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Abstract

We introduce a hierarchical part-based approach for human pose estimation

in static images. Our model is a multi-layer composite of tree-structured

pictorial-structure models, each modeling human pose at a different scale and

with a different graphical structure. At the highest level, the submodel acts

as a person detector, while at the lowest level, the body is decomposed into a

collection of many local parts. Edges between adjacent layers of the compos-

ite model encode cross-model constraints. This multi-layer composite model

is able to relax the independence assumptions in tree-structured pictorial-

structures models (which can create problems like double-counting image

evidence), while still permitting efficient inference using dual-decomposition.

We propose an optimization procedure for joint learning of the entire compos-

ite model. Our approach outperforms the state-of-the-art on four challenging
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datasets: Parse, UIUC Sport, Leeds Sport Pose and FLIC datasets.

Keywords: object detection, human pose estimation

1. Introduction

Detecting humans and identifying body pose are key problems in under-

standing natural images, since people are the focus of many (if not most)

consumer photographs and videos. Accurate pose modeling and recogni-

tion could enable a wide range of applications, including detecting suspi-

cious actions in surveillance video, tracking user motion in interactive and

immersive video games (Shotton et al. (2011)), organizing consumer photo

collections automatically based on human activities, and even synthesizing

realistic poses in graphics applications (Yu et al. (2012)). Many current com-

mercial pose estimation systems like Microsoft Kinect use binocular cameras

with additional depth sensors, but these techniques do not apply on con-

sumer cameras that do not have these sensors. Detecting people and recog-

nizing pose in 2D static images is significantly more difficult, due not only

to the usual complications of object recognition — cluttered backgrounds,

scale changes, illumination variations, etc. — but also because of the highly

flexible nature of the human body.

Deformable part-based models have emerged as a dominant approach to

deal with this flexibility in recognizing people and other articulated objects

(Felzenszwalb and Huttenlocher (2005); Crandall et al. (2005); Lan and Hut-

tenlocher (2005); Zhu et al. (2008); Tran and Forsyth (2010); Felzenszwalb
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et al. (2010); Yang and Ramanan (2011); Wang et al. (2011)). These models

decompose an object into a set of parts, each of which is represented with a

local appearance model, and a geometric model that constrains relative con-

figurations of the parts. Recognition is then cast as an inference problem on

an undirected graphical model, in which the parts are represented by vertices

and the constraints between parts are represented as edges.

Many of these part-based models assume a tree structure, capturing the

kinematic constraints between parts of the body — e.g . that the lower arm

is connected to the upper arm, which is connected to the torso, etc. (Felzen-

szwalb and Huttenlocher (2005); Felzenszwalb et al. (2010); Yang and Ra-

manan (2011)). These tree structures allow exact inference to be performed

efficiently on the underlying graphical model via dynamic programming.

Tree-structured models may seem to be ideal for modeling the tree-structured

human body, but it turns out that they make assumptions that are not real-

istic. In particular, the tree structure assumes disconnected parts are condi-

tionally independent, which is not generally true due to constraints imposed

by gravity and human balance. For instance, it is much more likely for a

person to stand in a symmetrical pose than to stand with all limbs on one

side of the torso, but there is no way of encoding this information in a tree

model. Similarly, tree models may recognize a single image region as two

different body parts, because there is no way to require mutual exclusivity

between parts that are not directly connected in the model.

This problem is exacerbated as the number of parts grows: the more
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parts we have, the more incorrect independence assumptions we are making.

(More precisely, note that the number of possible pairs of parts increases

quadratically with the number of parts in the model, whereas the number

of constraints captured by a tree-structured model increases only linearly.)

But recent work suggests that large numbers of parts are beneficial for accu-

rate pose recognition. For instance, Yang and Ramanan (2011) found that

many small parts with pairwise spatial models based only on translations can

approximately model non-affine transformations of the whole object. Thus

there is a trade-off between encoding more flexibility in the model by adding

parts, and accurately modeling the structural constraints on human pose.

A variety of approaches have been proposed for overcoming the assump-

tions made by tree-structured models, including introducing a few cycles into

an otherwise tree-structured graphical model (Zhu et al. (2008); Wang et al.

(2011)), adding common factor variables (Lan and Huttenlocher (2005)), or

even using a fully-connected graphical model (Tran and Forsyth (2010)).

These approaches introduce cycles into the graphical model which generally

makes exact inference intractable. How to model richer spatial constraints

that still permit efficient inference is an important open question.

In this paper, we propose a new model that addresses these problems from

a different perspective. Instead of adding cycles to the original model, we

build a multi-level model consisting of multiple tree-structured models with

different resolution scales and numbers of parts, allowing different degrees of

structural flexibility at different levels, and we connect these models through
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cross-level links between body parts in adjacent levels. The set of cross-level

links also forms a tree. A visualization of our model with three layers is shown

in Figure 2, with cross-level links shown in blue and intra-level links shown in

black. The combined graph is no longer a tree, but can be decomposed into

tree-structured sub-problems within each level and a cross-model constraint

sub-problem across levels. These tree-structured sub-problems are amenable

to exact inference, and thus joint inference on the composite model can be

performed via dual-decomposition (Bertsekas (1999)). To learn parameters

for our models, we train the cross-layer and intra-layer models jointly, and

show that the composite models outperform state-of-the-art techniques on

challenging pose recognition datasets. We believe these composite models

provide a principled way to trade off between model expressiveness and ease

of inference, by “stitching” together multiple tree-structured models into a

richer model while keeping the complexity of joint inference in check.

Contributions. To summarize, our contributions include: (1) a novel multi-

layer model for human pose estimation, (2) an efficient inference algorithm

using dual-decomposition, (3) an algorithm for jointly learning the param-

eters of our models using structural SVMs, and (4) experimental results

showing that the models outperform existing work on modern benchmarks.

Outline. The remainder of this paper presents our method in detail. We

discuss related work in Section 2 and describe the model and inference and

learning algorithms in Section 3. We evaluate our approach again strong
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baseline methods in Section 4, before concluding in Section 5.

2. Related Work

We begin our summary of related work by describing in Section 2.1 the

pictorial structures model, which forms the basis for most work in statistical

pose recognition. We then describe several recently-proposed improvements

to these models. We then give background on dual decomposition, the tech-

nique that forms the basis of our inference algorithm, in Section 2.2. In

Section 2.3 we briefly highlight other recent work in pose recognition that

are less related to our work but still relevant to the general problem domain.

2.1. Statistical pose recognition

Felzenszwalb and Huttenlocher (2005) introduced part-based tree-structured

deformable models to human pose recognition, calling these models “pictorial

structures.” In a part-based model, an object is represented as a collection

of “parts” with constraints on the spatial relationship between them. Each

part’s appearance model captures how it “looks” locally, while the spatial

models prefer some configurations but allow some deformation. Pictorial

structures can be modeled as probabilistic graphical models, with a latent

variable for each part denoting that part’s pose, and connections between

some variables that encode constraints on relative part position. Each vari-

able also observes the image data. Pose recognition can then be thought of

as an inference problem, with the goal of finding the most-likely values for

the pose variables given the image data.
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The original work of Felzenszwalb and Huttenlocher (2005) uses 4-d la-

tent variables that parameterized part pose as 2-d position, orientation, and

scale, and encodes the pairwise configuration priors as Gaussian distributions.

They show that exact inference on the tree-structured graphical models could

be performed efficiently via dynamic programming and distance transforms,

requiring only O(ph) time, where p is the number of parts in the model and

h is the number of possible pose configurations for each part. They use very

simple part appearance models, essentially looking for rectangular blobs in

binary segmentations produced by background subtraction, but later work

built on their technique to create state-of-the-art pose recognition systems.

For instance, Ramanan (2006) uses the same framework but improves

the part appearance models and adopted an iterative inference approach.

An edge-based deformable model is first applied on the image to obtain a

soft (and noisy) estimate of body part locations, then a region-based model is

used to look for body parts based on learned “part-specific” appearance mod-

els. The resulting soft estimates are then used to build new models, and this

process is repeated iteratively. Later work, Ramanan et al. (2007), extends

this to track pose across time in video, where the appearance models become

customized to a particular person (e.g . based on clothing). Andriluka et al.

(2009) achieve better results by learning appearance models in a discrimi-

native Adaboost-based framework. Their representation is based on dense

shape context descriptors, while the kinematic pose prior is modeled as a

tree learned separately on a multi-view and multi-articulation dataset.
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More recent work has explored other strategies for enhancing the pictorial

structures framework, and we borrow several of these innovations. We discuss

three specific enhancements in the following sections: hierarchical models,

multi-scale feature representations, and mixture models.

Hierarchical Models. As mentioned above, various techniques for relax-

ing the part independence assumptions have been proposed (e.g . Lan and

Huttenlocher (2005); Tran and Forsyth (2010)). Particularly relevant to our

work are approaches using hierarchical models, such as Zhu et al. (2008) and

Wang et al. (2011). Zhu et al. (2008) propose a Max Margin AND/OR graph

for parsing the human body into parts. The model is a multi-level mixture of

Markov Random Fields where each node represents a human body part at a

certain level in the hierarchy. Wang et al. (2011) propose using “hierarchical

poselets,” which are multi-scale body parts of various sizes. The body parts

are defined in a hierarchy at different scales, and are able to cover human

poses at various levels of granularity. Our proposed composite models are

also hierarchical, but differ in the structure of the hierarchy: in our ensemble

each submodel is a separate and complete tree-structured model of human

pose. This distinction is crucial since this unique graphical structure allows

principled and efficient inference with dual-decomposition, applying existing

algorithms developed for tree-structured models to solve the sub-problems.

Multi-scale Models. In addition to hierarchical spatial models, recent

work has shown that capturing visual features at multiple image scales is
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important. Sapp et al. (2010) use cascaded models at different resolutions,

because most non-human image windows can be rejected at a coarse scale.

Their cascaded models progressively filter the pose state space, reducing com-

putation while maintaining state-of-art performance. Park et al. (2010) use

multi-resolution models to detect objects at different scales. For each object,

they introduce a binary variable corresponding to two visual scales (coarse

and fine). During detection, this variable and object locations are jointly

inferred. Yang and Ramanan (2011) use visual cues at multiple resolutions

with HOG feature pyramids, which we also do here.

Mixture Models. To accurately model the flexible human form, mixture

models for both appearance and geometry have been proposed. Singh et al.

(2010) use a linear weighted combination of heterogeneous part detectors,

fusing evidence from different feature types. A branch-and-bound approach

makes inference on the graphical model faster. Wang and Mori (2008) use

mixtures of tree models to capture richer spatial constraints and explicitly

model part occlusions. A boosting procedure is used to combine different

tree structures during inference. Johnson and Everingham (2010) cluster

human poses and then build mixtures of pictorial structure models using

these clusters. The appearance models are “pose specific” and capture the

correlation between part appearances. Yang and Ramanan (2011) introduce

mixture models for each human body part. Specifically, their model assigns

a latent “type” variable to each part, allowing parts to select between several
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appearance models, and they jointly learn the parameters in a discriminative

structured learning framework. We use a similar approach based on latent

part types, but in a framework featuring hierarchical, multi-scale models.

2.2. Dual Decomposition

We apply an inference technique called dual decomposition (also called)

Lagrangian relaxation), which has been shown to be useful for solving op-

timization problems with discrete variables (Komodakis et al. (2011)). It

decomposes the original optimization objective into small, independent, and

easy-to-solve subproblems, and then combines the solutions to the subprob-

lems into a global solution. Some recent work has also applied dual decompo-

sition to pose recognition, but on different models and applications than ours.

Wang and Koller (2011) model pose estimation and segmentation jointly, and

apply dual-decomposition for efficient inference. The human pose estimation

guides the foreground pose segmentation at a high level, and the segmenta-

tion cues also improve pose estimation by explaining low-level pixels. Sapp

et al. (2011) use dual-decomposition for pose parsing in video. A tree model

is used to capture the human pose structures, and motion cues connect joints

across consecutive frames. Dual-decomposition decouples the problem into

several small subproblems, each of which tracks a single joint and connects

two tree structures. Since all subproblems are still tree-structured, one can

perform exact and efficient inference on them. However, that paper does not

consider hierarchical models as we do here.
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2.3. Other Relevant Work

Other papers have addressed pose estimation from other perspectives.

Work in human motion analysis, such as Zhou et al. (2009), has used gait to

achieve efficient tracking. Hara and Chellappa (2013) propose to use a depen-

dency graphs for modeling relations between body parts, with independently

trained discriminative part regressors. Dantone et al. (2013) jointly learn

non-linear part regressors using two-layered random forests, and show signif-

icant improvement over the start-of-art methods. Sapp and Taskar (2013a)

capture multiple pose models for full and half (above the waist) body models,

where each pose mode is defined as a cluster of possible joint configurations,

and is trained using a discriminative structured linear model. Finally, since

we use sparse representations for human pose features (i.e. the deforma-

tion and part-type co-occurrence features), our work is related with efficient

model training using sparse representations (Cheng et al. (2013)).

3. Multi-layer Composite Models for Pose Recognition

We now describe our technique for pose recognition using multi-layer

composite models. We begin by describing our baseline model, which is very

similar to Yang and Ramanan (2011). We show how to generalize this to a

multiscale model in Section 3.2, and then discuss how to perform inference

efficiently using dual-decomposition in Section 3.3. We then describe how

to jointly learn the parameters of the model from labeled training data in

Section 3.4. All of the notation used in this section is summarized in Table 3.
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3.1. Base Model

Given an image I and a model of the human body, the goal of pose

recognition is to find high-likelihood model configurations in the image. Our

approach builds on the work of Yang and Ramanan (2011) which has demon-

strated state-of-art performance. The key innovation in their deformable

part-based model is to use a mixture of parts, which allows the appearance

of each part to change discretely between different “part types.” A part type

is a specific configuration of the pose for a specific part. For example, a leg

might have part types like “lying down” or “standing up,” corresponding

to different orientations and articulations of the leg. Also, instead of using

parts that correspond with natural body (arms, torso, hands, etc.), they use

small square part templates for each body joint (e.g . ankles, elbows, chin,

top of head, etc.). This gives additional invariance to pose changes, since

the appearance of a joint varies less dramatically than the part appearances

themselves.

More formally, their model consists of a set P of parts in a tree-structured

model having edges E ⊆
(P
2

)
, such that E is a tree. Let y be a vector that

represents a particular configuration of the parts, i.e. the location and type

of each part. They define a function S(I,y) that scores the likelihood that

a given configuration y corresponds to a person in the image. Moreover,

S(I,y) decomposes along the nodes and edges of the tree,

S(I,y) =
∑
p∈P

D(I,yp) +
∑

(p,q)∈E

(
L(yp,yq) + T (yp,yq)

)
, (1)
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where D(I,yp) is the score for part p being in configuration yp given local

image data (the data term), L(yp,yq) is the relative location term measuring

agreement between locations of two connected parts, and T (yp,yq) measures

the likelihood of observing this pair of part-types. Specifically, D(I,yp) is

the template matching score for part p at location yp, L(yp,yq) is defined as

the negative Mahalanobis distance between part locations, and T (yp,yq) =

~Bt(yp),t(yq) is a part co-occurrence table that is learned discriminatively in the

training stage, where t(yp) gives the part type of part p.

3.2. Proposed Generalization

We generalize this model to include multiple layers, with each layer like

the base model but with a different number of parts and a different tree

structure. In particular, let M = {(P1, E1), ..., (PK , EK)} be a set of K tree-

structured models, let yk denote the configuration of the parts in the k-th

model, and let Y = (y1, ...,yK) be the configuration of the entire multi-layer

composite model. We now define a joint scoring function,

Ŝ(I,Y) =
K∑
k=1

Sk(I,y
k) +

K−1∑
k=1

χ(yk,yk+1), (2)

where Sk(·, ·) is the single-layer scoring function of equation (1) under the

model (Pk, Ek), and χ(yk,yk+1) is the cross-model scoring function that mea-

sures the compatibility of the estimated configurations between adjacent lay-

ers of the model.

As Figure 2(a) shows, we impose a hierarchical structure on the composite

13



model, such that each part at level k is decomposed into multiple parts at

level k + 1. We call these decomposed parts the child nodes. For a part

p ∈ Pk, let C(p) ⊆ Pk+1 be the set of child nodes of p in layer k + 1. The

cross-model scoring function χ scores the relative location and part types of

a node in one layer with respect to its children in the layer below,

χ(yk,yk+1) =
∑
p∈Pk

∑
q∈C(p)

B(ykp ,y
k+1
q ), (3)

where B(ykp ,y
k+1
q ) is also a look-up table, and measures the likelihood of the

relative configuration of a part and its child across the two submodels. Next,

we describe inference in this composite model and then discuss how to learn

parameters of the composite model in Section 3.4.

3.3. Dual Decomposition for Efficient Inference

We have defined our multi-layer composite model as a collection of pose

estimation models and a cross-model scoring function. As Figure 2(a) il-

lustrates, each layer of the hierarchy is tree-structured, so exact inference

within each layer can be performed efficiently. The constraints between lay-

ers (blue lines in the figure) also are tree-structured and thus also amenable

to exact inference. The overall graphical model has cycles, however. Fortu-

nately, we can exploit the natural decomposition of this composite model into

tree-structured subproblems to perform inference using dual-decomposition.

Dual-decomposition is a classical technique (Bertsekas (1999)) that has more

recently been used in vision (Komodakis et al. (2011)) for performing infer-
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ence in loopy graphical models. The idea is to decompose a joint inference

problem into easy sub-problems, solve each sub-problem, and then have the

sub-problems iterate until they agree on variable values.

The following is a straightforward adaptation of Komodakis et al. (2011).

Let Ck denote the set of all feasible discrete values for yk for each layer of the

model. We make a copy of Y, which we call X = (x1, ...,xK), and enforce

equality constraints that require Y = X. Then we rewrite equation (2) as:

max
Y,X

K∑
k=1

S(I,yk) +
K−1∑
k=1

χ(xk,xk+1), (4)

s.t. yk = xk, yk ∈ Ck, xk ∈ Ck, ∀k.

We then dualize the equality constraints, replacing the hard equality con-

straints between Y and X with a soft penalty term,

g(λ) = max
Y,X

K∑
k=1

S(I,yk) +
K−1∑
k=1

χ(xk,xk+1) +
K∑
k=1

λk · (yk − xk), (5)

s.t. yk ∈ Ck, xk ∈ Ck,

where λk is the Lagrangian multiplier that specifies the strength of the

penalty, and · denotes inner product between two vectors. The effect of

relaxing the hard equality constraint is that the maximization can now be

decoupled into independent terms,

g(λ) =
K∑
k=1

max
yk

(
S(I,yk) + λTk · yk

)
+ max

X

(
K−1∑
k=1

χ(xk,xk+1)−
K∑
k=1

λTk · xk
)
, (6)
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again with yk ∈ Ck, xk ∈ Ck. In this form, it is clear that g(λ) can by eval-

uated for a given λ by solving several simpler sub-problems. The optimal Y

is found by maximizing each term of the first summation, i.e. by performing

inference on each individual layer of our composite model, which is efficient

because each layer is tree-structured. We find the optimal X by maximizing

the second term of equation (6), which is also tree-structured.

A conceptual illustration of dual decomposition is shown in Figure 2(b),

while Figure 2(c) shows how we apply it to pose detection. Each of the slave

problems are tree-structured inference tasks and can be performed efficiently

with dynamic programming. The master’s job is to encourage agreement

between the solutions found by the slave tasks.

It can be shown that for each value of λ, the function g(λ) provides an

upper-bound on the original (constrained) maximization (Bertsekas (1999)).

Thus, we can set up a dual problem that achieves the tightest upper-bound

as minλ g(λ). This dual problem is convex but non-smooth, so we use sub-

gradient descent to perform the minimization. Subgradient descent is an

iterative algorithm that updates the current setting of λ
(t)
k at iteration t,

λ
(t+t)
k ← λ

(t)
k − α

(t)
(
yk(λ

(t)
k )− xk(λ

(t)
k )
)
, (7)

where yk(λ
(t)
k ),xk(λ

(t)
k ) are the optimal solutions in equation (6) for the cur-

rent setting of λ
(t)
k , and α(t) is the step size at iteration t. For a good choice

of step size, subgradient descent is guaranteed to converge to the optimum

of the dual problem (Bertsekas (1999)). We discuss implementation details
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like the step size and stopping criteria in Section 4.

3.4. Learning with Structural SVMs

We now address how to learn the parameters of our composite model,

including the parameters for each layer and the cross-model scoring function.

Features. We use four kinds of features: part appearance features that

characterize local image evidence, deformation features that capture spatial

relationships between parts, part type co-occurrence features within layers,

and part type co-occurrence features across layers. We combine the first three

into a feature vector called f(Im,y
k) for image Im under submodel k (Yang

and Ramanan (2011)). In particular, f(Im,y
k) consists of HOG features for

each part filter, part type co-occurrence features, and deformation features

(dx, dx2, dy, dy2), where (dx, dy) is the displacement between two parts.

We denote the fourth feature type, the cross-model part type co-occurrence

feature as fχ(Y) by converting the 2D look up table δt(yp),t(yq) to a 1D vector,

where δt(yp),t(yq) = 1 if t(yp) = t(yq), and otherwise δt(yp),t(yq) = 0.

Parameters. To jointly train the composite model, we stack features from

all layers along with the cross-model features into a single vector Φ(Im,Y),

Φ(Im,Y) =
[
f(Im,y

1), f(Im,y
2), . . . , f(Im,y

K), fχ(Y)
]
, (8)

and parameters of the model are also placed into a single vector,

β = (β1, . . . , βK , βχ).
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The score of the entire composite model on a given image and configuration

can then be written as a dot product between parameters and features,

Ŝ(I,Y) = β · Φ(Im,Y).

Training. Given training data with labeled positive instances, i.e. images

containing people with annotated part locations
{
{Im,Ym} | m ∈ pos

}
, and

negative instances, i.e. images not containing people
{
{Im, ∅} | m ∈ neg

}
,

we learn β with a structured SVM (Tsochantaridis et al. (2005)). Structured

SVMs are a generalization of standard binary SVMs that can generate struc-

tured outputs (instead of simple positive or negative outputs) and can use

loss functions that are defined based on this structured information. In our

context, the structured learning problem involves finding β such that,

min
β

1

2
‖β‖2 + C

∑
m

ξm (9)

s.t. β · Φ(Im,Ym) ≥ 1− ξm ∀m ∈ pos

β · Φ(Im,Y) ≤ −1 + ξm ∀m ∈ neg,∀Y.

We optimize this objective function using dual coordinate descent (Yang

and Ramanan (2011)). This formulation forces all of the exponentially many

configurations of negative instances to score lower than −1. For efficiency,

in practice we enforce this constraint only on hard negative examples, as

explained in Section 4.1.2.
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4. Experiments

We evaluate our composite models on four challenging datasets: Image

Parse (Ramanan (2006)), UIUC Sport (Wang et al. (2011)), Leeds Sport Pose

(Johnson and Everingham (2010)) and FLIC (Sapp and Taskar (2013b)).

Parse contains 100 training and 205 test images, UIUC Sport includes 649

training and 650 test images, Leeds Sport has 1,000 training and 1,000 test

images, while FLIC has 3,987 training and 1,016 test images The first three

datasets have one person per image annotated with 14 body joints, while

FLIC includes only upper body annotations. We follow Yang and Ramanan

(2011) and draw our negative images from the INRIA person dataset (Dalal

and Triggs (2005)).

4.1. Implementation

We implemented inference and learning methods described in Section 3.

Here we give some implementation details that are important in practice.

4.1.1. Inference

For part appearance models, we follow Yang and Ramanan (2011) by us-

ing HOG features (Dalal and Triggs (2005)) computed at multiple resolutions,

yielding a feature pyramid for each image. We perform dual decomposition

on each level of the pyramid independently, collect detections from all of the

levels, and remove overlapping detections via non-maximal suppression. We

currently restrict our cross-modeling scoring function B(·, ·) in equation (3)

to only part type co-occurrence relations; this gives a relatively small label
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space which allows more efficient inference, although modeling relative loca-

tion between parts across layers is an interesting direction for future work.

The subgradient descent step size in equation (7) is important in making

inference work well in practice. We experimented with various strategies,

finding that a modification of Polyak’s step size rule (Polyak (1967)),

α
(t)
k =

1 +m

τ (t) +m
· (dual(t) − primal(t)best)

‖∇gt‖
,

works best, where dual(t) is the objective value of the dual problem in equa-

tion (6) in iteration t, primal
(t)
best is the best primal objective value in equa-

tion (4) observed so far in iterations up to t, ‖∇gt‖ is the norm of the sub-

gradient at t, m is a scalar constant (we use m=10), and τ (t) is the number

of times that the dual-objective has increased up to t. Using this step size

rule, dual decomposition converges to a very small gap (< 0.001) quickly, as

shown in Figure 3 for a sample image. Since each submodel is a pictorial

structure, inference at each level takes linear time in the number of parts us-

ing dynamic programming Felzenszwalb and Huttenlocher (2005). The entire

inference takes about 20 seconds per Parse image on a 3.0GHz machine.

4.1.2. Learning

For Parse, UIUC Sport, Leeds Sport dataset, we trained several variants

of our composite models: 1) a two-layer model consisting of a 1-part and a 26-

part model; 2) a two-layer model consisting of a 10-part and a 26-part model;

3) a three-layer model consisting of 1-part, 10-part, and 26-part models. For
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FLIC, we use 11-part, 6-part and 1-part models.

In the models for the first three datasets, the 26-part model is the same

defined in Yang and Ramanan (2011), consisting of both body parts and

joints. The 10-part model is defined using new body parts (head, torso,

upper arms, lower arms, upper legs, lower legs), and the 1-part model is a

simple whole-body template mixture model. The annotations for the 10 and

1 part models were derived from the existing annotations in the datasets.

As in Yang and Ramanan (2011), the mixture types of each body part were

obtained by k-means clustering over joint locations. For the 26-part model,

we use the same number of part types per part as in Yang and Ramanan

(2011), i.e. a variable number of 5 or 6 mixtures for each part, while for the

10-part model we use 5 torso types, 5 head types, 5 arm types and 6 leg

types. The 1-part model uses 9 types. To learn each composite model, we

first train a model for each layer using the public code of Yang and Ramanan

(2011), and then use these models as initialization for learning our composite

model. For FLIC, we re-train a 11-part model using the method in Yang and

Ramanan (2011), while the 6-part and 1-part models are defined as above.

In practice, there are many more negative (non-person) instances avail-

able than positive ones. To reduce the number of negative exemplars to

be considered in equation (9), we select hard negative exemplars for the

next iteration of learning by finding high-scoring non-person instances under

the current multi-layer composite model. To construct negative instances

efficiently, we run the composite model on each negative image, select all de-
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tected poses having score above a threshold, sort the detections in each layer,

and construct joint exemplars by matching them in the order of detection

scores. To speed up training, we stopped subgradient descent after 50 itera-

tions, since the optimization typically converges by then (as in Figure 3). A

multi-layer composite model learned by our technique is shown in Figure 4.

4.2. Results

Evaluation Criteria. We evaluate our results using the Percentage of Cor-

rect Parts (PCP) metric, which counts the fraction of body parts that are

correctly localized according to the ground-truth. One needs to define what a

correct localization is, since small discrepancies in part pose are probably not

noticable in most applications. Unfortunately, as noted in Pishchulin et al.

(2012), the PCP metric has been defined differently across papers, leading

to confusion in the literature. These differences fall along two dimensions.

First, there are two subtly-different definitions of a correct part localization:

1) Part is correctly localized if the distance of both its endpoints from re-

spective ground truth endpoints is less than a fraction of the part length;

or 2) Part is correctly localized if the mean distance between estimated and

ground truth endpoints is less than a fraction of the part length. This dif-

ference is illustrated in Figure 5. Second, there are two ways to compute

the final aggregate PCP score across the dataset: A) PCP is calculated for

every image, and averaged across all images to produce an aggregate score;

or B) PCP is calculated only for images in which the human is correctly lo-
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calized according to a ground truth bounding box, these scores are averaged

together, and then multiplied by the detection rate.

The cross-product of these two possibilities yields four possible evaluation

criteria. According to our understanding, Eichner et al. (2010) proposed

variant 1B, but their publicly-released software toolkit implemented 2B which

yields higher scores. Yang and Ramanan (2011) also used 2B, while both

Pishchulin et al. (2012) and Wang et al. (2011) used 1A. We follow the two

latter papers and use 1A, which we hope will become the standard, but also

report results under the other variants to illustrate the significant differences

they create. Note that Pishchulin et al. (2012) do not report PCP numbers

for individual parts, but rather combine right and left parts together. We

do the same, and also average the PCP of the left and right limbs reported

by Wang et al. (2011) to convert their results into this metric as well.1

Results. Results on Parse, UIUC Sport, Leeds Sport Pose and FLIC datasets

are shown in Table 1 for our technique and several other recent methods. To

make results compatible, we converted all numbers into metric 1A (by re-

computing results from Yang and Ramanan (2011), and for Ramanan (2006)

by using re-computed numbers reported in Wang et al. (2011)). Our models

outperform the baselines on all four datasets, beating Yang and Ramanan

1Recently, Yang and Ramanan (2013) propose new metrics called Percentage of Correct
Keypoints and Average Precision of Keypoints, which compare predicted and ground truth
bounding boxes surrounding each keypoint of the body. Since no other work has reported
performance under these criteria, we stick with the better-known PCP metric here.
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(2011) by about 2 percentage points for Parse and by 1.0-1.5 percentage

point for the other datasets. We also show results from two recent tech-

niques, Pishchulin et al. (2012) and Johnson and Everingham (2011), that

are not comparable because they used richer training data.2 Our technique

is still competitive considering that we use vastly less training information.

Table 2 presents experimental results under alternative definitions of

PCP. For PCP criterion 1A, we present scores for different values of the part

localization threshold (i.e. the maximum allowable distance that endpoints

can be from ground truth positions, as a fraction of part length). The table

also compares results using two other PCP definitions that have been used in

the literature (1B and 2B). We see that subtle differences in PCP definition

can yield very different conclusions. Our composite models beat Yang and

Ramanan (2011) under all PCP metrics, but which composite model per-

forms best varies. For instance, the 2-layer model (26+1) achieves the best

performance under 1A, but the 3-layer model performs best under 1B and

2B. Moreover, 2B yields much higher PCP scores, showing the importance

of adopting a consistent metric to avoid further confusion in the literature.

Some qualitative pose recognition results are presented in Figure 6, show-

ing cases in which we correctly estimated pose while Yang and Ramanan

(2011) failed, as well as some images on which our technique failed.

2In particular, Johnson and Everingham (2011) annotated a training dataset of 10, 800
images downloaded from Flickr using Amazon Mechanical Turk. Pishchulin et al. (2012) fit
a 3D human body shape model to each training image with annotated 2D body keypoints,
and then vary the 3D shape parameters in order to create additional 2D training poses.
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We also evaluated in terms of person detection rate, with 79.0%, 81.9%,

and 82.4% for our 26+10, 26+1, and 26+10+1 models, respectively, com-

pared to 76.6% for Yang and Ramanan (2011). This suggests that much of

our increase in PCP is due to more accurate detections. This makes sense

because our 1-part model (a mixture of large HOG templates) is like the per-

son detector of Dalal and Triggs (2005). Our composite models with multiple

scales combine the advantages of single-part person detection models with

the flexible multi-part models needed for accurate part localization.

5. Conclusion

We presented a multi-layer composite model for human pose estima-

tion. By combining cues from different submodels, our composite model out-

performs state-of-the-art pose estimation methods on challenging datasets.

These results show that hierarchical structures and mixture models for pars-

ing the human body are important, and that dual decomposition for such

composite model is effective in practice. Our model is a general framework

for combining different pose estimation models. In future work, we plan

to study improvements including richer cross-model constraints by defining

spatial constraints between adjacent submodels, and learning the composite

model in a weakly supervised mode when annotations are not available for

all key points on the training images. Our model could also be applied to

interesting tasks like action recognition and tracking.
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Figure 1: We consider the problem of detecting humans and estimating their body poses
in 2D static images.

31



(a)

Master 

Slave-0 Slave-1 Slave-K 

(b) (c)

Figure 2: Illustrations of our multi-layer part-based model for human pose recognition and
our efficient inference algorithm based on dual decomposition. (a): The model consists
of multiple layers of tree-structured models (black lines), each with a different structure
and a different resolution. The layers are connected together with a cross-layer tree model
(blue lines). (b): Inference based on dual decomposition consists of iteratively passing
messages between the Master problem (primal objective) and slave problems (decomposed
dual objectives) until convergence. (c): We apply dual decomposition to human pose
recognition by running HOG-based part appearance models at multiple scales on the
image, and then performing inference on the tree-structured model for each layer as well
as the cross-layer tree-structured model. These inference steps are repeated iteratively
until the pose variable values converge.
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Figure 3: Primal objective and dual objective (left) and primal-dual gap (right) as a
function of number of iterations during subgradient descent.
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Figure 4: Part-based models used in our multi-layer composite model. For each layer
(row) of the composite model, we show four randomly-chosen mixture components.
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Figure 5: Illustration of the two measurements involved in evaluating body part local-
izations (see text). The first measure of PCP considers a part correctly localized if both
distances are below a threshold, whereas the second measure considers a part correctly
localized if their mean is below a threshold.
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Figure 6: Sample results. (Top): Examples in which Yang and Ramanan (2011) failed,
but our 3-level model estimated poses correctly. (Bottom): Some failure cases of our
model.
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Parse dataset

Upper Lower Upper Lower
Torso legs legs arms arms Head Total

Ramanan et al . 52.1 37.5 31.0 29.0 17.5 13.6 27.2
Yang et al . 82.9 69.0 63.9 55.1 35.4 77.6 60.7
Ours (26+10) 82.0 72.4 67.8 55.6 36.6 79.0 62.6
Ours (26+1) 85.6 71.7 65.6 57.1 36.6 80.4 62.8
Ours (26+10+1) 81.0 71.7 67.6 55.9 36.3 79.5 62.3

Pishchulin et al . * 88.8 77.3 67.1 53.7 36.1 73.7 63.1
Johnson et al . (2011)* 87.6 74.7 67.1 67.3 45.8 76.8 67.4

UIUC Sport dataset

Ramanan et al . 28.7 7.3 19.2 7.5 20.6 12.9 15.1
Wang et al . 75.3 49.2 39.5 25.2 11.2 47.5 37.3
Yang et al . 85.3 61.3 55.5 49.7 35.5 73.5 56.3
Ours (26+10) 85.4 61.6 57.9 49.1 34.8 72.9 56.4
Ours (26+1) 86.0 62.2 57.5 51.0 36.3 73.7 57.3
Ours (26+10+1) 86.2 61.2 55.7 49.9 35.9 73.8 56.5

Leeds Sport Pose dataset

Johnson et al . (2010) 78.1 65.75 58.8 47.4 32.85 62.9 55.1
Yang et al . 86.0 62.4 55.25 48.6 31.65 80.0 56.2
Ours (26+10) 86.2 64.0 57.3 47.6 31.9 79.8 56.6
Ours (26+1) 86.9 65.3 58.3 48.9 32.3 80.5 57.7
Ours (26+10+1) 86.2 64.1 57.4 47.9 31.9 80.0 56.9

Johnson et al . (2011)* 88.1 74.5 66.5 53.7 38.9 74.6 62.7

FLIC dataset

Yang et al . 48.61 − − 13.59 14.98 1.98 17.9
Ours (11+6) 50.71 − − 13.39 14.02 2.24 17.93
Ours (11+1) 53.56 − − 13.64 15.05 2.71 19.44
Ours (11+6+1) 56.34 − − 14.57 16.87 3.80 21.1

Table 1: Pose estimation results (PCP) on Parse, UIUC Sport, Leeds Sport, and FLIC
datasets. We test three variants of our models: 26+1 is a 2-layer model consisting of
26-part and 1-part submodels; 26+10 is a 2-layer model consisting of 26-part and 10-part
submodels; 26+10+1 is a 3-layer model consisting of 26-, 10-, and 1-part submodels. All
PCP scores here use criterion 1A (see text for details); for consistency, we re-computed
the results from Yang and Ramanan (2011) to use this criterion, and for Ramanan (2006)
we use the re-computed statistics reported in Wang et al. (2011). *Pishchulin et al.
(2012) and Johnson and Everingham (2011) are not directly comparable because they use
additional training data with more annotations.
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Threshold Yang et al .
Ours

(26+10)
Ours

(26+1)
Ours

(26+10+1)

P
C

P
(v

ar
ia

n
t

1A
)

0.2 33.4 34.5 34.5 34.3
0.3 47.2 49.2 48.3 48.9
0.4 56.0 57.6 56.5 57.3
0.5 60.7 62.6 62.8 57.3
0.6 64.4 65.9 66.9 65.7
0.7 67.2 68.7 70.0 68.6
0.8 69.7 71.3 72.0 70.9
0.9 71.5 73.0 73.6 72.7

PCP 1B 0.5 56.0 58.5 59.3 59.5

PCP 2B 0.5 74.9 75.0 75.8 75.9

Table 2: Evaluation results on the Parse dataset under different definitions of Percentage of
Correct Poses (PCP), using variants 1A, 1B and 2B which have all been used by different
papers in the literature (see text for details). For variant 1A, we show results under
different evaluation thresholds, where larger thresholds are more lenient in scoring part
localizations.
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Name Notes
P the set of all parts of a human body
E the set of all edges that connect different body parts in P
yp a vector that represents the configuration of the part p
y a vector that represents the configuration of all body parts

S(I,y) the scoring function given the configuration y of the pose model
and the input image I

D(I,yp) the score of the part template for yp applied on a particular image
I

L(yp,yq) a relative location term measuring agreement between two parts p
and q

T (yp,yq) a table for part type co-occurrence between any two parts
M defined as {(P1, E1), ..., (PK , EK)}, a set ofK tree-structured models
yk the configuration of the parts in the k-th model
Y defined as (y1, ...,yK), the configuration of the entire multi-layer

composite model
Sk(·, ·) scoring function of a single layer model (Pk, Ek)

χ(yk,yk+1) the cross-model scoring function that measures the compatibility of
the estimated configurations between adjacent layers

B(ykp ,y
k+1
q ) a look-up table that measures the likelihood of the relative config-

uration of a part and its child across two adjacent layers
Ck the set of all feasible (discrete) values for yk for each layer of the

composite model.
λk the Lagrangian multiplier that specifies the strength of the penalty

for submodel k in dual-decomposition
X duplicate or copy variables of Y (used in dual-decomposition)

Table 3: List of variables and their explanations.
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