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Abstract

Hand-object pose estimation (HOPE) aims to jointly de-
tect the poses of both a hand and of a held object. In this
paper, we propose a lightweight model called HOPE-Net
which jointly estimates hand and object pose in 2D and 3D
in real-time. Our network uses a cascade of two adaptive
graph convolutional neural networks, one to estimate 2D
coordinates of the hand joints and object corners, followed
by another to convert 2D coordinates to 3D. Our experi-
ments show that through end-to-end training of the full net-
work, we achieve better accuracy for both the 2D and 3D
coordinate estimation problems. The proposed 2D to 3D
graph convolution-based model could be applied to other
3D landmark detection problems, where it is possible to
first predict the 2D keypoints and then transform them to
3D. Our code is available at http://vision.soic.
indiana.edu/hopenet.

1. Introduction
We use our hands as a primary means of sensing and

interacting with the world. Thus to understand human ac-
tivity, computer vision systems need to be able to detect the
pose of the hands and to identify properties of the objects
that are being handled. This human Hand-Object Pose Esti-
mation (HOPE) problem is crucial for a variety of applica-
tions, including augmented and virtual reality, fine-grained
action recognition, robotics, and telepresence.

This is a challenging problem, however. Hands move
quickly as they interact with the world, and handling an ob-
ject, by definition, creates occlusions of the hand and/or ob-
ject from nearly any given point of view. Moreover, hand-
object interaction video is often collected from first-person
(wearable) cameras (e.g., for Augmented Reality applica-
tions), generating a large degree of unpredictable camera
motion.

Of course, one approach is to detect the poses of the
hands and objects separately [27,30]. However, this ignores
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Figure 1. The goal of Hand-Object Pose Estimation (HOPE) is to
jointly estimate the poses of both the hand and a handled object.
Our HOPE-Net model can estimate the 2D and 3D hand and object
poses in real-time, given a single image.

the fact that hand and handled object poses are highly cor-
related: the shape of an object usually constrains the types
of grasps (hand poses) that can be used to handle it. Detect-
ing the pose of the hand can give cues as to the pose and
identity of an object, while the pose of an object can con-
strain the pose of the hand that is holding it. Solving the two
problems jointly can help overcome challenges such as oc-
clusion. Recent work [10,26] proposed deep learning-based
approaches to jointly model the hand and object poses. We
build on this work, showing how to improve performance
by more explicitly modeling the physical and anatomical
constraints on hand-object interaction.

We propose to do this using graph convolutional neural
networks. Given their ability to learn effective represen-
tations of graph-structured data, graph convolutional neural
networks have recently received much attention in computer
vision. Human hand and body pose estimation problems are
particularly amenable to graph-based techniques since they
can naturally model the skeletal and kinematic constraints
between joints and body parts. Graph convolution can be
used to learn these inter-joint relationships.

In this paper, we show that graph convolution can dra-
matically increase the performance of estimating 3D hand-
object pose in real-world hand-object manipulation videos.
We model hand-object interaction by representing the hand
and object as a single graph. We focus on estimating 3D
hand-object poses from egocentric (first-person) and third-
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person monocular color video frames, without requiring any
depth information. Our model first predicts 2D keypoint
locations of hand joints and object boundaries. Then the
model jointly recovers the depth information from the 2D
pose estimates in a hierarchical manner (Figure 1).

This approach of first estimating in 2D and then “con-
verting” to 3D is inspired by the fact that detection-based
models perform better in detecting 2D hand keypoints, but
in 3D, because of the high degree of non-linearity and the
huge output space, regression-based models are more pop-
ular [4]. Our graph convolutional approach allows us to
use a detection-based model to detect the hand keypoints
in 2D (which is easier than predicting 3D coordinates), and
then to accurately convert them to 3D coordinates. We show
that using this graph-based network, we are not limited to
training on only annotated real images, but can instead pre-
train the 2D to 3D network separately with synthetic images
rendered from 3D meshes of hands interacting with objects
(e.g. ObMan dataset [10]). This is very useful for training a
model for hand-object pose estimation as real-world anno-
tated data for these scenarios is scarce and costly to collect.

In brief, the core contributions of our work are:

• We propose a novel but lightweight deep learning
framework, HOPE-Net, which can predict 2D and 3D
coordinates of hand and hand-manipulated object in
real-time. Our model accurately predicts the hand and
object pose from single RGB images.

• We introduce the Adaptive Graph U-Net, a graph
convolution-based neural network to convert 2D hand
and object poses to 3D with novel graph convolution,
pooling, and unpooling layers. The new formulations
of these layers make it more stable and robust com-
pared to the existing Graph U-Net [5] model.

• Through extensive experiments, we show that our ap-
proach can outperform the state-of-the-art models for
joint hand and object 3D pose estimation tasks while
still running in real-time.

2. Related Work
Our work is related to two main lines of research: joint

hand-object pose prediction models and graph convolu-
tional networks for understanding graph-based data.

Hand-Object Pose Estimation. Due to the strong rela-
tionship between hand pose and the shape of a manipulated
object, several papers have studied joint estimation of both
hand and object pose. Oikonomidis et al. [20] used hand-
object interaction as context to better estimate the 2D hand
pose from multiview images. Choi et al. [3] trained two
networks, one object-centered and one hand-centered, to

capture information from both the object and hand perspec-
tives, and shared information between these two networks
to learn a better representation for predicting 3D hand pose.
Panteleris et al. [21] generated 3D hand pose and 3D mod-
els of unknown objects based on hand-object interactions
and depth information. Oberweger et al. [19] proposed an
iterative approach by using Spatial Transformer Networks
(STNs) to separately focus on the manipulated object and
the hand to predict their corresponding poses. Later they
estimated the hand and object depth images and fused them
using an inverse STN. The synthesized depth images were
used to refine the hand and object pose estimates. Recently,
Hasson et al. [10] showed that by incorporating physical
constraints, two separate networks responsible for learning
object and hand representations can be combined to gen-
erate better 3D hand and object shapes. Tekin et al. [26]
proposed a single 3D YOLO model to jointly predict the
3D hand pose and object pose from a single RGB image.

Graph Convolution Networks. Graph convolution net-
works allow learning high-level representations of the re-
lationships between the nodes of graph-based data. Zhao
et al. [31] proposed a semantic graph convolution network
for capturing both local and global relationships among hu-
man body joints for 2D and 3D human pose estimation.
Cai et al. [1] converted 2D human joints to 3D by encod-
ing domain knowledge of the human body and hand joints
using a graph convolution network which can learn multi-
scale representations. Yan et al. [29] used a graph convolu-
tion network for learning a spatial-temporal representation
of human body joints for skeleton-based action recognition.
Kolotouros et al. [14] showed that graph convolutional net-
works can be used to extract 3D human shape and pose from
a single RGB image, while Ge et al. [7] used them to gener-
ate complete 3D meshes of hands from images. Li et al. [17]
used graph convolutional networks for skeleton-based ac-
tion recognition, while Shi et al. [24,25] similarly used two
stream adaptive graph convolution.

Gao et al. [5] introduced the Graph U-Net structure with
their proposed pooling and unpooling layers. But that pool-
ing method did not work well on graphs with low numbers
of edges, such as skeletons or object meshes. Ranjan et
al. [22] used fixed pooling and Hanocka et al. [9] used edge
pooling to prevent holes in the mesh after pooling. In this
paper, we propose a new Graph U-Net architecture with dif-
ferent graph convolution, pooling, and unpooling. We use
an adaptive adjacency matrix for our graph convolutional
layer and new trainable pooling and unpooling layers.

3. Methodology
We now present HOPE-Net, which consists of a con-

volutional neural network for encoding the image and pre-
dicting the initial 2D locations of the hand and object key-
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Figure 2. The architecture of HOPE-Net. The model starts with ResNet10 as the image encoder and for predicting the initial 2D coordinates
of the joints and object vertices. The coordinates concatenated with the image features used as the features of the input graph of a 3 layered
graph convolution to use the power of neighbors features to estimate the better 2D pose. Finally the 2D coordinates predicted in the
previous step are passed to our Adaptive Graph U-Net to find the 3D coordinates of the hand and object.

points (hand joints and tight object bounding box corners),
a simple graph convolution to refine the predicted 2D pre-
dictions, and a Graph U-Net architecture to convert 2D key-
points to 3D using a series of graph convolutions, poolings,
and unpoolings. Figure 2 shows an overall schematic of the
HOPE-Net architecture.

3.1. Image Encoder and Graph Convolution

For the image encoder, we use a lightweight residual
neural network [11] (ResNet10) to help reduce overfitting.
The image encoder produces a 2048D feature vector for
each input image. Then initial predictions of the 2D co-
ordinates of the keypoints (hand joints and corners of the
object’s tight bounding box) are produced using a fully-
connected layer. Inspired by the architecture of [15], we
concatenate these features with the initial 2D predictions of
each keypoint, yielding a graph with 2050 features (2048
image features plus initial estimates of x and y) for each
node. A 3-layer adaptive graph convolution network is ap-
plied to this graph to use adjacency information and modify
the 2D coordinates of the keypoints. In the next section,
we explain the adaptive graph convolution in depth. The
concatenation of the image features to the predicted x and
y of each keypoint forces the graph convolution network to
modify the 2D coordinates conditioned on the image fea-
tures as well as the initial prediction of the 2D coordinates.
These final 2D coordinates of the hand and object keypoints
are then passed to our adaptive Graph U-Net, a graph con-
volution network using adaptive convolution, pooling, and
unpooling to convert 2D coordinates to 3D.

3.2. Adaptive Graph U-Net

In this section, we explain our graph-based model which
predicts 3D coordinates of the hand joints and object cor-

ners based on predicted 2D coordinates. In this network, we
simplify the input graph by applying graph pooling in the
encoding part, and in the decoding part, we add those nodes
again with our graph unpooling layers. Also, similar to the
classic U-Net [23], we use skip connections and concate-
nate features from the encoding stage to features of the de-
coding stage in each decoding graph convolution. With this
architecture we are interested in training a network which
simplifies the graph to obtain global features of the hand and
object, but also tries to preserve local features via the skip
connections from the encoder to the decoder layers. Mod-
eling the HOPE problem as a graph helps use neighbors to
predict more accurate coordinates and also to discover the
relationship between hands and objects.

The Graph U-Net concept was previously introduced by
Gao et al. [5], but our network layers, i.e. graph convolu-
tion, pooling, and unpooling, are significantly different. We
found that the sigmoid function in the pooling layer of [5]
(gPool) can cause the gradients to vanish and to not up-
date the picked nodes at all. We thus use a fully-connected
layer to pool the nodes and updated our adjacency matrix
in the graph convolution layers, using the adjacency matrix
as a kernel we apply to our graph. Moreover, Gao et al.’s
gPool [5] removes the vertices and all the edges connected
to them and does not have a procedure to reconnect the re-
maining vertices. This approach may not be problematic for
dense graphs (e.g. Citeseer [13]) in which removing a node
and its edges will not change the connectivity of the graph.
But in graphs with sparse adjacency matrices, such as when
the graph is a mesh or a hand or body skeleton, removing
one node and its edges may cut the graph into several iso-
lated subgraphs and destroy the connectivity, which is the
most important feature of a graph convolutional neural net-
work. Using an adaptive graph convolution neural network,
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Figure 3. A schematic of our Adaptive Graph U-Net architecture, which is used to estimate 3D coordinates from 2D coordinates. In each of
the pooling layers, we roughly cut the number of nodes in half, while in each unpooling layer, we double the number of nodes in the graph.
The red arrows in the image are the skip layer features which are passed to the decoder to be concatenated with the unpooled features.

we avoid this problem as the network finds the connectivity
of the nodes after each pooling layer.

Below we explain the three components of our network,
graph convolution, pooling, and unpooling layers, in detail.
The architecture of our adaptive Graph U-Net is shown in
Figure 3.

3.2.1 Graph Convolution

The core part of a graph convolutional network is the im-
plementation of the graph convolution operation. We imple-
mented our convolution based on the Renormalization Trick
mentioned in [13]: the output features of a graph convolu-
tion layer for an input graph withN nodes, k input features,
and ` output features for each node is computed as,

Y = σ(ÃXW ), (1)

where σ is the activation function, W ∈ Rk×` is the train-
able weights matrix, X ∈ RN×k is the matrix of input fea-
tures, and Ã ∈ RN×N is the row-normalized adjacency ma-
trix of the graph,

Ã = D̂− 1
2 ÂD̂− 1

2 , (2)

where Â = A+I and D̂ is the diagonal node degree matrix.
Ã simply defines the extent to which each node uses other
nodes’ features. So ÃX is the new feature matrix in which
each node’s features are the averaged features of the node
itself and its adjacent nodes. Therefore, to effectively for-
mulate the HOPE problem in this framework, an effective
adjacency matrix is needed.

Initially, we tried using the adjacency matrix defined by
the kinematic structure of the hand skeleton and the object
bounding box for the first layer of the network. But we
found it was better to allow the network to learn the best
adjacency matrix. Note that this is no longer strictly an ad-
jacency matrix in the strict sense, but more like an “affinity”

matrix where nodes can be connected by weighted edges to
many other nodes in the graph. An adaptive graph convo-
lution operation updates the adjacency matrix (A), as well
as the weights matrix (W ) during the backpropagation step.
This approach allows us to model subtle relationships be-
tween joints which are not connected in the hand skeleton
model (e.g. strong relationships between finger tips despite
not being physically connected).

We use ReLU as the activation function for the graph
convolution layers. Also we found that the network
trains faster and generalizes better if we do not use either
Batch [12] or Group Normalization [28].

3.2.2 Graph Pooling

As mentioned earlier, we did not find gPool [5] helpful in
our problem: the sigmoid function’s weaknesses are well-
known [16, 18] and the use of sigmoid in the pooling step
created very small gradients during backpropagation. This
caused the network not to update the randomly-initialized
selected pooled nodes throughout the entire training phase,
and lost the advantage of the trainable pooling layer.

To solve this problem, we use a fully-connected layer
and apply it on the transpose of the feature matrix. This
fully-connected works as a kernel along each of the fea-
tures and outputs the desired number of nodes. Compared
to gPool, we found this module updated very well during
training. Also due to using an adaptive graph convolution,
this pooling does not fragment the graph into pieces.

3.2.3 Graph Unpooling

The unpooling layer used in our Graph U-Net is also differ-
ent from Gao et al.’s gUnpool [5]. That approach adds the
pooled nodes to the graph with empty features and uses the
subsequent graph convolution to fill those features. Instead,



we use a transpose convolution approach in our unpooling
layer. Similar to our pooling layer, we use a fully-connected
layer and applied it on the transpose matrix of the features to
obtain the desired number of output nodes, and then trans-
pose the matrix again.

3.3. Loss Function and Training the Model

Our loss function for training the model has three parts.
We first calculate the loss for the initial 2D coordinates pre-
dicted by ResNet (Linit2D). We then add this loss to that
calculated from the predicted 2D and 3D coordinates (L2D

and L3D),

L = αLinit2D + βL2D + L3D, (3)

where we set α and β to 0.1 to bring the 2D error (in pixels)
and 3D error (in millimeters) into a similar range. For each
of the loss functions, we used Mean Squared Error.

4. Results
We now describe our experiments and report results for

hand-object pose estimation.

4.1. Datasets

To evaluate the generality of our hand-object pose es-
timation method, we used two datasets with very differ-
ent contexts: First-Person Hand Action Dataset [6], which
has videos captured from egocentric (wearable) cameras,
and HO-3D [8], which was captured from third-person
views. We also used a third dataset of synthetic images,
ObMan [10], for pre-training.

First-Person Hand Action Dataset [6] contains first-
person videos of hand actions performed on a variety of ob-
jects. The objects are milk, juice bottle, liquid soap, and
salt, and actions include open, close, pour, and put. Three-
dimensional meshes for the objects are provided. Although
this is a large dataset, a relatively small subset of frames
(21, 501) include 6D object pose annotations, with 11, 019
for training and 10, 482 for evaluation. The annotation pro-
vided for each frame is a 6D vector giving 3D translation
and rotation for each of the objects. To fit this annotation to
our graph model, for each object in each frame, we trans-
late and rotate the 3D object mesh to the pose given by the
annotation, and then compute a tight oriented bounding box
(simply PCA on vertex coordinates). We use the eight 3D
coordinates of the object box corners as nodes in our graph.

The HO-3D Dataset [8] also contains hands and han-
dled objects but is quite different because it is captured
from a third-person point-of-view. Hands and objects in
these videos are smaller because they are further from the
camera, and their position is less constrained than in first-
person videos (where people tend to center their field of
view around attended objects). HO-3D contains 77, 558
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Figure 4. Scatter plot of keypoint coordinates in the First Person
Hand Action dataset. The red dashed rectangle denotes the image
frame. Since many points are outside the image boundary, the
detection-based models did not work well on this dataset.

frames annotated with hands and objects, and was collected
with 10 subjects and 10 objects. 66, 034 frames are desig-
nated as the training set and 11, 524 are for evaluation.

ObMan [10] is a large dataset of synthetically-generated
images of hand-object interactions. Images in this dataset
were produced by rendering meshes of hands with selected
objects from ShapeNet [2], using an optimization on the
grasp of the objects. ObMan contains 141, 550 training,
6, 463 validation, and 6, 285 evaluation frames. Despite
the large-scale of the annotated data, we found that models
trained with these synthetic images do not generalize well
to real images. Nevertheless, we found it helpful to pre-
train our model on the large-scale data of ObMan, and then
fine-tune using real images.

4.2. Implementation Details

Because of the nature of first-person video, hands often
leave the field of view, and thus roughly half of the frames
in the First-Person Hand Action dataset have at least one
keypoint outside of the frame (Figure 4). Because of this,
we found that detection-based models are not very helpful
in this dataset. Thus we use a regression-based model to
find the initial 2D coordinates. To avoid overfitting, we use
a lightweight ResNet which gave better generalization. This
lightweight model is also fast, allowing us to run our model
in near real-time. For both datasets, we use the official train-
ing and evaluation splits, and pretrain on ObMan [10].

Since HOPE-Net has different numbers of parameters
and complexity, we train the image encoder and graph parts
separately. The 2D to 3D converter network can be trained
separately because it is not dependent to the annotated im-
age. In addition to the samples in the FPHA dataset, we aug-
ment the 2D points with Gaussian noise (µ = 0, σ = 10) to
help improve robustness to errors.

For both FPHA and HO-3D datasets we train the ResNet
model with an initial learning rate of 0.001 and multiply it
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Figure 5. The percentage of correct 2D object pose of our model on
the First-Person Hand Action dataset compared to [26] and [27].
The graph convolutional layers helped the model to predict more
accurate coordinates.

by 0.9 every 100 steps. We train ResNet for 5000 epochs
and the graph convolutional network for 10, 000 epochs,
starting from a learning rate of 0.001 and multiplying by
0.1 every 4000 steps. Finally we train the model end-to-
end for another 5000 epochs. All the images are resized to
224×224 pixels and passed to the ResNet. All learning and
inference was implemented in PyTorch.

4.3. Metrics

Similar to [26], we evaluated our model using percent-
age of correct pose (PCP) for both 2D and 3D coordinates.
In this metric, a pose is considered correct if the average
distance to the ground truth pose is less than a threshold.

4.4. Hand-Object Pose Estimation Results

We now report the performance of our model in hand
and object pose estimation on our two datasets. Figure 5
presents the percentage of correct object pose for each pixel
threshold on the First-Person Hand Action dataset. As we
can see in this graph, the 2D object pose estimates pro-
duced by the HOPE-Net model outperform the state-of-the-
art model of Tekin et al. [26] for 2D object pose estimation,
even though we do not use an object locator and we operate
on single frames without using temporal constraints. More-
over, our architecture is lightweight and faster to run.

Figure 6 presents the percentage of correct 3D poses for
various thresholds (measured in millimeters) on the First-
Person Hand Action dataset. The results show that the
HOPE-Net model outperforms Tekin et al.’s RGB-based
model [26] and Herando et al.’s [6] depth-based model in
3D pose estimation, even without using an object localizer
or temporal information.

We also tested our graph model with various other in-
puts, including ground truth 2D coordinates, as well as
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Figure 6. The percentage of correct 3D hand pose of our model on
the First-Person Hand Action dataset compared to the RGB-based
technique of [26] and the depth-based technique of [6]. Our model
works well on roughly accurate 2D estimates.

ground truth 2D coordinates with Gaussian noise added
(with zero mean and σ = 20 and σ = 50). Figure 6 presents
the results. We note that the graph model is able to effec-
tively remove the Gaussian noise from the keypoint coordi-
nates.

Figure 7 shows selected qualitative results of our model
on the First-Person Hand Action dataset. Figure 8 breaks
out the error of the 2D to 3D converter for each finger and
also for each kind of joint of the hand.

We also tested on the third-person videos of the very re-
cent HO-3D dataset. Although the locations of hands and
objects in the images vary more in HO-3D, we found that
HOPE-Net performs better, perhaps because of the size of
the dataset. The Area Under the Curve (AUC) score of
HOPE-Net is 0.712 for 2D pose and 0.967 for 3D pose es-
timation. Note that hands in the evaluation set of HO-3D
are just annotated with the wrist (without the full hand an-
notation). Therefore the mentioned results are just for wrist
keypoint.

4.5. Adaptive Graph U-Net Ablation Study

We also conducted an ablation study of our Adaptive
Graph U-Net to identify which components were important
for achieving our results. We first compare our model to
other models, and then we evaluate the influence of the ad-
jacency matrix initialization on the adaptive Graph U-Net
performance.

To show the effectiveness of our U-Net structure, we
compared it to two different models, one with three Fully
Connected Layers and one with three Graph Convolutional
Layers without pooling and unpooling. We were interested
in the importance of each of our graph convolutional mod-
els in the 3D output. Each of these models is trained to
convert 2D coordinates of the hand and object keypoints to
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Figure 7. Qualitative 2D and 3D results of HOPE-Net on the First-Person Hand Action dataset. The estimated poses are shown in color,
and the ground truth is shown in black. The last row includes three failure cases.
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Figure 9. Visualization of the learned adjacency matrices of the adaptive graph convolution layers. For instance, we see in the A0 matrix
that the corners of the object bounding box (row and column indices 21 through 29) are highly dependent on one another, and also there is
a relatively strong connection between fingertips.

3D. Table 1 shows the results. The adaptive Graph U-Net
performs better than the other methods by a large margin.
This large margin seems to come from the U-Net structure
and the pooling and unpooling layers.

To understand the effect of our graph pooling layer, we
compared it with Gao et al.’s [5] gPool, and also with fixed
pooled nodes which do not break the graph into pieces. Ta-
ble 2 compares the performance of different graph pooling
methods. We see that by using a more efficient training al-
gorithm and also by not breaking apart the graph after pool-
ing, our pooling layer performs better than gPool.

Since we are using an adaptive graph convolution, the
network learns the adjacency matrix as well. We tested
the effect of different adjacency matrix initializations on
the final performance, including: hand skeleton and object

Table 1. Average error on 3D hand and object pose estimation
given 2D pose. The first row is a multi-layer perceptron and the
second row is a 3-layered graph convolution without pooling and
unpooling. The Adaptive Graph U-Net structure has the best per-
formance.

Architecture Average Error (mm)

Fully Connected 185.18
Adaptive Graph Convolution 68.93
Adaptive Graph U-Net 6.81

bounding box, empty graph with and without self-loops,
complete graph, and a random connection of vertices. Ta-
ble 3 presents the results of the model initialized with each
of these matrices, showing that the identity matrix is the
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Figure 8. Average 3D pose estimation errors broken out across (a)
each joint of the hand and (b) each finger. Note that MCP, PIP, and
DIP denote the 3 joints located between the wrist and fingertip
(TIP), in that order.

Table 2. Average error on 2D to 3D hand and object pose esti-
mation using different pooling methods. Our trainable pooling
method produces the best results.

Pooling method Average Error (mm)

gPool [5] 153.28
Fixed Pooling Layers 7.41
Trainable Pooling 6.81

Table 3. Average error in 3D pose estimation in the adaptive graph
convolution layer. The model has the best performance when it
is initialized with the identity matrix. “Skeleton” in the fourth
row refers to an adjacency matrix that simply encodes the actual
kinematic structure of the human hand.

Initial Adjacency Matrix Average Error (mm)

Zeros (0n×n) 92805.02
Random Initialization 94.42
Ones (1n×n) 63.25
Skeleton 12.91
Identity (In×n) 6.81

best initialization. In other words, the model seems to learn
best when it finds the relationship between the nodes start-
ing with an unbiased (uninformative) initialization.

The final trained adjacency matrices for the graph con-
volution layers (starting from In×n) are visualized in Fig-
ure 9. We see that the model has found relationships be-
tween nodes which are not connected in the hand skeleton
model. For example, it found a relationship between node
6 (index finger’s PIP) and node 4 (thumb’s TIP), which are
not connected in the hand skeleton model.

4.6. Runtime

As mentioned earlier, HOPE-Net consists of a
lightweight feature extractor (ResNet10) and two graph
convolutional neural networks which are more than ten

times faster than the shallowest image convolutional neural
network. The core inference of the model can be run in
real-time on an Nvidia Titan Xp. On such a GPU, the entire
2D and 3D inference of a single frame requires just 0.005
seconds.

5. Conclusion and Future Work
In this paper, we introduced a model for hand-object 2D

and 3D pose estimation from a single image using an image
encoder followed by a cascade of two graph convolutional
neural networks. Our approach beats the state-of-the-art,
while also running in real-time.

Nevertheless, there are limitations of our approach.
When trained on the FPHA and HO-3D datasets, our model
is well-suited for objects that are of similar size or shape
to those seen in the dataset during training, but might not
generalize well to all categories of object shapes. For exam-
ple, objects with a non-convex geometry lacking a tight 3D
bounding box would be a challenge for our technique. For
real-world applications, a larger dataset including a greater
variety of shapes and environments would help to improve
the estimation accuracies.

Future work could include incorporating temporal in-
formation into our graph-based model, both to improve
pose estimation results and as step towards action detection.
Graph classification methods can be integrated into the pro-
posed framework to infer categorical semantic information
for applications such as detecting sign language or gesture
understanding. Also, in addition to hand pose estimation,
the Adaptive Graph U-Net introduced in this work can be
applied to a variety of other problems such as graph com-
pletion, protein classification, mesh classification, and body
pose estimation.
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