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Abstract

Identifying “free-space,” or safely driveable regions in

the scene ahead, is a fundamental task for autonomous nav-

igation. While this task can be addressed using semantic

segmentation, the manual labor involved in creating pixel-

wise annotations to train the segmentation model is very

costly. Although weakly supervised segmentation addresses

this issue, most methods are not designed for free-space. In

this paper, we observe that homogeneous texture and loca-

tion are two key characteristics of free-space, and develop

a novel, practical framework for free-space segmentation

with minimal human supervision. Our experiments show

that our framework performs better than other weakly su-

pervised methods while using less supervision. Our work

demonstrates the potential for performing free-space seg-

mentation without tedious and costly manual annotation,

which will be important for adapting autonomous driving

systems to different types of vehicles and environments.

1. Introduction

A critical perceptual problem in autonomous vehicle

navigation is deciding whether the path ahead is safe and

free of potential collisions. While some problems (like traf-

fic sign detection) may just require detecting and recogniz-

ing objects, avoiding collisions requires fine-grained, pixel-

level understanding of the scene in front of the vehicle, to

separate “free-space” [24] – road surfaces that are free of

obstacles, in the case of autonomous cars, for example –

from other scene content in view.

Free-space segmentation can be addressed by existing

fully-supervised semantic segmentation algorithms [33].

But a major challenge is the cost of obtaining pixel-wise

ground truth annotations to train these algorithms: human-

labeling of a single object in a single image can take approx-

imately 80 seconds [7], while annotating all road-related
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objects in a street scene may take over an hour [12]. The

high cost of collecting training data may be a substantial

barrier for developing autonomous driving systems for new

environments that have not yet received commercial at-

tention (e.g. in resource-poor countries, for off-road con-

texts, for autonomous water vehicles, etc.), and especially

for small companies and research groups with limited re-

sources.

In this paper, we develop a framework for free-space

segmentation that minimizes human supervision. Our ap-

proach is based on two straightforward observations. First,

free-space has a strong location prior: pixels correspond-

ing to free space are likely to be located at the bottom and

center of the image taken by a front-facing camera, since

in training data there is always free-space under the vehicle

(by definition). Second, a free-space region generally has

homogeneous texture since road surfaces are typically level

and smooth (e.g. concrete or asphalt in an urban street).

To take advantage of these observations, we first group

together pixels with low-level homogeneous texture into

superpixels. We then select candidate free-space super-

pixels through a simple clustering algorithm that incorpo-

rates both the spatial prior and appearance features (§3.3).

The remaining challenge is to create higher-level features

for each superpixel that semantically distinguish free-space.

We show that features from a CNN pre-trained on Ima-

geNet (§3.1) perform well for free-space when combined

with superpixel alignment, a novel method that aligns su-

perpixels with CNN feature maps (§3.2). Finally, these re-

sults are used as labels to train a supervised segmentation

method (§3.4) for performing segmentation on new images.

We note that our framework does not need any image an-

notations, so collecting annotated data is a simple matter of

recording vehicle-centric images while navigating the envi-

ronment where free-space segmentation is needed, and then

running our algorithm. The human effort required is re-

duced to specifying the location prior and adjusting hyper-

parameters such as superpixel granularity and the number

of clusters. This form of supervision requires little ef-

fort because the technique is not very sensitive to the ex-

act values of these parameters, as we empirically demon-

11101



Superpixel align

Pre-trained dilated ResNet (fixed)Car-centric image

Superpixels

Feature map

Weighted k-means

Location prior

Estimated road mask

Use as labelsInput image

SegNet

Figure 1. Overview of our method. We extract features from a dilated ResNet pre-trained on ImageNet and leverage a novel superpixel

alignment method and location prior clustering to generate masks for training a segmentation CNN. Our method requires no manual

annotation of free-space labels. Best viewed in color.

strate with experiments on the well-established, publicly-

available Cityscapes dataset [12]. Our quantitative evalu-

ation shows that our framework yields better performance

than various baselines, even those that use more supervision

than we do (§4) .

In summary, we make the following contributions:

• We develop a novel framework for free-space segmen-

tation that does not require any image-level annota-

tions, by taking advantage of the unique characteristics

of free-space;

• We propose a novel algorithm for combining CNN fea-

ture maps and superpixels, and a clustering method

that incorporates prior knowledge about the location

of free-space; and

• We show that our approach performs better than other

baselines, even those that require more supervision.

2. Related Work

Fully supervised segmentation. Many recent advances

in semantic segmentation have been built on fully convo-

lutional networks (FCNs) [31], which extend CNNs de-

signed for image classification by posing semantic segmen-

tation as a dense pixel-wise classification problem. This

dense classification requires high resolution feature maps

for prediction, so FCNs add upsampling layers into the clas-

sification CNNs (which otherwise usually perform down-

sampling through pooling layers). SegNet [6] improves

upon this and introduces an unpooling layer for upsampling,

which reflects the pooling indices used in the downsampling

phase. We use SegNet here, although our technique is flex-

ible enough to be used with other FCNs as well.

A problem with CNN pooling layers is that they dis-

card spatial information that is critical for image segmen-

tation. One solution is to use dilated (or ‘atrous’) convolu-

tions [46], which allow receptive field expansion without

pooling layers. Dilated convolutions have been incorpo-

rated into recent frameworks such as DeepLab [9] and PSP-

Net [48]. Although our work does not focus on engineer-

ing CNN architectures, this direction inspired our choice of

CNN for image feature extraction, since we similarly want

to obtain a high resolution feature map. In particular, we use

dilated ResNet [47] trained on ImageNet, yielding a higher

resolution feature map than the normal ResNet [21].

Weakly supervised segmentation. Since ground-truth

segmentation annotations are very costly to obtain, many

techniques for segmentation have been proposed that re-

quire weaker annotations, such as image tags [13, 26, 34,

36,39,45], scribbles [29], bounding boxes [25], or videos of

objects [22,40]. At a high level of abstraction, our work can

be viewed as a tag-based weakly supervised method, in that

we assume all images have a “tag” of free-space. However,

most previous studies mainly focus on foreground objects,

so are not directly applicable for free-space, which can be

regarded as background [35]. From a technical perspec-

tive, some methods propose new CNN architectures [13] or

better loss functions [26], while others focus on automati-

cally generating segmentation masks for training available

CNNs [25]. We follow the latter approach here of gen-

erating segmentation masks for CNNs. We also do not

use the approach of gradually refining the segmentation

mask [39], because we believe that autonomous vehicles re-

quire a high-quality trained CNN even at the stage of initial

deployment.

Free-space segmentation. Free-space segmentation is

the task of estimating the space through which a vehi-

cle can drive safely without collision. This task is criti-

cal for autonomous driving and has traditionally been ad-

dressed by geometric modeling [3, 5, 27, 44], handcrafted

features [4, 18], or even a patch-based CNN [2]. We use
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FCNs in this paper, which Oliveira et al. [33] demonstrated

to be efficient for road segmentation.

Since pixel-wise ground truth annotations are so ex-

pensive to obtain, several papers have investigated weakly

supervised free-space segmentation. While an early

study [17] trains a probabilistic model, other papers train

FCNs [28,35,37,43]. Saleh et al. [35] develop a video seg-

mentation algorithm for general background objects includ-

ing free-space on a road. Tsutsui et al. [43] propose dis-

tantly supervised monocular image segmentation. However,

both methods require additional images to train a saliency

or attention extractor. Laddha et al. [28] use external maps

of the road indexed against the vehicle position according to

GPS. Sanberg et al. [37] and Guo et al. [17] use stereo infor-

mation for automatically generating segmentation masks.

We distinguish our work from these studies in that we only

use a collection of monocular vehicle-centric images, which

makes our approach even less supervised than most others.

For evaluating free-space segmentation, KITTI [16] and

CamVid [8] are older datasets that are not large enough to

leverage the power of CNNs. Recently, a larger dataset

called Cityscapes [12] was proposed for object segmenta-

tion in autonomous driving. We conduct our experiments

on Cityscapes, since existing work has found that CNNs

trained on Cityscapes perform better than other state-of-the-

art methods on KITTI and CamVid [12].

3. Our approach

We now describe our technique for automatically gener-

ating annotations suitable for training a free-space segmen-

tation CNN. Our technique relies on two main assumptions

about the nature of free-space: (1) that free-space regions

tend to have homogeneous texture (e.g., caused by smooth

road surfaces), and (2) there are strong priors on the loca-

tion of free-space within an image taken from a vehicle. The

first assumption allows us to use superpixels to group simi-

lar pixels. As in previous work [10,22,29,40,43], we use the

Felzenszwalb and Huttenlocher graph-based segmentation

algorithm [15] to create the superpixels, since the specific

superpixel algorithm is not the focus of this study.

The second assumption allows us to find “seed” super-

pixels that are very likely to be free-space, based on the fact

that free-space is usually near the bottom and center of an

image taken by a front-facing in-vehicle camera. A very

naive method would be to select superpixels covering pre-

defined locations based on the prior, but this would ignore

any semantic or higher level features other than the texture

features used for generating superpixels. We thus cluster

superpixels based on semantic features and automatically

select the cluster likely corresponding to free-space based

on the location prior, as described in §3.3. We perform this

clustering on multiple images at a time, to be robust against

occasional images which do not satisfy the prior assump-

tion.

An important question is how to extract semantic-level

features from each superpixel. We show that the fea-

tures extracted from CNNs pre-trained on ImageNet are

generic enough (§3.1) for our task, and we develop a

novel technique called superpixel alignment that efficiently

aggregates CNN features for the region within a super-

pixel (§3.2). Finally, superpixel clustering automatically

generates a free-space pixel mask, which we then use to

train supervised CNNs for segmentation (§3.4).

The reader may wonder why we do not cluster the CNN

features directly, given that they capture semantic informa-

tion. However, because certain parts of free-space is seman-

tically more important than others, direct clustering results

would not be smooth and cohesive. This is visually con-

firmed by comparing the two clustering results shown in

Figure 3.

3.1. Features for Clustering

We cluster superpixels based on features extracted from

a CNN pre-trained on ImageNet. Such features have been

found to capture latent features having rich semantic infor-

mation for semantic segmentation [36], even though the Im-

ageNet challenge does not include free-space as one of its

annotated classes. Much work has found that these fea-

tures are surprisingly general across vastly different do-

mains including document image analysis [19] and medical

image analysis [14]. This is probably because early lay-

ers in convolutional neural networks tend to learn low-level

features (e.g., edges), while later layers capture increas-

ing amounts of semantic information, with the final lay-

ers capturing features suitable for the explicit classification

problem (e.g., object types like cars) that the network was

trained to solve [36]. We confirmed this tendency by visual-

izing feature maps of the 26-layer dilated ResNet [47] that

is trained for the task of ImageNet classification, and de-

cided to use the last layer feature map, which indeed seemed

to capture higher level information. We note that this type

of manual inspection has also been performed in previous

work [36].

Among other CNN architectures, we intentionally select

a dilated network architecture in order to produce higher

resolution feature maps, which are important for being able

to localize the road with a fine level of granularity.

3.2. Superpixel Alignment

We now wish to extract appearance features for each su-

perpixel. While the dilated ResNet features capture seman-

tic information, they are not well localized for free-space,

so we align them to spatially coherent superpixels to create

a better representation of the scene. To do this, we propose a

new method called superpixel alignment, which is inspired

by RoIAlign [20]. The technique applies bilinear interpo-
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function LOCATIONPRIORKMEANS(k, {Si}∀i, µprior,

σprior)

∀i, ∀Sxy ∈ Si : pxy = spatial coord(Sxy)

∀i : wi =
1

|Si|

∑

Sxy∈Si
e−‖pxy−µprior‖

2/(2σ2

prior)

∀i : mi ←

{

0 if wi > medianj wj

unif(1, k − 1) otherwise

while not converged do

c0 ←
∑

mi=0 wiSi/
∑

mi=0 wi

∀q > 0 : cq ←
∑

mi=q(1− wi)Si/
∑

mi=q wi

∀i : mi ← argminq ‖Si − cq‖
2
2

end while

return {c0, . . . , ck−1} ⊲ Cluster centers

end function

Figure 2. Location prior k-means.

Input image Clustering raw CNN features

Location Prior Clustering superpixel align features

Figure 3. Example of using location prior k-means on dilated

ResNet (CNN) or superpixel alignment features to find the loca-

tion of the free-space. Note that due to the design of our algorithm,

the free-space will typically be the first cluster (red), which means

that we do not need any sophisticated post-processing in order to

find the free-space cluster. Best viewed in color.

Figure 4. Illustration of superpixel alignment. The feature vec-

tor for each superpixel is defined by randomly sampling 10 points

inside the superpixel, and taking the average of their bilinearly in-

terpolated feature maps.

lation of the CNN feature maps for a random subset of the

pixels inside each superpixel. More precisely, we perform

bilinear interpolation [23] of dilated ResNet features F c
mn

at spatial location (m,n) and channel c as

Sc
xy =

∑

(m,n)∈Nxy

F c
nm max(0, ∆̂xm)max(0, ∆̂yn) , (1)

where ∆̂xm = 1− |x−m| and Nxy is the set of neighbors

for spatial location (x, y) in superpixel S. We sample 10

locations uniformly at random inside each superpixel, and

then use the four nearest neighbors of each selected pixel

for the bilinear interpolation. Finally, we aggregate the fea-

tures inside each superpixel using average pooling. Note

that unlike RoIAlign, we assume that each superpixel con-

sists of a homogeneous set of pixels; this avoids the need for

computing the bilinear interpolation densely for all pixels

by instead using a small randomly sampled set, which we

have found works well in practice. To improve the spatial

cohesiveness of the feature, we append the centroid of the

spatial coordinates of the superpixel to the pooled feature

vector. This gives us one image feature for each superpixel.

The procedure for superpixel alignment is summarized in

Fig. 4.

3.3. Superpixel Clustering

Using the features defined in the last section, we can now

apply any standard clustering algorithm. An important re-

maining problem, however, is how to determine which clus-

ter corresponds with free-space. A simple solution would be

to select the largest cluster appearing in the bottom half the

image, for example, but this would fail in crowded scenes

with large numbers of foreground objects on the road.

Instead, inspired by previous work [1, 42], we use prior

information about the spatial location of free-space, namely

that the road surface should usually be immediately above

the visible chassis of the ego-vehicle. To do this, we adapt

Lloyd’s algorithm [30] for solving a weighted variant of the

k-means clustering problem. We represent the prior as an

average of Gaussians

wi =
1

|Si|

∑

Sxy∈Si

exp

(

−
‖pxy − µprior‖

2

2σ2
prior

)

, (2)

such that each superpixel Si has a prior weight wi that is

parameterized by µprior = [0.75, 0.5] and σprior = [0.1, 0.1]
wrt. the image dimensions (estimated empirically) and the

spatial coordinates pxy of each pixel inside the superpixel.

In practice, we manually adjust the prior parameters em-

pirically with a small number of example images. Subse-

quently, we initialize half of the pixels to the free-space

cluster (which we assume is the first cluster) based on these

weights. The first cluster is then encouraged to consist of

pixels corresponding to free-space by setting its cluster cen-

ter to be the spatially weighted average of features assigned

to it. The other clusters have a repellent weight assigned to
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Figure 5. Batch clustering. (top) Input images. (middle) Results of clustering each image individually. (bottom) Results of clustering the

four images together in a batch manner. The left image has a spot around the center of the location prior so only the spot is recognized as

free-space when clustered individually, but batch clustering avoids this mistake.

their members to encourage them to spatially spread away

from the location prior. Cluster memberships are updated in

the same manner as the standard k-means algorithm without

taking the weights into account. Our algorithm is summa-

rized in Fig. 2, and an example of the output of the algo-

rithm is shown in Fig. 3.

Although our cluster update breaks the convergence cri-

terion of standard k-means clustering [11], we have found

that in practice it usually converges to a stable solution. We

note that similar prior information could also be incorpo-

rated into other types of clustering algorithms, such as spec-

tral clustering [38].

Batch image clustering. Of course, while the spatial

prior assumption on free-space is reasonable in general, it is

often violated in individual images (e.g., a vehicle or pedes-

trian could be located in the center of the location prior,

which could cause the algorithm to incorrectly assign the

first cluster to consist of features corresponding to non-road

locations). We circumvent this issue by clustering super-

pixels from multiple images at the same time, which we

call batch clustering. In Fig. 5, we show an example where

only a single spot at the center of the location prior is recog-

nized as free-space, but clustering with three other images

prevents this mistake. As our experiments will show, batch

clustering is effective for generating higher quality segmen-

tation masks.

3.4. CNN Training from Generated Mask

Once the masks for free-space have been obtained by su-

perpixel clustering (an example can be seen in Fig. 6), we

then use these automatically generated masks to train a road

segmentation CNN using supervised training.

Figure 6. Example of superpixel alignment compared to ground

truth.

4. Experiments

Dataset. We conducted a series of experiments on the es-

tablished Cityscapes [12] dataset to evaluate our proposed

method. This dataset is designed for evaluating segmen-

tation algorithms for autonomous driving applications, and

includes a set of fine-grained pixel-wise annotations for 19

types of traffic objects. We only use the ‘road’ class and

treat it as free-space. We report the intersection over union

(IoU) metric, while ignoring void regions not defined in the

ground truth.

4.1. Automatic FreeSpace Mask Generation.

We first evaluated the quality of the automatically gen-

erated masks for free-space, and conducted ablation exper-

iments to study how each part of our technique contributes

to the algorithm. Table 1 summarizes the results, in terms

of IoU on the Cityscapes dataset. We emphasize that our

model has never seen the training set ground truth before.
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Technique IoU

raw CNN features location prior clustering 0.530

+ batch clustering 0.568

+ superpixel overlap [43] 0.620

superpixel align location prior clustering 0.758

+ batch clustering 0.764

Table 1. Ablation study results for automatic road mask generation

on the Cityscapes training set.

We compare our proposed superpixel alignment road prior

clustering method with directly clustering the CNN features

from the dilated ResNet. As can be seen, superpixel align-

ment achieves higher IoU than the raw CNN features. We

can also see that batch clustering improves both methods,

and helps superpixel alignment to achieve higher IoU. For

the sake of comparison, we also compare with previous

work that combines superpixels and a saliency map [43].

We treat the free-space cluster from the raw CNN features

as saliency, and use these for selecting superpixels. As can

be seen, this technique improves the performance of the raw

CNN features, but is still unable to beat superpixel align-

ment.

Parameter sensitivity. Although our method does not use

any annotations, it does rely on some manually selected

parameters. In practice, we chose these values by visu-

ally investigating a small (∼ 10) number of images. To

measure the sensitivity of our method to these values, we

changed each of three key parameters and compared the fi-

nal road IoU on the training set: number of clusters (default

4), batch size (default 30), and superpixel granularity scale

(default 300). Results are shown in Figure 7. While perfor-

mance did vary with differing parameter values, of course,

we found that the final IoU metric differed by only a few

percent across even relatively extreme parameter settings.

In more detail, Figure 7(a) shows the sensitivity for the

number of clusters. We see that having too few clusters

makes it difficult to separate road from other parts of the

image, while having too many also has diminishing re-

turns as the free-space is eventually split into multiple clus-

ters. The effect of varying the batch size is shown in Fig-

ure 7(b); increasing the batch size improves the IoU. Fi-

nally, Figure 7(c) shows that smaller superpixels tend to

work slightly better, presumably since they avoid under-

segmentation which can lead to false positives (e.g., due

to merging free-space with building walls). These results

suggest that our method is relatively robust to the choice of

parameter values.

4.2. Training a CNN from the Generated Mask

We next tested our algorithm in the context that it was de-

signed for: automatically generating pixel-level annotations

(a)

(b)

(c)

Figure 7. Parameter sensitivity with respect to (a) number of clus-

ters, (b) batch size, and (c) superpixel granularity.

for training a supervised free-space segmentation model. In

particular, we used our automatically generated pixel-level

annotations from the previous section to train SegNet [6],

although we note that our method is agnostic to the choice

of model so any CNN could be used instead.

Experimental setup. We trained SegNet Basic with our

generated masks as labels for the Cityscapes training im-

ages using the Chainer framework [32, 41]. We used the

validation set to evaluate our method against several base-

lines, since the test set annotations are not publicly available

(and the evaluation server restricts the number of submis-

sions to avoid overfitting to the test dataset). We emphasize

that no hyper-parameters were tuned based on the validation

set; we treated it as if it were the test set.

Baselines. We compared our technique with six baseline

methods, as summarized in Table 2. The first two base-

lines serve as simple indications of how well trivial solu-

tions work on this task: Largest superpixel uses just the

single largest superpixel as the free-space annotation mask,

and Bottom half blindly uses the bottom half of the im-

age as the free-space mask. In contrast, Ground truth as

road cluster uses the ground truth mask as the clustering

results and combines them with the superpixels in a simi-

lar manner as in previous work [43]. Distant supervision

is the technique of Tsutsui et al. [43], which shares a simi-

lar motivation with us and uses external images (which they

call a ‘distant supervisor’) to perform road segmentation in
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Method Required annotation IoU

largest superpixel none 0.659

bottom half none 0.720

ground truth as road cluster - 0.824

distant supervision [43] additional images 0.800

video segmentation [35] additional images 0.759

fully supervised (from [43]) pixel-wise 0.853

ours (generated masks) none 0.761

ours (CNN training) none 0.835

Table 2. Results evaluated on the Cityscapes validation set.

a weakly supervised manner. Video segmentation is the

technique of Saleh et al. [35], which was originally pro-

posed for general background segmentation and not only

uses external images but also videos. Finally, Fully super-

vised trains the SegNet model from ground truth annota-

tions.

Evaluation. We computed the IoU of SegNet trained on

the output of our weakly-supervised algorithm, and ob-

tained an IoU of 0.835 on the Cityscapes validation set.

This is much higher than the trivial baselines largest su-

perpixel and bottom half, which yielded IoUs of 0.659

and 0.720, respectively. The relatively high IoU of the bot-

tom half baseline might make this task seem easy, but we

emphasize that our method has a much lower false posi-

tive rate, which is crucial for employing the method in a

practical system to avoid collisions. In particular, Bottom

half gives precision 0.754, while our generated masks and

trained CNN have a precision of 0.867 and 0.898, respec-

tively, thus showing that our method is less prone to fatal

false positives, such as a car being mistaken for road. In

contrast, false negatives are less important in our applica-

tion, since they may just mean that the car is unable to drive

to a certain point, still preserving safe behavior.

Our technique also outperforms distant supervision and

video segmentation, even though they require more anno-

tations. Of course, our technique also imposes more as-

sumptions, since those approaches were designed for gen-

eral video segmentation and our cues are customized to

free-space, but nonetheless we believe it should be notable

because we do not use any motion cues with video. Ground

truth as road cluster, which can be viewed as an upper

bound on the performance of any technique using superpix-

els (e.g., [10, 22, 29, 40]), yields an IoU of 0.824.

Of course, fully supervised somewhat outperforms our

results (0.8531 vs 0.835). Nonetheless, it is impressive that

1This is a bit worse than the original SegNet [6] because we use their

simplest model, SegNet Basic, and only train with binary classes while the

original one used more classes.

Method Required annotation IoU

video segmentation [35] additional images 0.785

ours (CNN training) none 0.857

Table 3. Results evaluated on the Cityscapes test set.

our technique achieves 98% of the IoU of the fully super-

vised model, without requiring the tedious pixel-wise an-

notations for each image. This indicates that our proposed

method is able to perform proper free-space segmentation

while using no manual annotations for training the CNN.

Some sample results on the validation set can be seen in

Figure 8. We see that while our method typically follows the

shape of the true road and avoids labeling cars as road, it has

some trouble with e.g. pedestrian legs and some parts of the

sidewalk being labeled as road. The last row also shows an

example of a false positive, where a car in front of the ego-

vehicle is not able to be separated from the estimated free-

space. In future work, it would be interesting to investigate

more powerful (albeit more computationally heavy) CNN

architectures that might help mitigate these problems [48].

Finally, we also evaluated our best model on the

Cityscapes test set evaluation server. Results are shown in

Table 3, where we can see that consistent with the validation

set results, our method is able to gain better performance

than the general video segmentation approach [35].

5. Conclusion

In this paper, we developed a new framework for mini-

mizing human supervision for free-space segmentation, us-

ing assumptions of the the characteristics of free-space. Our

method extracts free-space by performing clustering of su-

perpixel features, which are created by a novel superpixel

alignment method that bases features on the last layer of an

ImageNet-pretrained CNN. We use a location prior to select

the cluster corresponding to free-space and then perform

training of a free-space segmentation CNN. Unlike previ-

ous work, our method needs no annotations, and experi-

mental results demonstrate superior performance compared

to other methods, even ones that use more information.

As future work, we plan to automatically generate the lo-

cation prior conditioned on the input image to better handle

segmentation of distant free-space, which is a weakness of

the current model. Extending the model to other application

domains with high cost of collecting training data, such as

robots moving on a house floor or autonomous water vehi-

cles, is another interesting direction.
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Figure 8. Sample results on the Cityscapes validation set, comparing our method with ground truth. The last row shows a failure case with

a false positive.

1108



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
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