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Abstract— Estimating depth from a monocular image is an
ill-posed problem: when the camera projects a 3D scene onto
a 2D plane, depth information is inherently and permanently
lost. Nevertheless, recent work has shown impressive results in
estimating 3D structure from 2D images using deep learning. In
this paper, we put on an introspective hat and analyze state-of-
the-art monocular depth estimation models in indoor scenes
to understand these models’ limitations and error patterns.
To address errors in depth estimation, we introduce a novel
Depth Error Detection Network (DEDN) that spatially identifies
erroneous depth predictions in the monocular depth estima-
tion models. By experimenting with multiple state-of-the-art
monocular indoor depth estimation models on multiple datasets,
we show that our proposed depth error detection network
can identify a significant number of errors in the predicted
depth maps. Our module is flexible and can be readily plugged
into any monocular depth prediction network to help diagnose
its results. Additionally, we propose a simple yet effective
Depth Error Correction Network (DECN) that iteratively corrects
errors based on our initial error diagnosis.

I. INTRODUCTION
Monocular depth estimation is an important problem in

robotics and computer vision. Depth maps can be used
to understand the 3D structure and relative positions of
objects in a scene for applications including autonomous
driving [1], visual odometry [2], [3], augmented reality [4],
sensor fusion [5], and many others. Estimating depth from
a monocular image is an inherently ill-posed problem, since
3D information is irretrievably lost when the camera projects
to a 2D image.

Nevertheless, visual cues such as shadows, highlights,
defocus, and silhouettes can be exploited to approximately
recover the depth map of a scene. Machine learning-based
approaches such as Make3D [6], and more recent techniques
based on deep learning [7], [8], have shown significant
promise. These techniques take a variety of approaches.
For example, instead of directly estimating depth, BTS [9]
estimates the parameters of local planes at various scales.
The model is trained using only ground truth depth, as the
local plane parameters are learned implicitly by the net-
work. PlaneRCNN [10], another state-of-the-art technique,
estimates planar surfaces in addition to estimating depth for
non-planar areas. The final depth map is then produced by
combining these two types of outputs.
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Fig. 1: Sample errors in predicted depth using Plane-
RCNN [10]. From left to right: A sample input, and two
different views of the generated 3D output. The blue area
denotes segmentation issues around the boundaries of the
plane, while the yellow area shows planes that are supposed
to be adjacent and connected (best viewed in color).

Of course, these papers (and the countless others on
monocular depth estimation) present quantitative results that
characterize measures of error with respect to ground truth.
However, these quantitative error metrics can be surprisingly
opaque, making it difficult to choose among algorithms
for any given application. For example, multiple algorithms
could yield results with exactly the same mean squared depth
error, but the error patterns could be completely different: one
could have all depths under or over-estimated by some offset,
another could have most depth values exactly accurate but
with a few extreme outliers, while another could accurately
estimate the depth of object surfaces but give inaccurate
estimates for object boundaries. Despite having the same
quantitative errors, these three algorithms would have very
different performance in a real-world application.

In this paper, we propose a technique to analyze methods
in monocular depth estimation and to spatially identify and
characterize likely errors in their output. We evaluate this
technique on three diverse approaches to monocular 3D
estimation, PlaneRCNN [9], Eigen et al. [7], and BTS [9],
and experiment on two different datasets, NYUDv2 [11] and
ScanNet [12]. We find that our error diagnostic tools can
identify erroneously predicted depth locations in monocu-
lar depth estimation methods. Additionally, we propose a
simple yet effective iterative method to correct the likely
errors, showing that it can improve the depth map estimates.
Figure 1 demonstrates some of the errors when the same
scene is visualized from different viewpoints.

More specifically, we make the following contributions.
First, we introduce a Depth Error Detection Network
(DEDN) to help diagnose model errors. Our method can
locate pixels with likely erroneous depth estimates. Addition-
ally, we propose numerical measures to quantify properties
of incorrectly predicted depth locations. Second, we evaluate
DEDN on two datasets (NYUDv2 and ScanNet) in single-



view and multi-view settings and using different depth pre-
diction methods. We show it is generic and can be applied
to any depth predictor. Third, we introduce a Depth Error
Correction Network (DECN) to iteratively correct errors
detected by DEDN.

II. RELATED WORK

Introspective Capability of Machine Learning Models

Understanding what a model does not know is a critical
part of many applications. Grimmett et al. [13], [14] raised
concerns about the limitations of existing metrics (e.g., pre-
cision and recall) for evaluating classification. They showed
that classifiers like SVMs and LogitBoost are overconfident
about their predictions. For high-stakes applications like au-
tonomous driving, the authors emphasized the need for an in-
trospective capability and introduced entropy measurement-
based uncertainty estimates during classification. With this
novel notion of the introspective capability of a classifier,
they demonstrated that the Gaussian process classifier is bet-
ter suited to some decision-making robotic systems. Berczi et
al. [15] reached a similar conclusion with Gaussian processes
for a robotic terrain assessment system.

More recently, Gal et al. [16] proposed Monte Carlo
dropout for Bayesian approximation to model uncertainties
in deep learning. Lakshminarayanan et al. [17] suggested
deep ensemble-based uncertainty estimates and demonstrated
their value over Bayesian approximation.Kendall et al. [18]
identified different types of uncertainties that could arise
during decision making, and explicitly encoded them into
a Bayesian deep learning model. They demonstrated that
this novel model is capable of identifying uncertainties for
monocular depth estimation. The first type of uncertainty,
aleatoric uncertainty, is inherent to the observations, such
as depth for a distant object or at occlusion boundaries.
The second type, epistemic uncertainty, is inherent to the
model, e.g., the uncertainty of model parameters, and can
be resolved through better models or more training data.
More recently, Posetels et al. [19] proposed a sampling-free
strategy for estimating the epistemic uncertainty.

Error Diagnostic Measures and Metrics

Error diagnostics have been explored for various image
understanding tasks [20], [21] including monocular depth
prediction [22]. Boyla et al. [20] introduced a tool called
TIDE for identifying different sources of errors in object
detection and segmentation. Cadena et al. [22] analyzed the
limitations of the existing evaluation metrics — e.g., mean
absolute error, root mean square error, etc. — to characterize
depth prediction performance. They also proposed a new
measure that addresses some deficiencies in earlier metrics.
Hekmatian et al. [23] address depth completion from sparse
point-clouds of LiDAR sensors. Their error map prediction
module, which is explicitly designed to model depth errors, is
jointly trained with the depth map predictor. In contrast, we
propose two error diagnostic modules to identify and correct
errors in sequential stages, decoupled from the existing depth
prediction network. Also, while [23] aimed to produce dense

Fig. 2: Single-view Depth Error Detection Network (DEDN),
consisting of a View Feature Encoder (Figure 3) that takes
the Depth Map and RGB image as input. The U blocks
denote Upsampling.

depth maps from sparse input point clouds, our method is
designed to spatially quantify the errors produced by an
existing depth prediction network first, and then to provide a
mechanism to improve the predicted depth map. We evaluate
on three different depth prediction models and two datasets.

III. METHOD

We propose error diagnosis methods for the depth maps
produced by deep neural network-based techniques. First, we
propose an error diagnostic method – Depth Error Detection
Network (DEDN) – that can identify locations of erroneous
depth predictions in the output of DNN-based depth estima-
tion models. We devised two types of DEDNs to achieve
this goal, one for single-view images (Sec III-A.1) and
another for multiple views (Sec III-A.2). We also introduce
a technique for correcting the detected errors (Sec III-B).

A. Depth Error Detection Network (DEDN)

Our DEDNs receive the output of a depth estimation
model and try to predict which pixels have incorrect esti-
mates. More precisely, our first DEDN receives the predicted
depth map, along with its corresponding RGB pixel value,
from an existing method as input pair, and then quantifies
the degree of inconsistencies in that predicted depth map.
We refer to this as our single-view DEDN (Figure 2) since
it focuses solely on the input frame without exploiting
error patterns around surrounding frames. Our second error
detection network – multi-view DEDN (Figure 4) – exploits
additional adjacent frames for better error diagnosis.



Fig. 3: Our View Feature Encoder consists of two ResNet-
50’s, for the Input Depth Map and the Input RGB Image.
The output feature maps are concatenated together.

1) Single-view DEDN: We designed an encoder-decoder
network architecture for detecting depth errors. Our encoder
can be thought of as a feature extractor acting on an
input pair – a predicted depth map (from an existing depth
estimation method) and its corresponding RGB image. The
decoder then assumes the role of an error predictor that
formulates its task as per-pixel error classification. The low-
resolution feature maps produced by the encoder need to be
upsampled. Inspired by U-Net [24], the decoder module uses
skip connections from the encoder at each level to aid with
upsampling as shown in Figure 2.

View Feature Encoder: As shown in Fig. 3, the View
Feature Encoder takes a Predicted Depth Map along with a
corresponding RGB image as input. We call this the “view”
feature encoder as this same encoder can take multiple views
as input. For the single-view case, we just have one view,
while for the multi-view case, we can use this same module
for mutliple views without adding to the complexity of our
model (in terms of number of network parameters). We
discuss the multi-view case in more detail in Section III-A.2.
We use ResNet50v2 [25] pre-trained on Imagenet [26] as an
encoder for both types of inputs – predicted depth map and
RGB – although other network architectures could be used.
Using a pre-trained network has the significant advantage
that the encoder already produces some useful features,
providing a better starting point. Moreover, using an encoder
trained on a different dataset also promotes generalization.
from depth input as well.

Since we want to find features from both the RGB image
and the predicted depth map and then detect discrepancies to
find possible depth errors, ideally we would want a similar
set of features. To achieve this goal, we performed an extra
pre-training step for our depth encoder leveraging the idea

of cross modal distillation to transfer knowledge from one
image modality to another [27]. Past work [27] showed that
transfer of supervision from one modality (e.g., RGB) to
another results in significant improvement in downstream
tasks that use the second modality (e.g, depth). By leveraging
the concept of cross-modal distillation, we take features of a
network trained in one modality and train the second network
to produce the same features given the corresponding paired
image in a different modality. More precisely, to pre-train the
depth encoder for extracting features from depth input, we
first trained it to produce the same set of features as a pre-
trained RGB encoder. The depth encoder and RGB encoder
have the same architecture except for a different number of
input channels. Using mean squared error as a loss function,
we trained the encoder module on ScanNet [12] as it contains
a large set of paired RGB and depth images for all of our
experiments. Once we trained our depth encoder, we used
it as pre-trained encoders to train the complete depth error
detection model.

Decoder: The decoder consists of several convolutions
and upsampling steps, with skip connections from encoders.
At each step, the output of two encoders are concatenated,
followed by a 2D 3x3 convolution. This is concatenated
with the output of the previous decoding step followed
by upsampling with nearest neighbor interpolation, 2D 3x3
convolution, and batch normalization. All convolutions use
leaky ReLU activation, except for the final output which is
a 2D 3x3 convolution with sigmoid activation. See Figure 2.

Loss function: We formulated the error prediction as a
per-pixel classification task, where the goal is to categorize
the predicted depth estimations into correct, over-estimated,
or under-estimated. To assign each pixel to a category, we
check the absolute difference between the estimated depth
D and the ground truth depth D∗, as follows:

• Correct if the estimate is within a threshold t of the
ground truth, |di,j − d∗i,j | ≤ t.

• Under-estimate if the difference is more than t and
the predicted depth value is less than the ground truth,
di,j − d∗i,j < −t.

• Over-estimate if the difference is more than t and the
predicted depth value is more than the ground truth,
di,j − d∗i,j > t.

Then the cross-entropy loss of our error classification is,

L = − 1

N

N∑
i=1

3∑
j=1

mi,j · cj · yi,j · log(ȳi,j)

where N is the total number of pixels in the input image,
mi,j is the binary mask for each pixel, cj is the weight
assigned to that particular class, ȳi,j is the probability that the
estimated depth for pixel i belongs to class j as calculated
by the DEDN and yi,j is the ground truth probability for
pixel i belonging to class j.

The training dataset of our DEDN model is inherently
imbalanced and the degree of imbalance depends on the
depth prediction – e.g., a very good depth predictor has
many more correct pixels than incorrect ones. We handle



Fig. 4: Multi-view Depth Error Detection Network (DEDN)
is based on single-view DEDN but with multiple View
Feature Encoders. Moreover, there is an extra concatenation
step to gather information from multiple views before doing
the upsampling. The “U” blocks denote Upsampling blocks.

the imbalance by using a weighted loss where the weight of
each pixel is inversely proportional to the number of samples
of that pixel’s class in the dataset, so that the class with the
greater amount of samples is weighted less and vice versa.
Pixels with missing depth are ignored in the loss computation
by assigning them a weight of zero to ensure that they do
not negatively affect the training of our DEDN.

2) Multi-view DEDN: We follow a similar architecture for
the multi-view DEDN. Our View Feature Encoder module
allows us to take any number of views as input (Figure 4).
The weights of the encoder are shared between all the views,
so increasing views does not add to the model’s complexity.
We use two views by taking an adjacent frame in addition
the frame for which we are detecting depth errors. Our
encoder can be thought of as a Siamese network with two
branches, with each frame fed into its own branch. Our
intuition for incorporating an additional frame is to provide
additional cues which could help identify errors which are
inherently challenging to address from a single view, such as
occlusion, clutter, or other appearance variations. In the two-
view case, given the left RGB image, left depth map, right
RGB image, right depth map, the output embeddings from
the Siamese network are then concatenated channel-wise and
passed through a 3x3 convolution before sending them to the
decoder (Figure 4). The same concatenation technique can
be used for an arbitrary number of views. Again, we used the
same loss function as single-view DEDN to classify errors
into categories under-estimated and over-estimated.

B. Depth Error Correction Network (DECN)

One application of DEDN is to refine the depth map by
trying to correct the errors it has identified. We can do this by
incrementally increasing depths of pixels that are predicted
to be under-estimated, and decreasing the depths of those
predicted to be over-estimated. Once each pixel is classified

Fig. 5: Depth Error Correction Network (DECN). We can
plug in the Single-view or Multi-view version of DEDN.

using the DEDN, we only consider pixels predicted as an
error with high confidence (greater than 0.7) and adjust the
depth values by incrementing or decrementing them based
on the direction, by a fixed small amount (0.01 meters in
our experiments). These adjustments yield a new depth map,
and the process can be repeated multiple times as shown
in Figure 5. We can plug in either version of our DEDN –
Single-view or Multi-view.

IV. EXPERIMENTS

We experimented with three deep neural network-based
monocular depth estimation methods using our error diag-
nostic modules on two different indoor datasets.

A. Depth Prediction Models

Eigen [7] introduced an early DNN to estimate depth using
a stack of two neural networks, one to estimate a coarse
depth map using global context, and another to refine this
prediction locally. Plane RCNN [10] detects planes and their
parameters along with a depth map. The final depth map can
be produced by combining per pixel depth for non-planar
regions and plane parameters for detected planar regions.
BTS (“From Big to Small”) [9] employs a novel local planar
guidance layer to produce depth cues at various scales using
a local planar assumption. The final depth map is estimated
by using these depth cues as input to final convolution layers.

B. Datasets

NYUv2 [11] dataset contains over 120,000 RGB-D images
gathered from 464 scenes using a Microsoft Kinect. We use
the official train-test split with 249 scenes for training and
215 scenes for testing. After aligning and synchronizing the
RGB and depth data, we have 24,231 images for training and
654 images for testing. Two common artifacts from Kinect-
collected datasets are holes with missing depth information
and edge erosion [28]. ScanNet [12] is a large RGB-
D dataset containing 1,513 indoor scenes and 2.5 million
views. It contains 3D camera pose information, surface
reconstruction, and semantic segmentation. ScanNet used a
Structure sensor [29], which is a portable 3D sensor designed
similar to Microsoft Kinect v1. ScanNet is also affected by
artifacts such as holes with missing depth information and
edge erosion [28]. We conduct evaluations on the respective
datasets on which the model was trained. We do not explore
cross-dataset evaluation or domain adaptation.



Fig. 6: Sample visualizations of our single-view error detec-
tion. Each row denotes error diagnosis on (top to bottom)
Eigen [7], BTS [9], and Plane-RCNN [10]. The columns
denote: (a) RGB input, (b) ground truth depth, (c) predicted
depth from the model, (d) errors in the output as predicted
by our model, (e) actual errors in the output compared to
ground truth. For (d) and (e), red means under-estimated,
green means correct, and blue means over-estimated.

C. Detecting Errors from the Depth Prediction Models

In order to understand how well our model has learned to
detect pixels which have incorrect depth predictions (either
under-estimated or over-estimated), we use two metrics –
precision and recall – for both the under-estimated and over-
estimated classes. We would ideally like a high precision
with a reasonable recall (e.g., greater than 50%). This is
because we do not want the network to output too many false
positives (low precison) as this would hurt the performance
of our DECN. At the same time, we do not want many false
negatives (low recall) either, as this would mean that we are
missing out on correcting those pixels.

Random Baseline: To the best of our knowledge, our error
diagnosis work (DEDN) is first of its kind. We formulate the
problem of error diagnosis of depth prediction into a three-
class classification problem: i) under-estimated, ii) correct,
and iii) over-estimated. No prior work has tried to classify
errors in similar manner, which makes it difficult to compare
our results with others. Instead we compare error diagnostic
performance of our DEDN against a random baseline.

Each model (Eigen, BTS or Plane-RCNN) has its own
distribution for the three classes. For example, BTS has
56% correct, 17% under-estimated, and 27% over-estimated
pixels, while Eigen has 35% correct, 37% under-estimated,
and 28% over-estimated. To make comparisons fair, we use a
random baseline for each model, where pixels are randomly
assigned to the classes according to the distribution of model
we are using. To calculate the precision and recall for the
random baseline, we generate 10 random class predictions
each of size 224 x 224. This gives about a half million pixel
samples (10 x 224 x 224).

Model
Under-

estimated
Precision (↑)

Over-
estimated

Precision (↑)

Under-
estimated
Recall (↑)

Over-
estimated
Recall (↑)

Random Baseline 0.3152 0.2775 0.3707 0.2806
Eigen [7] single-view 0.4965 0.4199 0.3585 0.4331
Eigen [7] multi-view 0.8862 0.8246 0.9292 0.7235

Random Baseline 0.5045 0.1427 0.5091 0.1495
Plane-RCNN [10] single-view 0.5910 0.2290 0.5250 0.2760
Plane-RCNN [10] multi-view 0.6824 0.5538 0.8509 0.3794

Random Baseline 0.0892 0.2011 0.1730 0.2691
BTS [9] single-view 0.1919 0.2431 0.0141 0.2925
BTS [9] multi-view 0.5235 0.6934 0.1484 0.7177

TABLE I: Error detection results. Higher numbers are
better. Under-/over-estimated pixels have estimated depths
less/greater than the ground truth, respectively. Numbers in
bold are best and underline are second best.

Single-view Results: The value of t used is 0.2 meters for
Eigen and 0.1 meters for BTS and Plane-RCNN. .We achieve
precisions of 0.4965 and 0.4199, and recalls of 0.3585 and
0.4331 for the under-estimated and over-estimated classes,
respectively, when trained on the Eigen model, as shown
in Table I. For Plane-RCNN, we achieve a high precision
of 0.5910 and a reasonable recall of 0.5250 for the under-
estimated class. We beat the random baseline on all 4 metrics
for Plane-RCNN and 3 out of 4 metrics for Eigen and BTS.

Eigen [7] is the oldest of the three models used and
hence has more distinct errors than the newer models. Our
results reflect this fact, as DEDN is able to classify errors
more accurately for Eigen than for the other two models
(considering the average precision on both the error classes).
BTS is the current state-of-the-art model and hence has the
least distinct error patterns, which may explain why our
model cannot detect its errors nearly as accurately.

Multi-view Results: For multi-view experiments, we used
a value of t = 0.15 metres for all three models. Table I
shows that we achieve a very high precision of 0.8862 and
0.8246 for the under-estimated and over-estimated classes
for Eigen. Even for BTS and Plane-RCNN, we achieve high
precisions of 0.5235 and 0.6934, and 0.6824 and 0.5538,
respectively, for the two error classes. Our results beat the
random baseline by very large margins on all of the metrics
for Eigen and Plane-RCNN, and on 3 out of 4 metrics for
BTS. We note that the multi-view results for each model are
better than the corresponding results for single-view, which
supports our hypothesis that using multiple views (two in
this case) will aid the model to find errors more effectively.

Our architecture is very general and can be easily extended
to more views for better accuracy.

D. Correcting Errors from the Depth Prediction Models

We try to iteratively improve the depth predictions using
the predictions from our DEDN as explained in Section III-
B. We present results on 4 different widely-accepted error
metrics: Accuracy under a threshold (δ < thresh), Absolute
Relative Error (AbsRel), Root Mean Square Error (RMSE),
and log10; please refer to [9], [22] for definitions.



Single-view

Model
Metrics

δ < 1.25 (↑) AbsRel (↓) RMSE (↓) log 10 (↓)

Eigen [7] Before 0.6095 4.1154 0.8364 0.1233
After 0.6096 3.9943 0.8297 0.1224

PlaneRCNN [10] Before 0.8560 0.1260 0.2522 0.0544
After 0.8655 0.1233 0.2403 0.0523

BTS [9] Before 0.8958 0.1071 0.3853 0.0454
After 0.8916 0.1087 0.3989 0.0472

Multi-view

Model
Metrics

δ < 1.25 (↑) AbsRel (↓) RMSE (↓) log 10 (↓)

Eigen [7] Before 0.4109 0.3518 1.0646 0.1447
After 0.4329 0.3706 1.0568 0.1410

PlaneRCNN [10] Before 0.8477 0.1208 0.3319 0.0539
After 0.8645 0.1191 0.3035 0.0497

BTS [9] Before 0.8882 0.1087 0.3852 0.0462
After 0.8750 0.1151 0.4076 0.0513

TABLE II: Accuracy of depth maps produced by single-view
(top) and multi-view (bottom) DECN.

Single-view Results: Our DECN improved the depth map
predictions on most of the metrics for Eigen and Plane-
RCNN (Table II). For Eigen and Plane-RCNN, DECN im-
proves the performance on all 4 metrics. DECN did not
improve the BTS model, presumably due to the low precision
and recall for the single-view DEDN. We used 15 iterations
for all the three models. We measured improvement in depth
prediction in successive iterations but did not notice any
improvement after the 15th iteration. Note that the “Before”
values are slightly different than the ones reported in the
original papers since we have re-run their experiments.

Multi-view Results: For the multi-view case, DECN im-
proves on Eigen for 3 out of 4 metrics and on Plane-RCNN
for all 4 metrics (Table II). Our model does not improve for
BTS, again probably because of the very low under-estimated
recall achieved for multi-view DEDN for BTS. We used 20
iterations for Eigen, 10 for BTS, and 15 for Plane-RCNN.

E. Model Runtime

Our model uses a ResNet50 U-Net. The running time
of a single-view DEDN is 0.05 seconds (20 fps). Single-
view DECN requires about 0.76 per frame. For the multi-
view case, we pass multiple views through the encoder
sequentially, which adds overhead and increases the DEDN
time to 0.08 seconds (12.5 fps) and DECN to 1.15 seconds.
We used an NVIDIA Titan Xp GPU for all experiments; a
newer GPU would increase speed significantly.

V. CONCLUSIONS

We present techniques for error diagnosis to analyze
monocular depth estimation models. The Depth Error De-
tection Network (DEDN) locates erroneous depth pixels
in single-view and multi-view settings. Our Depth Error
Correction Network (DECN) improves predicted depth maps,
and we show that it improves the results of Eigen and
PlaneRCNN. Future work will evaluate using more than two
views, and on outdoor scenes.
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