53] to visualize the image ev-
idence used for making classification decisions. CAM is a
linear combination of the feature maps produced by the last
convolutional layer, with the linear coefficients proportional
to the weight in the last classification layer. CAM highlights
regions that the network is relying on. We show a sample
clip each from training set and test set along with CAMs
from RGB and Color Hand models in Figure 3. As we ex-
pected, if the backgrounds are not removed, the classifier
seems to cue on the background instead of hands. These are
just two random samples, so in order to provide more robust
results, we sample 1000 clips from the test set, compute the
average CAM image, and compare it with the average im-
age of binary hand masks. As shown in Figure 4, the hand-
only input produces an average CAM image whose peak is
closer to the peak of the actual hand mask. This observa-
tion supports our hypothesis that raw RGB frames lead the
model to overfit to the background, causing the test accu-
racy drop.

4.1.3 Importance of Motion Information

We use 3D convolutional networks for all experiments, so
all models internally use the information of hand motion.
However, it is interesting to measure how much motion in-
formation contributes to accuracy. To investigate this, we
swap all 3D convolutions with 2D convolutions, extract the
2D CNN feature for each frame, and use the average fea-
ture vector as a representation of the clip. We compare
the accuracy of this model with the 3D CNNs. Table 2
shows the results. For 3D Hand, Gray Hand, and Color
Hand, the accuracy drops around 1 point, indicating the im-
portance of motion information. However, to our surprise,
the accuracy increases 0.98% for the input of Binary Hand.
This indicates that when we only capture 2D hand shapes,
considering the temporal feature is not helpful and possibly
confusing. We speculate that because 2D hand shapes are
essentially only edges of hands, they do not carry enough
information to distinguish complex hand motion.

4.1.4 Effect of Gesture Class

We suspect that some gestures are more suitable to classify-
ing subjects than others. Therefore, we investigate accuracy
based on gesture types. This analysis is possible because the
dataset was originally proposed for gesture recognition. We
compute the subject recognition accuracy per gesture class
and show it in Figure 10 in Supplementary Material. While
the highest accuracy is 29.79% with gesture 80, the lowest
is 10.64% with gesture 36 and 52. We show samples on ges-
tures 80, 36, and 52 in Figure 5. The easy case (gesture 80)
uses a single hand with the back of the hand clearly visible,
while the difficult ones (gesture 36 and 52) use both hands
with lateral views, making it harder to identify the subject.

4.1.5 Effect of Clip Length

Figure 6 shows a histogram of clip length in the test set. The
shortest clip only has three frames while the longest has 122
frames. The mean length is 33.1 and the median is 32. Does
the length of clip affect the recognition accuracy? To inves-
tigate this, we divide the test set into short, medium, and
long clips based on the 25 (26 frames) and 75 percentile (39
frames) of the length distribution. We use 3D Color Hand
as input and show the accuracy based on this split in Ta-
ble 3. The short, medium, and long clips have accuracies
of 19.13%, 20.55%, and 17.84%, respectively. This result
was not expected because we hypothesized that longer clips
would be easier because they contain more information. We
speculate that since the CNN is trained with a fixed-length
input (16 consecutive frames), if the clip length is too long
(longer than 39 – more than twice that of the fixed input
lengths), the CNN cannot effectively capture key informa-
tion compared to medium-length clips.



Short Medium Long

Accuracy 19.13 20.55 17.84

Table 3: Accuracy (%) over the clip length for subject
recognition. We divide the test clips into short, medium, and
long with the boundaries of 25% quantile and 75% quantile.
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Figure 6: Histogram of number of frames per video in the
EgoGesture test set.

Input Seen Gestures Unseen Gestures (Diff)

Binary Hand 11.34 7.40 (-3.94)
3D Hand 11.49 10.24 (-1.25)
Gray Hand 14.82 12.01 (-2.81)
Color Hand 19.50 14.85 (-4.65)

Table 4: Subject recognition accuracy (%) drop for the seen
and unseen gestures. We train the model with only half
the available gestures and compute the test accuracy on
seen and unseen gestures separately to see the generaliza-
tion ability in terms of unseen hand pose.

4.1.6 Subject Recognition for Unseen Gestures

Our experiments so far divide the dataset based on its
recorded place (indoor for training and outdoor for testing),
and all gesture classes appear in both training and test sets.
Another question is how well the model generalizes to un-
seen gestures. To answer this, we subsampled the training
set by choosing half the gestures (exact split provided in
the Supplementary Material), and compute test accuracy for
seen and unseen gestures separately. As shown in Table 4,
the accuracy drops by 3.94, 1,25, 2.81, and 4.65 percentage
points for Binary Hand, 3D Hand, Gray Hand, and Color
Hand respectively. As expected, it becomes more difficult
to recognize the subjects if the hands are in unseen poses.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity threshold

0.0

0.2

0.4
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1.0
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Figure 7: Trade-off between false positive rate and false
negative rate for gesture-based user verification settings.

4.1.7 Gesture Based Verification

So far, the task is to recognize the subject that appeared
in the training set, but a practical scenario could be user
verification: given a pair of gesture clips, judge if they are
from the same subject or not, even if the subject has not
been seen before. To test this, we use 30 subjects for train-
ing, 10 for validation, and 10 for testing, and provide the
exact split in Supplementary Material. With this split, we
learn the representation by training on a classification task,
but for evaluation, we perform gesture-based user verifica-
tion by thresholding the cosine similarity of clip pairs. An
evaluation pair consists of an indoor clip and an outdoor
clip performing the same gesture. This amounts to 58,888
pairs of video clips with a heavy class imbalance, where
only 5,950 pairs are positive. To incorporate this imbalance
into the evaluation, we report Equal Error Rate (EER) where
the threshold is set to have the same false-positive rate and
false-negative rate. We evaluate with the input of 3D Color
Hand and obtain an EER of 36.01%. We plot the trade-off
between false-positive rate and false-negative rate for dif-
ferent thresholds in Figure 7. We also plot the ROC curve
in Figure 9 in Supplementary Material.

4.1.8 Gesture Recognition Results

In addition to recognizing the subject, our model potentially
could benefit existing gesture recognition tasks as well. For
these experiments, we use the data split defined in the orig-
inal dataset where train/val/test have disjoint subjects be-
cause the model is expected to generalize to unseen people.
We experiment with two ways to train the gesture recogni-
tion model with the auxiliary subject classifier as described
in Sec. 3.2, and summarize the results in Table 5. The
first way is to jointly train the gesture classifier and subject
classifier while sharing the internal CNN representation as a
multi-task learning task. Unfortunately, this method has an



(1) Sample frames

(2) Extracted hand masks by removing the green chromakey background.

Figure 8: Green Gesture Dataset

RGB Depth

Gesture only 88.42 89.35
Joint with Subject-ID 86.91 86.64
Adversarial with Subject-ID 89.51 89.66

Table 5: Gesture recognition accuracy (%) on EgoGesture
dataset.

accuracy drop from the single-task training both for RGB
(from 88.42% to 86.91%) and for Depth (from 89.35% to
86.64%). This suggests that the representations predictive
of subjects are harmful to classify gestures, and the repre-
sentations invariant to subjects are better. This is intuitive
given that the gesture recognition model is expected to gen-
eralize to unseen subjects. Therefore we realize this repre-
sentation with adversarial training and observe the accuracy
improves both for RGB (from 88.42% to 89.51%) and for
Depth (from 89.35% to 89.66%).

4.2. Subject Recognition on GGesture Dataset

We also perform subject classification experiments on
the Green Gesture (GGesture) [9] dataset. This dataset has
about 700 egocentric video clips of 10 gesture classes per-
formed by 22 subjects. It has RGB clips without depth,
and recorded only indoors. However, unlike the EgoGes-
ture dataset, the background is always a green screen for
chroma key composition, so we can easily extract the hand
masks. Each subject has three rounds of recordings so we
use them for train/val/test split, resulting in 229/216/221
clips, respectively. We show the results in Table 5 next to
the EgoGesture results. Because GGesture does not have
depth information, we only ablate the input with Binary
Hand, Gray Hand, and Color Hand, which have accuracies
of 51.13%, 61.09%, and 64.71% respectively. The accuracy
gain corresponds to the contribution of 2D shape of hands,
skin texture, and skin colors, respectively.

5. Discussion and Conclusion

We have presented a CNN-based approach to recognize
subjects from egocentric hand gestures. To our knowledge,

this is the first study to show the potential to identify sub-
jects based on ego-centric views of hands. We also perform
ablative experiments to investigate the properties of input
videos that contribute to the recognition performance. The
experiments shows that hands shape in 2D and 3D, skin tex-
ture, skin colors, and hand motions are all keys to identify
a person’s identity. Moreover, we also show that training
gesture classifiers adversarially with subject identity recog-
nition can improve the gesture recognition accuracy.

Our work has several limitations. First, while our hand
masks remove the background and most other objects, it
is possible that the model still cues on users’ hand acces-
sories (e.g. rings) to identify the user. We are aware that
at least three subjects out of 50 in the EgoGesture dataset
wear rings in some videos. Nevertheless, this is not an issue
when we use depth modality or only hand shapes, and we
note that the accuracy for those cases is greater than 10%
over 50 subjects where random guess accuracy is only 2%.
Second, the performance is far from perfect, with a verifi-
cation error rate of around 36%, which means more than
one out of every three verifications is wrong. However, this
work is a first step in solving a new problem, and first ap-
proaches often have low performance and strong assump-
tions; object recognition 15 years ago was evaluated with
six class classification — which was referred to as “six di-
verse object categories presenting a challenging mixture of
visual characteristics” [13] — as opposed to the thousands
today. Nonetheless, we experimentally showed that our task
can benefit hand gesture recognition. We hope our work in-
spires more work in hand-based identity recognition, espe-
cially in the context of first-person vision.
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6. Supplementary Material
6.1. Subject Recognition Accuracy per Gesture

Label Index Accuracy

52 10.64
36 10.64
16 12.77
68 12.77
61 12.77
14 12.77
60 14.58
45 14.89
21 14.89
17 14.89
15 14.89
31 14.89
65 14.89
71 14.89
53 14.89
77 15.22
13 17.02
43 17.02
26 17.02
25 17.02
24 17.02
23 17.02
46 17.02
49 17.02
51 17.02
63 17.02
10 17.02
75 17.02
83 17.02
73 17.39
39 17.39
42 17.39
11 19.15
19 19.15
8 19.15

30 19.15
50 19.15
62 19.15
29 19.15
40 19.15

Label Index Accuracy

56 19.15
9 19.15

69 19.15
3 19.15
6 19.15

12 19.57
78 19.57
41 20.83
81 20.83
54 21.28
55 21.28
59 21.28
58 21.28
7 21.28

74 21.28
22 21.28
27 21.28
2 21.28

38 21.28
79 21.28
67 23.40
4 23.40

76 23.40
5 23.40

72 23.40
33 23.40
64 23.40
82 23.40
47 23.40
48 23.40
44 23.40
57 23.40
18 23.40
1 23.40

70 23.91
66 23.91
20 25.53
32 25.53
35 25.53
34 25.53
28 27.66
37 27.66
80 29.79

Table 6: Subject recognition accuracy as a function of ges-
ture class, sorted by accuracy. This is the corresponding
data for Figure 10
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Figure 9: ROC curve for gesture-based user verification

6.2. Dataset Split for Subject Recognition for Un-
seen Gestures

We select the following gestures for training: 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72,
74, 76, 78, 80, and 82.

6.3. Dataset Split for Gesture Based Verification

We use 30 subjects for training, 10 for validation, and 10
for testing. The subjects for train is 3, 4, 5, 6, 8, 10, 15, 16,
17, 20, 21, 22, 23, 25, 26, 27, 30, 32, 36, 38, 39, 40, 42, 43,
44, 45, 46, 48, 49, and 50. The validation is 2, 9, 11, 14, 18,
19, 28, 31, 41, and 47. The testing is 1, 7, 12, 13, 24, 29,
33, 34, 35, and 37.
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Figure 10: Subject recognition accuracy as a function of gesture class, sorted by accuracy. Some gestures allow subjects to
be more easily recognized than others. Table in Supplementary Material shows the original data.


