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Abstract

Identifying “free-space,” or safely driveable regions in
the scene ahead, is a fundamental task for autonomous nav-
igation. While this task can be addressed using semantic
segmentation, the manual labor involved in creating pixel-
wise annotations to train the segmentation model is very
costly. Although weakly supervised segmentation addresses
this issue, most methods are not designed for free-space. In
this paper, we observe that homogeneous texture and loca-
tion are two key characteristics of free-space, and develop
a novel, practical framework for free-space segmentation
with minimal human supervision. Our experiments show
that our framework performs better than other weakly su-
pervised methods while using less supervision. Our work
demonstrates the potential for performing free-space seg-
mentation without tedious and costly manual annotation,
which will be important for adapting autonomous driving
systems to different types of vehicles and environments.

1. Introduction

A critical perceptual problem in autonomous vehicle
navigation is deciding whether the path ahead is safe and
free of potential collisions. While some problems (like traf-
fic sign detection) may just require detecting and recogniz-
ing objects, avoiding collisions requires fine-grained, pixel-
level understanding of the scene in front of the vehicle, to
separate “free-space” [24] — road surfaces that are free of
obstacles, in the case of autonomous cars, for example —
from other scene content in view.

Free-space segmentation can be addressed by existing
fully-supervised semantic segmentation algorithms [33].
But a major challenge is the cost of obtaining pixel-wise
ground truth annotations to train these algorithms: human-
labeling of a single object in a single image can take approx-
imately 80 seconds [7], while annotating all road-related
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objects in a street scene may take over an hour [12]. The
high cost of collecting training data may be a substantial
barrier for developing autonomous driving systems for new
environments that have not yet received commercial at-
tention (e.g. in resource-poor countries, for off-road con-
texts, for autonomous water vehicles, etc.), and especially
for small companies and research groups with limited re-
sources.

In this paper, we develop a framework for free-space
segmentation that minimizes human supervision. Our ap-
proach is based on two straightforward observations. First,
free-space has a strong location prior: pixels correspond-
ing to free space are likely to be located at the bottom and
center of the image taken by a front-facing camera, since
in training data there is always free-space under the vehicle
(by definition). Second, a free-space region generally has
homogeneous texture since road surfaces are typically level
and smooth (e.g. concrete or asphalt in an urban street).

To take advantage of these observations, we first group
together pixels with low-level homogeneous texture into
superpixels. We then select candidate free-space super-
pixels through a simple clustering algorithm that incorpo-
rates both the spatial prior and appearance features (§3.3).
The remaining challenge is to create higher-level features
for each superpixel that semantically distinguish free-space.
We show that features from a CNN pre-trained on Ima-
geNet (§3.1) perform well for free-space when combined
with superpixel alignment, a novel method that aligns su-
perpixels with CNN feature maps (§3.2). Finally, these re-
sults are used as labels to train a supervised segmentation
method (§3.4) for performing segmentation on new images.

We note that our framework does not need any image an-
notations, so collecting annotated data is a simple matter of
recording vehicle-centric images while navigating the envi-
ronment where free-space segmentation is needed, and then
running our algorithm. The human effort required is re-
duced to specifying the location prior and adjusting hyper-
parameters such as superpixel granularity and the number
of clusters. This form of supervision requires little ef-
fort because the technique is not very sensitive to the ex-
act values of these parameters, as we empirically demon-
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Figure 1. Overview of our method. We extract features from a dilated ResNet pre-trained on ImageNet and leverage a novel superpixel
alignment method and location prior clustering to generate masks for training a segmentation CNN. Our method requires no manual

annotation of free-space labels. Best viewed in color.

strate with experiments on the well-established, publicly-
available Cityscapes dataset [12]. Our quantitative evalu-
ation shows that our framework yields better performance
than various baselines, even those that use more supervision
than we do (§4) .

In summary, we make the following contributions:

e We develop a novel framework for free-space segmen-
tation that does not require any image-level annota-
tions, by taking advantage of the unique characteristics
of free-space;

e We propose a novel algorithm for combining CNN fea-
ture maps and superpixels, and a clustering method
that incorporates prior knowledge about the location
of free-space; and

e We show that our approach performs better than other
baselines, even those that require more supervision.

2. Related Work

Fully supervised segmentation. Many recent advances
in semantic segmentation have been built on fully convo-
lutional networks (FCNs) [31], which extend CNNs de-
signed for image classification by posing semantic segmen-
tation as a dense pixel-wise classification problem. This
dense classification requires high resolution feature maps
for prediction, so FCNs add upsampling layers into the clas-
sification CNNs (which otherwise usually perform down-
sampling through pooling layers). SegNet [6] improves
upon this and introduces an unpooling layer for upsampling,
which reflects the pooling indices used in the downsampling
phase. We use SegNet here, although our technique is flex-
ible enough to be used with other FCNs as well.

A problem with CNN pooling layers is that they dis-
card spatial information that is critical for image segmen-
tation. One solution is to use dilated (or ‘atrous’) convolu-
tions [46], which allow receptive field expansion without

pooling layers. Dilated convolutions have been incorpo-
rated into recent frameworks such as DeepLab [9] and PSP-
Net [48]. Although our work does not focus on engineer-
ing CNN architectures, this direction inspired our choice of
CNN for image feature extraction, since we similarly want
to obtain a high resolution feature map. In particular, we use
dilated ResNet [47] trained on ImageNet, yielding a higher
resolution feature map than the normal ResNet [21].

Weakly supervised segmentation. Since ground-truth
segmentation annotations are very costly to obtain, many
techniques for segmentation have been proposed that re-
quire weaker annotations, such as image tags [13, 26, 34,
36,39,45], scribbles [29], bounding boxes [25], or videos of
objects [22,40]. At ahigh level of abstraction, our work can
be viewed as a tag-based weakly supervised method, in that
we assume all images have a “tag” of free-space. However,
most previous studies mainly focus on foreground objects,
so are not directly applicable for free-space, which can be
regarded as background [35]. From a technical perspec-
tive, some methods propose new CNN architectures [13] or
better loss functions [26], while others focus on automati-
cally generating segmentation masks for training available
CNNs [25]. We follow the latter approach here of gen-
erating segmentation masks for CNNs. We also do not
use the approach of gradually refining the segmentation
mask [39], because we believe that autonomous vehicles re-
quire a high-quality trained CNN even at the stage of initial
deployment.

Free-space segmentation. Free-space segmentation is
the task of estimating the space through which a vehi-
cle can drive safely without collision. This task is criti-
cal for autonomous driving and has traditionally been ad-
dressed by geometric modeling [3, 5,27, 44], handcrafted
features [4, 18], or even a patch-based CNN [2]. We use
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FCNss in this paper, which Oliveira et al. [33] demonstrated
to be efficient for road segmentation.

Since pixel-wise ground truth annotations are so ex-
pensive to obtain, several papers have investigated weakly
supervised free-space segmentation.  While an early
study [17] trains a probabilistic model, other papers train
FCNs [28,35,37,43]. Saleh et al. [35] develop a video seg-
mentation algorithm for general background objects includ-
ing free-space on a road. Tsutsui et al. [43] propose dis-
tantly supervised monocular image segmentation. However,
both methods require additional images to train a saliency
or attention extractor. Laddha er al. [28] use external maps
of the road indexed against the vehicle position according to
GPS. Sanberg et al. [37] and Guo et al. [17] use stereo infor-
mation for automatically generating segmentation masks.
We distinguish our work from these studies in that we only
use a collection of monocular vehicle-centric images, which
makes our approach even less supervised than most others.

For evaluating free-space segmentation, KITTI [16] and
CamVid [8] are older datasets that are not large enough to
leverage the power of CNNs. Recently, a larger dataset
called Cityscapes [12] was proposed for object segmenta-
tion in autonomous driving. We conduct our experiments
on Cityscapes, since existing work has found that CNNs
trained on Cityscapes perform better than other state-of-the-
art methods on KITTI and CamVid [12].

3. Our approach

We now describe our technique for automatically gener-
ating annotations suitable for training a free-space segmen-
tation CNN. Our technique relies on two main assumptions
about the nature of free-space: (1) that free-space regions
tend to have homogeneous texture (e.g., caused by smooth
road surfaces), and (2) there are strong priors on the loca-
tion of free-space within an image taken from a vehicle. The
first assumption allows us to use superpixels to group simi-
lar pixels. As in previous work [10,22,29,40,43], we use the
Felzenszwalb and Huttenlocher graph-based segmentation
algorithm [15] to create the superpixels, since the specific
superpixel algorithm is not the focus of this study.

The second assumption allows us to find “seed” super-
pixels that are very likely to be free-space, based on the fact
that free-space is usually near the bottom and center of an
image taken by a front-facing in-vehicle camera. A very
naive method would be to select superpixels covering pre-
defined locations based on the prior, but this would ignore
any semantic or higher level features other than the texture
features used for generating superpixels. We thus cluster
superpixels based on semantic features and automatically
select the cluster likely corresponding to free-space based
on the location prior, as described in §3.3. We perform this
clustering on multiple images at a time, to be robust against
occasional images which do not satisfy the prior assump-

tion.

An important question is how to extract semantic-level
features from each superpixel. We show that the fea-
tures extracted from CNNs pre-trained on ImageNet are
generic enough (§3.1) for our task, and we develop a
novel technique called superpixel alignment that efficiently
aggregates CNN features for the region within a super-
pixel (§3.2). Finally, superpixel clustering automatically
generates a free-space pixel mask, which we then use to
train supervised CNNs for segmentation (§3.4).

The reader may wonder why we do not cluster the CNN
features directly, given that they capture semantic informa-
tion. However, because certain parts of free-space is seman-
tically more important than others, direct clustering results
would not be smooth and cohesive. This is visually con-
firmed by comparing the two clustering results shown in
Figure 3.

3.1. Features for Clustering

We cluster superpixels based on features extracted from
a CNN pre-trained on ImageNet. Such features have been
found to capture latent features having rich semantic infor-
mation for semantic segmentation [36], even though the Im-
ageNet challenge does not include free-space as one of its
annotated classes. Much work has found that these fea-
tures are surprisingly general across vastly different do-
mains including document image analysis [19] and medical
image analysis [14]. This is probably because early lay-
ers in convolutional neural networks tend to learn low-level
features (e.g., edges), while later layers capture increas-
ing amounts of semantic information, with the final lay-
ers capturing features suitable for the explicit classification
problem (e.g., object types like cars) that the network was
trained to solve [36]. We confirmed this tendency by visual-
izing feature maps of the 26-layer dilated ResNet [47] that
is trained for the task of ImageNet classification, and de-
cided to use the last layer feature map, which indeed seemed
to capture higher level information. We note that this type
of manual inspection has also been performed in previous
work [36].

Among other CNN architectures, we intentionally select
a dilated network architecture in order to produce higher
resolution feature maps, which are important for being able
to localize the road with a fine level of granularity.

3.2. Superpixel Alignment

We now wish to extract appearance features for each su-
perpixel. While the dilated ResNet features capture seman-
tic information, they are not well localized for free-space,
so we align them to spatially coherent superpixels to create
a better representation of the scene. To do this, we propose a
new method called superpixel alignment, which is inspired
by RolAlign [20]. The technique applies bilinear interpo-
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Figure 2. Location prior k-means.
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Figure 3. Example of using location prior k-means on dilated
ResNet (CNN) or superpixel alignment features to find the loca-
tion of the free-space. Note that due to the design of our algorithm,
the free-space will typically be the first cluster (red), which means
that we do not need any sophisticated post-processing in order to
find the free-space cluster. Best viewed in color.
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Figure 4. Illustration of superpixel alignment. The feature vec-
tor for each superpixel is defined by randomly sampling 10 points
inside the superpixel, and taking the average of their bilinearly in-
terpolated feature maps.

lation of the CNN feature maps for a random subset of the
pixels inside each superpixel. More precisely, we perform
bilinear interpolation [23] of dilated ResNet features F,,

at spatial location (m,n) and channel ¢ as
S;y = Z Fﬁm max(O, A:Jcm) maX<07 Ayn) , (D
(m,n)ENLy

where A,,, =1 — |& — m| and NV, is the set of neighbors
for spatial location (z,y) in superpixel S. We sample 10
locations uniformly at random inside each superpixel, and
then use the four nearest neighbors of each selected pixel
for the bilinear interpolation. Finally, we aggregate the fea-
tures inside each superpixel using average pooling. Note
that unlike RolAlign, we assume that each superpixel con-
sists of a homogeneous set of pixels; this avoids the need for
computing the bilinear interpolation densely for all pixels
by instead using a small randomly sampled set, which we
have found works well in practice. To improve the spatial
cohesiveness of the feature, we append the centroid of the
spatial coordinates of the superpixel to the pooled feature
vector. This gives us one image feature for each superpixel.
The procedure for superpixel alignment is summarized in
Fig. 4.

3.3. Superpixel Clustering

Using the features defined in the last section, we can now
apply any standard clustering algorithm. An important re-
maining problem, however, is how to determine which clus-
ter corresponds with free-space. A simple solution would be
to select the largest cluster appearing in the bottom half the
image, for example, but this would fail in crowded scenes
with large numbers of foreground objects on the road.

Instead, inspired by previous work [1,42], we use prior
information about the spatial location of free-space, namely
that the road surface should usually be immediately above
the visible chassis of the ego-vehicle. To do this, we adapt
Lloyd’s algorithm [30] for solving a weighted variant of the
k-means clustering problem. We represent the prior as an
average of Gaussians

Z exp( ||pwy20 MpnorH ) : )

Szy €S; prior

such that each superpixel S; has a prior weight w; that is
parameterized by fiprior = [0.75,0.5] and oprior = [0.1,0.1]
wrt. the image dimensions (estimated empirically) and the
spatial coordinates p,, of each pixel inside the superpixel.
In practice, we manually adjust the prior parameters em-
pirically with a small number of example images. Subse-
quently, we initialize half of the pixels to the free-space
cluster (which we assume is the first cluster) based on these
weights. The first cluster is then encouraged to consist of
pixels corresponding to free-space by setting its cluster cen-
ter to be the spatially weighted average of features assigned
to it. The other clusters have a repellent weight assigned to

1104



Figure 5. Batch clustering. (top) Input images. (middle) Results of clustering each image individually. (bottom) Results of clustering the
four images together in a batch manner. The left image has a spot around the center of the location prior so only the spot is recognized as
free-space when clustered individually, but batch clustering avoids this mistake.

their members to encourage them to spatially spread away
from the location prior. Cluster memberships are updated in
the same manner as the standard k-means algorithm without
taking the weights into account. Our algorithm is summa-
rized in Fig. 2, and an example of the output of the algo-
rithm is shown in Fig. 3.

Although our cluster update breaks the convergence cri-
terion of standard k-means clustering [1 1], we have found
that in practice it usually converges to a stable solution. We
note that similar prior information could also be incorpo-
rated into other types of clustering algorithms, such as spec-
tral clustering [38].

Batch image clustering. Of course, while the spatial
prior assumption on free-space is reasonable in general, it is
often violated in individual images (e.g., a vehicle or pedes-
trian could be located in the center of the location prior,
which could cause the algorithm to incorrectly assign the
first cluster to consist of features corresponding to non-road
locations). We circumvent this issue by clustering super-
pixels from multiple images at the same time, which we
call batch clustering. In Fig. 5, we show an example where
only a single spot at the center of the location prior is recog-
nized as free-space, but clustering with three other images
prevents this mistake. As our experiments will show, batch
clustering is effective for generating higher quality segmen-
tation masks.

3.4. CNN Training from Generated Mask

Once the masks for free-space have been obtained by su-
perpixel clustering (an example can be seen in Fig. 6), we
then use these automatically generated masks to train a road
segmentation CNN using supervised training.

Figure 6. Example of superpixel alignment compared to ground
truth.

4. Experiments

Dataset. We conducted a series of experiments on the es-
tablished Cityscapes [12] dataset to evaluate our proposed
method. This dataset is designed for evaluating segmen-
tation algorithms for autonomous driving applications, and
includes a set of fine-grained pixel-wise annotations for 19
types of traffic objects. We only use the ‘road’ class and
treat it as free-space. We report the intersection over union
(IoU) metric, while ignoring void regions not defined in the
ground truth.

4.1. Automatic Free-Space Mask Generation.

We first evaluated the quality of the automatically gen-
erated masks for free-space, and conducted ablation exper-
iments to study how each part of our technique contributes
to the algorithm. Table 1 summarizes the results, in terms
of IoU on the Cityscapes dataset. We emphasize that our
model has never seen the training set ground truth before.
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