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Abstract—A key problem in automatic analysis and under-
standing of scientific papers is to extract semantic information
from non-textual paper components like figures, diagrams, tables,
etc. Much of this work requires a very first preprocessing step:
decomposing compound multi-part figures into individual sub-
figures. Previous work in compound figure separation has been
based on manually designed features and separation rules, which
often fail for less common figure types and layouts. Moreover, few
implementations for compound figure decomposition are publicly
available. This paper proposes a data driven approach to separate
compound figures using modern deep Convolutional Neural
Networks (CNNs) to train the separator in an end-to-end manner.
CNNs eliminate the need for manually designing features and
separation rules, but require a large amount of annotated training
data. We overcome this challenge using transfer learning as well
as automatically synthesizing training exemplars. We evaluate
our technique on the ImageCLEF Medical dataset, achieving
85.9% accuracy and outperforming previous techniques. We have
released our implementation as an easy-to-use Python library,
aiming to promote further research in scientific figure mining.

I. INTRODUCTION

Given the unrelenting pace of science and scientific publica-
tion, simply keeping up with the work in a highly active field
can be a daunting challenge. Researchers increasingly rely on
automated techniques to organize, browse, and search through
scientific publications. While modern information retrieval
algorithms can be very successful at analyzing the textual
content of papers, making sense of the other less-structured
components of the literature remains a challenge.

For example, scientific papers include a variety of figures,
diagrams, tables, photographs, plots, and other less structured
elements. These elements are often crucial to understanding
the meaning and potential impact of a paper: a recent study
discovered a significant correlation between properties of a
paper’s figures and its scientific impact (citation count) in a
large-scale dataset of biomedical literature [1], for instance.
A variety of specific tasks within this general problem area
have been studied, including chart understanding [2], figure
classification [3], [4], graphical information extraction [5], [6],
and pseudo-code detection [7].

Many figures in scientific papers (over 30% [1], [8]) consist
of multiple subfigures, and so an important preliminary step is
to segment or partition them into their individual components.
Most existing work on figure separation relies on manually
defined rules and features [9]–[11]. These techniques are
typically successful for the particular types of figures for

Fig. 1. We propose a new approach for segmenting a compound figure into
its component subfigures. We take a data driven approach using CNNs, with
transfer learning and exemplar synthesis to overcome limited training datasets.

which they were designed, but suffer from the classic problems
with rule-based approaches: they tend to be “brittle” because
when rules are not satisfied for any given figure instance,
the system fails. For example, an intuitively reasonable rule
is to assume some minimum white space between figures,
but a small percentage of compound figures do not satisfy
this assumption and thus cause the segmentation algorithm to
fail, which likely prevents all subsequent figure understanding
steps from succeeding as well. This brittleness has driven
the document recognition community, and the entire computer
vision and pattern recognition communities in general, towards
more data-driven approaches that are better able to handle the
outliers and uncertainties that are inherent in visual data.

In this paper, we propose a data-driven approach to com-
pound figure separation, eliminating the need for manually
designed rules and features, by using state-of-the-art object
detection methods based on Convolutional Neural Networks
(CNNs) [12]. This approach views the compound figure
separation problem as a form of object detection to predict
bounding boxes of subfigures [8], as opposed to locating the
partition boundaries explicitly. However, CNNs require large
amounts of annotated data, a challenge which we address in
two ways. First, we use transfer learning to initialize our CNN
with parameters that were trained on 1.2 million annotated
natural images from ImageNet [13]. While this idea of fine-
tuning by initializing from a pre-trained model has become
common practice in computer vision [14], [15], it is never-
theless surprising that a problem as different as compound
figure partitioning could benefit from transfer learning of
parameters from consumer images like ImageNet. Second, we



augment our training dataset by “synthesizing” new compound
figure exemplars by pasting subfigures onto blank images.
We evaluate our approach on the ImageCLEF compound
figure separation dataset [8], and empirically demonstrate its
effectiveness over several baseline systems that use manually
designed features and pipelines. Finally, we have developed
and publicly released an easy-to-use version of our compound
figure segmentation software via a project website, http://
vision.soic.indiana.edu/figure-separator/. To our knowledge,
few compound figure separation tools are publicly available,
which we view as a key bottleneck for advancing research
related to figure mining, especially for scientometric and bib-
liometric researchers who may lack computer vision expertise.
We hope our software can push additional work in this area.

To summarize, our paper makes the following contributions:
• We propose a data driven, CNN-based approach for com-

pound figure separation, a problem which has tradition-
ally been addressed with manually-designed pipelines;

• We empirically demonstrate the effectiveness of this data-
driven approach using transfer learning and synthesized
compound figures; and

• We have developed an easy-to-use, publicly-available
compound figure separation tool in order to encourage
figure mining research.

II. RELATED WORK

A. Scientific Figure Mining

Understanding scientific figures has long been studied in
the document analysis community. Classifying the type of
individual figures is a fundamental problem [3], [4], for
example, while other work attempts to understand figures and
extract semantic information from them [2], [5], [6], [16]–[18].
Progress in this area has inspired research into mining informa-
tion from figures in large-scale collections of scientific papers.
A scalable framework to extract figures directly from PDFs has
been proposed [19]. A figure-oriented literature mining system
called Viziometrics [1], for example, discovered that each
scientific discipline has its own patterns in the usage of figures,
suggesting that scientific fields develop their own “visual
cultures.” However, most of the above work assumes that
figures consist of one single, simple component, preventing
compound figures that consist of multiple components (which
make up at least 30% of figures in the literature [1]) from
being successfully analyzed. Compound figures must first be
separated into simpler component pieces, which is a major
motivation for our work.

B. Compound Figure Separation

This compound figure separation problem has been studied
in several recent papers [9]–[11], [17]. Lee et al. [9] and
Siegel et al. [17] use background color and layout patterns,
for example, while spaces and lines between subfigures are
used as cues by Taschwer et al. [10], and Li et al. [11]
use connected component analysis. No matter which specific
features are used, these approaches are created through careful
engineering using manually-designed rules and human-crafted

features. In contrast, we adapt a completely data-driven ap-
proach that views compound figure segmentation as an object
localization problem, and use modern Convolutional Neural
Networks (CNNs) to estimate bounding boxes around each of
a compound figure’s component parts. This approach avoids
the need for manually-written rules, and instead just requires
training data with bounding box annotations. This is advanta-
geous because it avoids the “brittleness” of manually-designed
recognition pipelines, which often make hidden assumptions
that are easily violated in real instances. It also allows our
approach to be easily customized to the “visual culture” of
figures within any specific scientific domain simply by re-
training the CNN on new training data, as opposed to having
to re-engineer the system by hand. Finally, this approach raises
the possibility of integrated classifiers that could perform
compound figure separation and subfigure classification in one
unified step, given enough annotated training data.

C. Object Detection

Compound figure separation is essentially a particular in-
stance of object (i.e. subfigure) localization. The state-of-
the-art for object localization in computer vision uses deep
Convolutional Neural Networks, and there are two broad types
of popular approaches. The first is to generate many (thousands
of) candidate bounding boxes for potential object instances
in an image, and then use a CNN to classify each bounding
box individually [20]–[22]. An alternative approach is to use
a CNN to process a whole image, and predict classes and
bounding box locations at the same time as a regression
problem [12], [23], [24]. These approaches are usually faster
than region-based techniques but with a modest decrease in
detection performance. In this paper, we adapt this latter
approach, and specifically YOLOv2 [12], because it is reported
to be among the fastest and highest performing.

III. COMPOUND FIGURE SEPARATION

We now describe our approach for compound figure separa-
tion. The heart of our approach is to view figure separation as
an object localization problem, where the goal is to estimate
bounding boxes for each of the subfigures of a compound
figure, using Convolutional Neural Networks. After explaining
the basic model, we discuss how to address the practical (but
critical) problem of training a CNN for our problem given a
limited quantity of training data.

A. Convolutional Neural Network

Our general approach is to apply the You Only Look Once
version 2 (YOLOv2) system [12] to our problem of subfigure
detection, because it is fast, unified, and simple, but highly
effective for object detection. Please see [12] for full details;
here we briefly highlight the key properties of this technique.
Unlike prior CNN-based techniques for object localization
(e.g. [20]–[22]), YOLO avoids the need for separate candidate
generation and candidate classification stages, instead using
a single network that takes an image as input and directly
predicts bounding box locations as output. The CNN has 19



convolutional layers, 5 max-pooling layers, and a skipping
connection in a similar manner to residual networks [25]. No
fully connected layers are included, so the resolution of the
input image is unconstrained. This makes it possible to train
on randomly resized images, giving the detector’s robustness
to input image resolution. The CNN downsamples the image
by a factor of 32. Each point in the final feature map predicts
bounding boxes, confidences, and object classes, assuming that
the object is centered at the corresponding receptive field in
the input image.

We follow most of the same implementation settings pro-
posed by the YOLOv2 authors [12]. Briefly, we use stochastic
gradient descent to train 160 epochs with learning rate of 0.001
decreased by a factor of 10 at epochs 60 and 90. We use a
batch size of 64, weight decay of 0.0005, and momentum of
0.9. For the implementation, we use Darknet [26], a fast and
efficient library written in C. After training is done, we port the
trained model into Tensorflow [27] and use it as the backend
of our figure separation tool because it is easier to customize
using Python. Our default input resolution is 544×544 pixels.

B. Transfer Learning

Unfortunately, we found that the simple application of
YOLOv2 to compound figure partitioning did not work well.
The problem is that while deep learning with CNNs has had
phenomenal success recently [28], it requires huge training
datasets – typically hundreds of thousands to millions of im-
ages – which are not available for many problems. Fortunately,
this problem can be at least partially addressed through transfer
learning [14], where a classifier trained on one problem can be
used as a starting point for a completely different problem. For
example, Razavian et al. [15] demonstrate that once a CNN is
trained to classify natural images into 1,000 categories using
1.2 million images from ImageNet [13], it can be used as a
generic feature extractor for a variety of unrelated recognition
tasks from natural images. Another common trick is to use the
CNN parameters trained on ImageNet as initialization for re-
training on a different problem, even in a very different domain
like document images [17], [29], [30], even though ImageNet
does not include any documents. Based on these reports, we
hypothesized that initializing our CNN using ImageNet pre-
trained weights may also be effective for compound figure
separation problems, and empirically validated this hypothesis.

C. Compound Figure Synthesis

We found that transfer learning did not completely solve the
problem of limited training data, however. Although transfer
learning helps the CNN initialize its weights to reasonable
values, successful training still requires that the learning algo-
rithm sees a diverse and realistic sample of compound figures.
To augment the training set, we used our limited ground-
truth training set of “real” compound figures to automatically
generate a much larger set of synthetic yet realistic additional
figures.

We tried two approaches. The first involves generating
compound figures by simply pasting subfigures together in

Fig. 2. Sample randomly-synthesized compound figure. Bounding boxes are
displayed for visualization (but of course are not in the actual training data).

a random manner. We first create a blank image with a
randomly-generated aspect ratio between 0.5 and 2.0. We then
choose a subfigure at random from the “real” training set, and
then rescale the figure with a random scaling factor (while
making sure that the subfigure does not exceed the size of the
blank image). Then we randomly select an empty spot within
the compound figure (where empty means that the intersection
over union (IOU) with existing subfigures is less than 0.05),
and paste the subfigure at this position. If no such empty spot
can be found, we end the synthesis. An example of a generated
compound figure is shown in Figure 2.

Unfortunately, this technique for generating synthetic train-
ing examples did not improve the accuracy of the trained
classifier. We thus tried a second technique that generated
compound figures in a more structured way. Most scientific
figures are not composed of randomly-arranged subfigures, of
course, but instead tend to have a more structured layout so
that the subfigures are aligned in a near grid-like pattern. We
thus first randomly choose a number of rows (between 3 and
7) and a random height for each row. Then for each row, we
randomly choose a number of subfigures (between 1 and 7),1

and paste that number of randomly-selected subfigures (re-
sized to fit the row height) in the row. To make the exemplars
as difficult as possible, we do not add white space between
the subfigures. We then randomly transpose rows and columns
to generate additional multiple exemplars for each synthetic
compound figure. Three examples of synthesized figures are
shown in Figure 3. Finally, we add additional diversity with
three additional manipulations: synthetic images are randomly
inverted so that some have black backgrounds instead of white,
we randomly apply color transformations to figures to create
diversity in color, and we randomly flip figures horizontally
to add diversity in the spatial dimension.

As we show in the next section, this technique for synthe-
sizing training images significantly improved the performance
of the trained detector. Of course, this is just one technique for
generating synthetic compound figures, and we do not claim
it to be the best. Synthesizing compound figures may at first

1The maximum of 7 is an arbitrary choice, although we believe it to be
reasonable because the maximum number of subfigures in our ground truth
set of compound figures was about 40.



Fig. 3. Three sample synthetic compound figures generated with our grid-
based technique. Bounding boxes are displayed for visualization but are not
in the actual training data.

seem easy, but is actually difficult if we want to obtain ones
similar to real figures without injecting harmful biases into the
training set. Investigating how to better synthesize real figures
is an interesting direction for future work.

IV. EXPERIMENTS

We used the ImageCLEF Medical dataset [8], which (to our
knowledge) is one of the largest available collections of figures
with bounding box annotations. The dataset has two versions:
the 2015 version has 3,403 training images and 3,381 test
images, while the 2016 version is larger, with 6,783 training
images and 1,614 test images. It is reported that the 2015 data
is much easier than 2016 data [8], so we focus on the 2016
data except when comparing to baselines for which only 2015
results are available.

We evaluate accuracy using the same metrics defined by the
ImageCLEF task [8]. We briefly summarize the metrics here;
please see [10], [31] for full details. For each compound figure,
an accuracy ranging from 0 to 1 is defined as the number
of correctly detected subfigures over the maximum of the
number of ground-truth subfigures and the number of detected
subfigures. A subfigure is considered to be correct if the area
of overlap between the ground truth and detected boxes is
greater than 0.66. Note that this scoring function penalizes
not only missed or spuriously-detected subfigures, but also
multiply-detected subfigures. The accuracy for a whole dataset
is the average of the individual accuracies. We also evaluate
using mean average precision (mAP) [32], which is a standard

TABLE I
PERFORMANCE COMPARISON

Method Dataset Accuracy Precision Recall mAP
Lee et al. [9] 2016 0.566 0.824 0.378 —
Li et al. [11] 2016 0.844 / / —
Pure data 2016 0.833 0.881 0.709 0.698
Transfer 2016 0.846 0.875 0.751 0.773
Transfer + random syn 2016 0.842 0.873 0.726 0.746
Transfer + grid syn 2016 0.859 0.880 0.775 0.782
Taschwer et al. [10] 2015 0.849 / / —
Transfer + grid syn 2015 0.917 0.918 0.896 0.889

— indicates an inapplicable metric because the method does not produce
confidence values.
/ indicates a value not reported in the original paper and that no public

implementation was available for us to compute it.

measure used in object detection and roughly corresponds to
the area under the precision-recall curve.

Results of our evaluation are shown in Table I for several
different variants of our detector: Pure data was trained just
on the “real” figures in the ground truth, Transfer was pre-
trained using ImageNet and then trained on the ground truth
figures, Transfer + random syn used transfer learning but also
synthetic images using the first of the two techniques described
in Section III, and Transfer + grid syn used transfer learning
and augmented the training set with the grid-structured syn-
thetic images. For the synthetic settings, we added a number
of synthetic images equal to the number of ground truth
images (i.e. we doubled the training set size). We observe
that pre-training yields a significant improvement, increasing
mAP from 0.698 to 0.773. Adding random synthetic data
slightly harms performance, but the grid-structured synthetic
data yields a small additional improvement (0.782 vs 0.773).
The precision-recall curves in Figure 4 show a similar story.

The table also compares with three previous algorithms as
baselines: Lee et al. [9], which uses background color and
layout patterns (and was used in a project mining millions of
figures [1]), Li et al. [11], which uses connected component
analysis and is reported to be the best-performing technique
on the 2016 dataset, and Taschwer et al. [10], which cues on
spaces between subfigures and line detection and is reported
to give the highest accuracy on the 2015 dataset. The results
show that our technique significantly outperforms all baselines
according to all metrics.

Some randomly-sampled correct and incorrect results from
our approach are shown in Figures 5 and 6, respectively, where
red boxes indicate our detection results and the yellow boxes
are the ground truth. As seen in Figure 5, our approach is
robust to variations in background color and spaces between
subfigures; for example, in panes A, B, D and F, subfigures
are aligned with almost no spaces and sometimes with black
backgrounds. Note the wide variety of different figure and
subfigure types, layouts, and designs that our detector is able
to handle. On the other hand, some kinds of compound figures
do confuse our approach, especially when small and similar
subfigures are aligned very closely. Examples include pane
B of Figure 6, where many small black images appears in
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Fig. 4. Precision-recall curve of our approach for ImageCLEF Medical 2016
Compound Figure Separation Dataset [8]

a grid, and G where many similar chemical compounds are
densely aligned. Other errors happens when relatively large
sub-components are split apart into multiple subfigures, such
as the legend in pane E, or the “A” label in pane D. In
many of these cases, the definition of what should constitute
a component is ambiguous, with inconsistencies in the ground
truth itself. For instance, the ground truth separates the results
of a chemical experiment in Figure 6C, but not in a similar
subfigure in the upper right of Figure 6B. We also note
that ground truth annotations are occasionally incorrect such
as in Figure 6A, where our algorithm produced much more
reasonable results than the actual ground truth (but was thus
penalized in the quantitative evaluation).

V. DISCUSSION

We now discuss important points about our approach and
experiments, as well as interesting directions for future work.

A. Compound Figure Synthesis

Our approach for synthesizing compound figures is simple
and ad-hoc, and other approaches are certainly possible. It
turned out to be surprisingly difficult to synthesize realistic
compound figures; we observed that unrealistic synthetic train-
ing images (such as our first technique of randomly pasting
subfigures) can actually confuse the training algorithm more
than they help. Future work could explore learned, data-driven
approaches to figure synthesis, such as modeling the proba-
bility distribution of figure layout conditioned on neighboring
figures, or on the type or subject of the publication. Once the
parameters of such a generative model are estimated, we could
sample from that distribution to synthesize layouts similar to
the real ones.

B. Figure Separation Tool

To our knowledge, implementations of only two figure
mining tools [17], [19] are public, and no compound figure

separation tool is available. In fact, one of the major difficulties
we experienced in trying to compare our technique to existing
baselines was this lack of publicly-available implementations.
More importantly, this makes it difficult for scientometric
researchers, who usually lack computer vision expertise, to
work on figure mining research. This may explain why much
work on mining scientific papers has ignored visual aspects
[1] and mainly focused on data that is easier to use, such
as citations [33], authors [34], and textual content [35]. We
believe that this is because of the much greater availability of
tools for analyzing textual content in the form of easy-to-use
natural language processing libraries [36].

To help correct this limited availability of practical tools,
we have made our compound figure separation code publicly
available at http://vision.soic.indiana.edu/figure-separator/ as
an easy-to-use Python library. We hope this may help to
foster figure mining research even outside the computer vi-
sion and document analysis communities. Of course, we are
aware that separating compound figures is not sufficient to
apply large scale figure mining, and that we also need other
components such as figure type classifiers. Developing and
releasing implementations of these components is important
future work. In fact, CNN-based object detectors may be
capable of performing figure separation and classification
simultaneously.

C. Limited data

Recent advances in computer vision are due, to a large
extent, to the growing size of annotated training data; Im-
ageNet, for example, has many millions of labeled images.
We believe that the lack of annotated data is holding back
scientific figure mining research. For example, the ImageCLEF
Medical dataset [8], the largest available dataset for com-
pound figure separation, has only 7,000 images for training,
which is smaller than most modern object detection datasets
such as PASCAL VOC [32] or MSCOCO [37]. ImageCLEF
ground truth also has some erroneous annotations for subfigure
locations [10]; we found at least 10 erroneous annotations
when performing our experiments (e.g. Figure 6A). Moreover,
the ImageCLEF data only has bounding boxes and does
not have subfigure type annotations. An important goal for
this community could be to build up a much larger size
dataset, perhaps on the order of 100,000 scientific figures with
semantic annotations, in order to further accelerate progress in
this domain. Our tool could ease the manual labor involved
in creating such a dataset by generating initial subfigure
separation proposals which could then be corrected or refined
by a human annotator.

D. Speed

Many existing techniques first classify figures into com-
pound or simple, and then run the compound figure separation
algorithm only on the compound figures, in part because the
separation algorithm is relatively slow [1], [10]. For example,
separation is reported to take 0.3 seconds per compound
figure in Taschwer et al. [10]. This two step approach can



Fig. 5. Correctly separated compound figures. The red bounding boxes show the subfigures extracted by our technique.

be dangerous because if a compound figure is not recognized
correctly, the subfigures can never be extracted. In contrast,
our CNN-based separation tool requires 0.12 seconds per
figure on a single NVIDIA Titan X GPU, which we believe

is fast enough to eliminate the need for compound figure
recognition. This takes approximately 33 hours to separate a
million compound figures, and could be trivially parallelized
on multiple GPUs.



Fig. 6. Incorrectly separated compound figures, with the subfigures extracted by our technique shown in red and the ground truth shown in yellow.

VI. CONCLUSION

We introduced a data driven approach for compound figure
separation, which in the past had been addressed by manually-
designed features and rules. Modern machine learning, and in
particular Convolutional Neural Networks, eliminate the need

for manual engineering but require large annotated training
datasets. We addressed this challenge through a combination
of transfer learning and automatic synthesis of training exem-
plars: transfer learning takes advantage of the visual patterns
learned from 1.2 million annotated images from ImageNet,



while compound figure synthesis offers a way to increase
the training data without additional annotation costs. Our
experiments demonstrate that our approaches are effective and
outperform previous work. We also released an easy-to-use
compound figure separation tool, and hope the tool will help
push forward research into scientific figure mining.
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