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Abstract. High-quality indices are essential for accurate retrieval in
case-based reasoning. However, in some domains, indexing knowledge
may be incomplete, unavailable, or unfeasible to obtain by knowledge
acquisition, making knowledge-light machine learning methods an ap-
pealing alternative for generating indexing features. In response, previous
work has developed promising methods for extracting indexing features
from deep neural networks trained on case data. However, it has also un-
derlined that CBR using features extracted from a deep neural network
achieves low accuracy in domains for which the network itself has low
accuracy when trained from scratch. This is a special concern for CBR
feature extraction because the ability of CBR to reason successfully in
“small-data” domains has been seen as one of its benefits. This paper
reports on work investigating the hypothesis that transfer learning may
help decrease the data requirements for index extraction. Specifically, it
examines how model pretraining affects the quality of extracted index-
ing features for case-based classification, measured by the performance
of a case-based classifier using those features for retrieval. Experimental
results suggest that using a pretrained deep learning model for feature ex-
traction can improve classification accuracy and consistency compared
to using similar models trained from scratch. An unexpected and in-
triguing result is that the case-based classifier using extracted features
outperformed analogous deep learning classifiers for the tested dataset.
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1 Introduction

The performance of case-based reasoning (CBR) systems depends critically on
retrieving useful cases from the case base. This retrieval is generally based on a
feature vocabulary used to index the cases in the case base. Traditionally, such a
vocabulary is developed through knowledge engineering (e.g., [14, 23, 35]), with



indices assigned to new problems by situation assessment. This knowledge-based
approach can be effective in identifying key features and facilitating human-
understandable explanations for retrievals. However, knowledge engineering is
costly and generating knowledge-engineered feature sets may be unfeasible for
some domains, such as image processing.

Deep learning (DL) classification methods avoid traditional knowledge ac-
quisition and provide high accuracy across a variety of domains, including image
classification [10]. This stems from the ability of DL models to learn useful fea-
ture information from raw data. Consequently, the application of deep learning
methods to learning features for case retrieval has received attention from the
CBR community (e.g., [3, 33, 37, 38]). DL feature generation for case-based classi-
fiers has three potential benefits: to increase accuracy, to decrease the knowledge
engineering burden, and to enable case-based classification in domains for which
retrieval features are unfeasible to generate by hand (e.g., image classification).
Compared to using a pure DL classifier, the hybrid approach provides an inter-
pretability benefit: The hybrid system can explain its decisions by presenting the
retrieved cases for humans to assess their relevance—which can be an effective
explanation strategy even when retrieval features are unexplained [16].

Many factors may affect the quality of case retrieval features extracted from
a DL model. We have explored how the number of features extracted, network
depth at which features are extracted, and extractor model architecture influ-
ence feature quality [26, 27]. We have also explored how using existing knowledge-
engineered and extracted features together improves classification accuracy over-
all [40]. These experiments provided useful information about how to design
feature extraction systems, but the experimental results also pointed to a con-
cern. One of the motivations for using CBR is to enable effective reasoning in
“small-data” domains for which only limited numbers of cases may be available
or necessary [24]. Consequently, we tested the methods on DL models trained
from limited training data to examine performance for small-data domains. Our
results showed that DL models trained from scratch on limited training data
overfitted or failed to converge, resulting in poor-quality features and suboptimal
CBR performance. Thus, in such domains, lack of data limits the effectiveness of
feature extraction from DL models. This is problematic for the goal of leveraging
DL while retaining the ability of CBR to reason successfully with limited data.

Extensive DL research has shown the benefit of transfer learning, in which DL
models thoroughly trained for one domain are leveraged and specialized to new
related tasks. This led us to consider whether applying transfer learning to a DL
network used for feature extraction could improve the quality of case retrieval
features produced with limited domain data. This paper presents experimental
results on the use of transfer learning for DL feature extraction, examining the
performance achieved for various DL architectures.

The paper begins with an overview of our general DL-CBR feature extrac-
tion approach and summary of our previous studies, which provide a baseline
for the current work. We then present an evaluation of several DL feature ex-
traction models using networks that have been pretrained and then specialized



via training on a novel test domain. Our earlier evaluation of these architectures
using training from scratch suggested that more complex DL models (e.g., Incep-
tion V3 and DenseNet121) are potentially more prone to overfitting, producing
lower-quality features. In contrast, our new experimental results show that using
pretrained versions of these same DL models can produce high-quality features,
providing high classification accuracy for the CBR system. Surprisingly, the over-
all DL-CBR system accuracy rivals and occasionally surpasses the classification
accuracy of using the pretrained DL architecture end-to-end in our experiments.
This potential performance benefit is intriguing, and we discuss potential expla-
nations in Section 5.3. The DL-CBR system also appears to be more consistent
on average, yielding lower average standard deviation over all tests. Especially
when combined with the interpretability of the DL-CBR system, these results
appear very promising.

2 Related Work

Integrations of DL with CBR are appealing for goals such as explaining DL and
increasing CBR performance. For example, similarity metric learners that focus
on class-wise comparison of examples, such as Siamese networks [22], relation
networks [36], and matching networks [34], can be used for similarity assessment
in CBR (e.g., [4, 28, 30]), and network architectures can be designed for features
to be compared against prototypes to guide the model decision [7, 11, 29]. Other
research has investigated DL-CBR integration to explain DL models, as with
post-hoc feature-level explanations [5] and “twin systems” [19]. Finally, and of
particular interest to this paper, previous research has explored ways that DL
systems may be leveraged to extract feature information for CBR systems, as
described in Section 2.1.

2.1 Extracting DL Features for Case Retrieval

Case retrieval features have traditionally been developed by knowledge engineer-
ing [14, 23, 35]. However, acquiring expert-based feature sets may be unfeasible
for some domains, and knowledge engineering can be costly. Symbolic learning
methods have successfully been applied to this problem using existing feature
vocabularies (e.g., [6, 8, 9, 12, 15]), but DL feature extraction is appealing to en-
able the system to develop its own feature vocabulary (e.g., [3, 33, 38]) and to
develop features for domains such as image classification. For example, Turner et
al. use a CBR system to perform relative classification on examples for which the
DL system lacks confidence in its decision (esp. for examples from novel classes)
[37, 38]. In this way, the CBR system leverages features extracted from the DL
system and clusters examples to form implicit classes. Sani et al. use a similar
approach for feature extraction but always use the CBR system to render model
decisions [33]. They highlight that the ability of the hybrid system to explain
its decision through case presentation, combined with its accurate performance,
make it a promising model for the types of domains in their case study.



These approaches make assumptions that are challenged in our previous
work. First, they extract feature vectors from between the convolution and
densely-connected layers in the DL model; we found that better quality features
may be extracted from between the densely-connected layers and the output
layer, where (ideally) features have been combined into more complex indices
by the network’s densely-connected layers (see Section 3.2 for details) [26]. Sec-
ond, previous work assumes that the DL system is the sole source of features
for case retrieval. However, knowledge-engineered features may be available for
some domains, even if those features alone are insufficient. We showed that in
some cases using a combination of expert-generated and DL-derived features can
significantly benefit system performance [27, 40]. In addition, we showed sensi-
tivity of feature quality to several model-level parameterizations, such as number
of features extracted [26] and DL model architecture [27].

2.2 Transfer Learning

Transfer learning exploits the results of learning for one task to improve perfor-
mance on another similar task [42]. CBR itself has been advocated as a transfer
learning method [21], and knowledge transfer to improve CBR has been studied
in contexts such as cross-case-base adaptation [25] and index revision during
long-term system operation [17, 31].

In deep learning, the need for large datasets and extensive training to achieve
strong performance has led to great interest in exploiting prior models to improve
training in new domains. In this approach, weights from an already-trained DL
model are used to initialize the weights for a new model, which is then specialized
on a different dataset during training. Transfer learning by using pretrained
models has proven powerful for overcoming issues arising from limited data when
training end-to-end DL systems [32]. Because our previous studies of DL feature
extraction showed the difficulty of training the networks for small-data domains,
we hypothesized that improving the DL model by using pretrained models would
improve the quality of extracted features as well.

3 Our Approach to DL Feature Extraction for Case-based
Classification

3.1 Convolutional Neural Network Structure

As context for describing our method, we briefly summarize neural network
structure. Neural network models can be broadly conceptualized as a system of
layers that use features from previous layers to inform feature combinations that
occur in subsequent layers. Taken together, these layers process raw input data
into low-level atomic features that are then combined into more complex mid-
and high-level features that are used to render the final model decision. In this
high-level abstraction of feature learning, successive sub-sampling and feature
combination are especially fundamental to convolutional neural network (CNN)
models, which are the primary models used in our research.



CNNs extract features by using convolution layers that employ sliding matrix
operations to condense multi-dimensional raw input data into numeric features:

Oxy =

k∑
i=−k

l∑
j=−l

Fij(I(x−i)(y−j)) (1)

That is, by applying a convolution filter F of size (2k+1)× (2l+1) to the input
data I, the corresponding output feature Oxy is the inner product of the filter,
and the region of the input centered on (x, y) and defined by the dimensions
of the filter. Thus, successive convolutions map the feature information from
the previous layer into increasingly refined feature sets that ideally represent
key elements of the original input (e.g., patterns, and shapes for image data).
Successive convolutions are flattened into feature vectors and used as input to
densely-connected (multi-layer perceptron) layers to generate more complex fea-
tures. The outputs of these combinations inform the final model decision.

3.2 Extracting Network Features for Case Retrieval

Many CBR systems use feature-vector problem representations. Consequently,
the feature vectors generated from convolution in CNNs map naturally to case in-
dices, and post-convolution features have proven useful for case retrieval in CBR
[33, 37, 38]. However, we have found that extracting features after the feature
combination step before the output layer can provide higher quality features—
that is, features that result in higher classification accuracy [26]. This extraction
approach has two potential benefits in addition to increased accuracy: First, the
densely-connected layers deeper in the network conveniently may be parameter-
ized to reduce the size of the feature set to mitigate “curse of dimensionality”
effects while minimizing side-effects affecting the model’s ability to converge, and
second, extracting post-combination may be more straightforward than extract-
ing at a shallower location for more complex DL models, whose layers are often
more interconnected than more “linear” models such as AlexNet and VGG [20].

Figure 1 illustrates our basic approach to feature extraction [27]. It applies
post-combination feature extraction and allows for using extracted features in
concert with existing knowledge-engineered features, if they are available.

3.3 Lessons from Our Previous Studies

Building on our basic approach for DL feature extraction for case retrieval,
we have explored variants to improve this approach, in the context of image
classification tasks. Our work resulted in the following observations:

1. The number of features extracted significantly impacts classifica-
tion accuracy. Comparing high-dimensional feature vectors for CBR simi-
larity calculations can result in a “curse of dimensionality,” where individual
features contribute minimally to the overall similarity calculation. Conse-
quently, there exists a point at which increasing the number of features harms



Fig. 1: Features are extracted from the DL model (right), combined with
knowledge-engineered features if applicable (top left), and then used to inform
case retrieval (figure from Leake et al. [27]; CBR cycle after Aamodt and Plaza
[1]). We illustrate CNNs for feature extraction, but this approach may be gen-
eralized to other DL models.

case retrieval performance. Conversely, as the number of features extracted
decreases, the DL model’s representational power also decreases, to the point
of failing to converge on a representative feature set, harming classification
accuracy as well. Thus, there exists a “sweet spot” for which the number of
features extracted is large enough to ensure convergence, but small enough
to avoid a curse of dimensionality [26].

2. Using existing knowledge-engineered features along with extracted
features can increase classification accuracy.When available, knowledge-
engineered features can supplement features extracted from the DL system
to enable higher classification accuracy [40]. In addition, the inclusion of
useful knowledge-engineered features can offset the negative effects of poor
model training [27]. However, in both of these cases, overall performance de-
pends on the reliability of the knowledge-engineered features; features whose
values are noisy or that do not reliably characterize the case base with re-
spect to the task at hand may have a muted or even harmful impact on
model performance.

3. Small-data domains are challenging for feature extraction, and
DL model architecture influences classification accuracy. Our pre-
vious experimental results showed that DL-CBR feature extraction systems



trained from scratch on small-data domains exhibit suboptimal classification
accuracy, limiting their applicability to such domains. They also challenged
our hypothesis that more recently-developed complex DL models would pro-
duce higher-quality features; the deepest model tested (DenseNet121) did
indeed have the best relative performance, but it only marginally outper-
formed the shallowest model tested (AlexNet). These conclusions motivated
us to investigate transfer learning to increase robustness for small-data do-
mains, as well as the opportunity for transfer learning to impact the relative
performance of different DL feature extractor models.

4 Evaluation

4.1 Hypotheses

We performed computer experiments to evaluate the general hypothesis that
pretrained models could result in higher quality feature extraction for small-
data domains. Specifically, for a selection of the neural architectures tested in
our previous feature extraction research, we investigate the following hypotheses:

H1: Using transfer learning for feature extraction will produce better
quality features than training from scratch. This will manifest in
higher classification accuracy on both train and test data.

H2: With transfer learning, feature extraction using more complex
models (e.g., Inception and DenseNet) will lead to higher classifi-
cation accuracy. This hypothesized behavior contrasts with our previous
findings without transfer learning [27]. We hypothesize the previous detri-
ment from these models stems predominantly from training from scratch
on a small dataset and that transfer learning will address this.

H3: Using a case-based classifier will lead to lower classification accu-
racy than using an end-to-end DL system. DL classifiers can achieve
high accuracy, which may be increased through transfer learning. Addi-
tionally, our experimental systems are knowledge-light, preventing them
from exploiting domain knowledge that can strengthen CBR performance.
However, as our method leverages DL to extract case retrieval features, we
expect that any accuracy difference between our model and an end-to-end
DL system will be sufficiently small that in some domains it may be justified
by the benefit of CBR interpretability.

4.2 Evaluation Strategy and Testbed System

Building on our previous work training DL feature extraction models from
scratch, we tested three of those DL models that have readily-available pretrained
versions through the Tensorflow Applications module [2] (i.e., VGG-19, Incep-
tion V3, and DenseNet121 [20]). In contrast with our previous work, we do not
consider using supplementary knowledge-engineered features for retrieval, and
we modify densely-connected layer structures to keep the number of extracted



features constant across all architectures. Furthermore, since this research fo-
cuses specifically on retrieval, our CBR system has no adaptation component. It
performs classification using a one-nearest-neighbor approach based on Manhat-
tan distance. All extracted features were unweighted, but in principle weights
could be learned [39].

We compare the accuracy of the case-based classifiers to a DL classifier base-
line. For that baseline, we use the end-to-end classification accuracy of the DL
network from which features are extracted for the case-based classifier (i.e., using
the DL system’s output, rather than extracting features and performing classi-
fication with the CBR system). Features are extracted following the densely-
connected layers as in our previous work [26].

4.3 Dataset and Experimental Parameters

Each of the models used for feature extraction is pretrained on ImageNet [13]
using the built-in functionality provided in the Tensorflow Applications library.
Each pretrained model is imported without its top (i.e., the densely-connected
layers), which is appended manually so that 1024 features are extracted from
every model. Then, each model is further specialized by training on examples
from the Animals with Attributes 2 (AwA2) dataset [41] for a maximum of 50
epochs; early stopping with a patience value of two epochs (i.e., halting training
if validation accuracy does not improve for two consecutive epochs) is used to
minimize overfitting. The number of training examples used for specialization is
varied from 1024 to 8192 examples in increments of 1024, and additional experi-
ments with 512 training examples are conducted to enable direct comparison to
our previous results. Training examples are selected randomly from the larger
dataset. Testing is conducted for both DL and case-based classifiers on both the
training set—to estimate an upper bound on classification accuracy—and on an
independently-selected test set of the same size and composition to estimate a
general classification accuracy. All trials are conducted thirty times to establish
reliable mean and standard deviation accuracy values.

5 Results and Discussion

Figure 2 compares our previous experimental results for training from scratch
and our results with transfer learning for a similar number of features, and
Figures 3 and 4 show our results using transfer learning for all tested numbers of
extracted features. Several broad trends are apparent. First, and most evident,
using transfer learning to pretrain DL feature extractors leads to substantially
higher classification accuracy across the board than the same models trained
from scratch; this supports H1. As the number of extracted features increases, the
accuracy advantage of using pretrained models becomes particularly pronounced
in some cases, enabling the DL-CBR model accuracy to surpass the accuracy
of the DL classifier baseline. This exceeds the expectations set in H3, which
predicted that the DL system would maintain superior classification accuracy,



(a) Evaluated on training data (b) Evaluated on testing data

Fig. 2: AwA2 classification accuracy on train (a) and test (b) data for the DL
feature extractor architectures (using the corresponding 512 training example
accuracy values from our new data), comparing evaluation on the AwA2 dataset
using DL models trained from scratch on AwA2 (as in Leake et al. [27]) and
using transfer learning (pretrained on ImageNet and specialized on AwA2, from
these experiments). Error bars represent one standard deviation.

potentially with a limited difference. Using DenseNet for feature extraction led
to the highest classification accuracy (Figures 3 and 4). As DenseNet is the
most recent/advanced of the DL architectures explored in this work, this is
consistent with H2; however, study of other other architectures is needed (e.g.,
larger DenseNet models, ResNet).

5.1 Training from Scratch versus Transfer Learning

In our previous work, we concluded that the impact of the DL architecture on
classification accuracy was overshadowed by the impact of training set size [27].
That is, models across the board overfitted to training data or failed to converge
due to the small training set size; some models (e.g., AlexNet and DenseNet)
were somewhat resilient to this, but any differences were not dramatic. However,
when models are pretrained and specialized on the same limited training data,
the results are substantially different (Figure 2).

At the outset, even using a training set size comparable with the one used
in Leake et al. [27], the DL-classification accuracy is significantly higher. This
result is especially pronounced when using Inception or DenseNet architectures,
both of which significantly outperform VGG-based feature extraction models.
Furthermore, while there is an expected decrease between classification accuracy
on the training set and the independent test set, the difference is generally more
consistent across all models and is smaller in scale (around 30% or less). Our
earlier results show that using a case-based classifier does not substantially offset
the negative effects of training the DL model from scratch on limited data.



Fig. 3: Accuracy values for tested architectures, evaluated on the training set.
Each DL architecture is evaluated both as a feature extractor for a case-based
classifier (CBR) or as an end-to-end DL classifier (DL). Error bars represent one
standard deviation.

Intuitively, such a model may be improved simply by considering more training
data and/or training for more epochs. However, our results support transfer
learning as an effective means to apply our DL feature extraction approach in
data-sparse domains without requiring additional data or training cost.

5.2 Architectural Influences on Feature Quality

When using pretrained models, the choice of architecture significantly impacts
extracted feature quality, as evidenced by significantly different classification
accuracy values from the experiments. It is immediately apparent that in this
context, shallower models such as VGG underperform significantly and are more
dependent on having a “critical mass” of training data to achieve reasonable
classification accuracy. Presumably, these conclusions may be extrapolated to
related models such as AlexNet. Beyond this, the difference between DenseNet
and Inception is significantly smaller, but it appears that DenseNet consistently
performs better as a feature extraction architecture (Figures 3 and 4).

Based on these results, it is interesting to consider the factors that might ac-
count for DenseNet emerging as the best architecture among those tested in this



Fig. 4: Accuracy values for tested architectures, evaluated on an independently-
selected test set. Each DL architecture is evaluated both as a feature extractor
for a case-based classifier (CBR) or as an end-to-end DL classifier (DL). Error
bars represent one standard deviation.

case study. The answer could be as simple as pointing to the same factors that
make DenseNet preferred as an end-to-end DL architecture (i.e., DenseNet’s
greater depth). However, this is potentially less likely due to the comparable
performance of the end-to-end models in our experiments (though it is possible
that the CBR system is more strongly influenced than the end-to-end perfor-
mances). It is also reasonable to consider whether the depth-wise parallelism of
features afforded via DenseNet’s “skip connections” [18] is more useful for CBR
feature extraction than the lateral parallelism contained in Inception’s inception
modules. Further architecture testing (e.g., with ResNet, which also has skip
connections) might help isolate any general structural influences.

5.3 Accuracy and Consistency Benefits of Case-Based Classification
with DL Features vs. Pure DL

The most unexpected finding in these experiments is that DL-CBR classifiers
may perform more accurately than the corresponding end-to-end DL system.
In addition, the hybrid models were frequently more consistent, exhibiting a
smaller average standard deviation (Table 1). This manifests most dramatically



Standard Deviation on Training Set

# of Training Examples

Model Classifier Avg. St. Dev. 512 1024 2048 4096 8192

VGG
DL 0.0056 0.001 0.001 0.004 0.012 0.010

CBR 0.0174 0.028 0.019 0.012 0.012 0.016

Inception V3
DL 0.0054 0.001 0.002 0.007 0.009 0.008

CBR 0.0054 0.008 0.006 0.005 0.004 0.004

DenseNet121
DL 0.0046 0 0 0 0.012 0.011

CBR 0.0038 0.008 0.004 0.002 0.002 0.003

Standard Deviation on Testing Set

# of Training Examples

Model Classifier Avg. St. Dev. 512 1024 2048 4096 8192

VGG
DL 0.0180 0.025 0.019 0.015 0.019 0.012

CBR 0.0164 0.033 0.024 0.009 0.008 0.008

Inception V3
DL 0.0126 0.019 0.010 0.013 0.013 0.008

CBR 0.0058 0.011 0.007 0.005 0.003 0.003

DenseNet121
DL 0.0164 0.018 0.011 0.010 0.024 0.019

CBR 0.0078 0.014 0.010 0.006 0.005 0.004

Table 1: Average standard deviation values for each DL model, organized by train
and test evaluation data and then for DL and case-based classifiers. Supporting
raw standard deviation values are similarly organized and arranged by number of
training examples. Best (smallest) average values for each model per evaluation
set are emphasized.

for Inception and DenseNet when given larger training set sizes and tested on an
independent test set. However, we also see examples in which the same models
show close accuracy correlation across the board with their end-to-end counter-
parts when evaluated on both the training set and the independent test set.

The circumstances under which such DL-CBR models may outperform end-
to-end models is an interesting question. Ideally, using pretrained models creates
a “quality floor” for extracted features, so it is possible that better performance
is achieved because the CBR system might be able to reason more effectively
from features extracted from a pretrained model that is specialized on a small
training set, whereas an analogous pure DL system might require more training
data/iterations to reach a similar competency. We note that it appears not to
align as well with VGG feature extraction results; this may be due to the relative
simplicity/shallowness of the VGG architecture.

The evaluation on the training set was conducted to give an informal “upper
bound” indication of how well the methods could capture the data. Intuitively,
the training accuracy for an end-to-end DL model might be artificially high due



to overfitting on small training sets; this would explain why model training accu-
racy generally goes down as the amount of training data increases. By contrast,
training accuracy values for case-based classifiers using DL features are almost
all monotonically increasing with number of training examples (Figure 3). We
suspect that this is another manifestation of the expected benefits of CBR for
small data, though that accuracy is often highest for larger numbers of training
examples suggests that a “happy medium” number of training examples may
exist that produces a relative maximum training accuracy (e.g., as evidenced in
the DenseNet extractor trend line, which exhibits the only decrease in training
accuracy as training set size increases among case-based classifiers, Figure 3).

6 Future Research

In the reported experiments, case-based classification using DL-extracted fea-
tures provided accuracy comparable or superior to the corresponding DL classi-
fiers for image classification. A next step is to solidify these findings with tests
across multiple domains and DL architectures.

We are also interested in how training of the DL feature extractor may be
better aligned to the needs of the case-based classifier. This could be achieved
through in some way incorporating case-based classification error into the back-
propagation loss to sensitize DL feature selection to the needs of case-based
classification. In addition, where knowledge-engineered features are available to
the DL-CBR system [27, 40], it may be possible to provide such features to the
DL model during training, potentially influencing the DL model to generate fea-
tures complementary to the knowledge-engineered set. Finally, transfer learning
could be applied to the Multi-Net feature extraction architecture [26], to increase
accuracy through local feature selection.

7 Conclusions

This paper tests the benefit of using transfer learning when extracting features
from DL networks for case retrieval. It presents an evaluation of a selection of
pretrained DL models for CBR feature extraction for retrieval; the corresponding
results are compared against each other to establish a best-performing architec-
ture, as well as against earlier work on training the same models from scratch [27].
From these comparisons, we conclude that pretraining can significantly improve
feature quality over training from scratch on small datasets. Among pretrained
models, DenseNet appears to be the best architecture for feature extraction,
and using pretraining for feature extraction for the case-based classifier often
outperforms the corresponding end-to-end DL classifier (in which instances, the
interpretability of case-based classification is a bonus).

We are optimistic that closer DL and CBR system integration for feature
extraction, such as incorporating existing knowledge-engineered features into
the network directly during training or incorporating case-based classification
performance as a loss term during backpropagation, will further improve the



resulting classification accuracy. We also intend to revisit our work on localized
feature generation [26] with the goal of improving that model using transfer
learning. It will be important to confirm the conclusions from this case study
through explorations with other domain data, as well as other DL architectures.
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