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Abstract

Infants learn the meaning of words from accumulated ex-
periences of real-time interactions with their caregivers. To
study the effects of visual sensory input on word learning, we
recorded infant’s view of the world using head-mounted eye
trackers during free-flowing play with a caregiver. While play-
ing, infants were exposed to novel label-object mappings and
later learning outcomes for these items were tested after the
play session. In this study we use a classification based ap-
proach to link properties of infants’ visual scenes during natu-
ralistic labeling moments to their word learning outcomes. We
find that a model which integrates both highly informative and
ambiguous sensory evidence is a better fit to infants’ individual
learning outcomes than models where either type of evidence
is taken alone, and that raw labeling frequency is unable to ac-
count for the word learning differences we observe. Here we
demonstrate how a computational model, using only raw pix-
els taken from the egocentric scene image, can derive insights
on human language learning.

Keywords: word learning; egocentric vision; sensory ground-
ing; deep neural networks; computational modeling

Introduction

Infants learn the meanings of their first words through their
everyday experiences. Linking spoken words to their cor-
rect visual referents requires young learners to successfully
integrate what they see with what they hear. This is a chal-
lenging task, because the visual-audio sensory input during
learning contains a high degree of uncertainty with many
candidate words co-occurring with many candidate objects
across space and time. To examine the underlying mecha-
nisms employed to solve this difficult problem, researchers
have long turned to computational modeling. These computa-
tional studies have advanced our understanding by specifying
computational principles inherent to this learning task. Addi-
tionally, they allow us to simulate potential cognitive mech-
anisms that might support word learning. Early modeling
work has heavily relied on simplified and artificial stimuli
due to the lack of datasets capturing infants’ learning envi-
ronments in the real world as well as limited computational
power to handle high-density input collected from real world
settings. However, recent advances in sensing and computa-
tional technologies have revolutionized the cognitive model-
ing field. These new technologies allow us to collect high-
density behavioral data and simulate infant learning in natu-
ralistic settings to test precise theories of how word learning
might unfold in the real world.
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Computational Models of Infant Word Learning

Early modeling work used a connectionist system to explain
several word learning phenomena previously documented in
young children, such as over/under-extension effects, vocab-
ulary spurts and prototype effects (Plunkett, Sinha, Mgller,
& Strandsby, 1992). To simulate word learning, the model
learned to associate images to their corresponding labels.
This work demonstrated the power of applying computational
models in researching infant word learning, by explicitly link-
ing the model’s internal mechanisms to various features of
early language development. While these simulations offered
insights on potential mechanisms that might support learn-
ing, the stimuli in this study were highly abstract random
dot patterns paired with discrete binary valued word labels.
This limits the study’s generality when considering real world
learning data which involves highly complex visual and au-
ditory sensory input. Later work would use more advanced
neural network models to learn word-referent mappings from
more naturalistic stimuli (Roy & Pentland, 2002). However,
this later model was only able to learn using highly reduced
forms of the raw audio and visual sense data, which first went
through considerable pre-processing before being input to a
word learning module. While both of these early models
demonstrated powerful learning capabilities, neither of them
were tied to actual human infant word learning performance,
though in the case of Plunkett et al. (1992) they were able
to simulate a few general features observed during early lan-
guage acquisition.

Going beyond these early word learning simulations, there
has been considerable modeling work which relates more di-
rectly to human word learning performance. These studies
have largely come from statistical learning paradigms which
model human word learning performance by linking distri-
butional features of training stimuli to human learning out-
comes. In these experiments, researchers will typically en-
code different statistical regularities in their training stim-
uli and then test subjects’ learning outcomes after they have
been exposed to these data during a series of training trials.
Computational models have linked statistical word learning
performance to associative memory mechanisms (Kachergis,
Yu, & Shiffrin, 2012a, 2012b), as well as proposed local
learning rules which test specific word-meaning hypotheses
(Stevens, Gleitman, Trueswell, & Yang, 2017). Other work



Figure 1: Infant head camera frames taken from multiple different infants at the moment at which “moose” was uttered by their
caregiver. One group of frames (A or B) is from infants who learned the object name by the end of the free-play session, and
the other is from infants who did not learn the name. Can you tell which group of infants learned “moose” by the end of the
session?

has used computational models to study how social informa-
tion, such as prosodic and attentional cues (Yu & Ballard,
2007) or speakers’ referential intentions (Frank, Goodman,
& Tenenbaum, 2009), might be integrated with statistical in-
formation in order to learn word meanings. To model iter-
ative word learning across referentially ambiguous labeling
episodes, some authors have proposed probabilistic associa-
tive models of learning (Fazly, Alishahi, & Stevenson, 2010).
Prior work has also used modeling to study the relative time-
course of word learning. Some studies have modeled acqui-
sition rates as a function of the inherent uncertainty for learn-
ing an entire lexicon (Blythe, Smith, & Smith, 2010), while
other work, which hoped to explain certain rapid word learn-
ing phenomena, has suggested general principles of Bayesian
inference may be at play (Xu & Tenenbaum, 2007). These
studies have all used formal models to specify the cognitive
mechanisms and computational principles that may govern
word learning. While some of this prior work has attempted
to explain general patterns of word acquisition in human sub-
jects, none of these studies has attempted to explain individ-
ual infants” word learning performance for individual words.

Simulating Individual Word Learning In a
Naturalistic Setting

During statistical word learning, subjects will accumulate dif-
ferent statistics as a product of their unique selective attention
dynamics. This leads to individual differences in both the sta-
tistical evidence they collect as well as the specific words they
end up learning. Prior work has shown that fine grained pat-
terns of selective attention can be used to derive individual
word learning outcomes as well as to decode subjects’ in-
ternal states of knowledge (Amatuni & Yu, 2020). Here we
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present work that aims to simulate individual infants’ word
learning performance. In contrast to previous modeling work
using idealized stimuli and subjects, we use sensory data col-
lected from infants’ first person views while they and their
caregiver play with a set of toys in a naturalistic environment.

With recent advances in mobile sensing technologies such
as small head-mountable cameras, there have been numerous
studies recording infants’ naturalistic first-person visual and
auditory experiences (Yu & Smith, 2012; A. F. Pereira, Smith,
& Yu, 2014, Tsutsui, Chandrasekaran, Reza, Crandall, & Yu,
2020; Bergelson & Aslin, 2017; Sullivan, Mei, Perfors, Wo-
jeik, & Frank, 2021). These recordings help us characterize
the learning data young learners have access to, and allow us
to draw insights on the cognitive processes which make use
of this sensory input to support word learning.

Here we present a study which uses a computational model
to simulate real-time word learning outcomes for a set of 24
infants as they play freely with a caregiver in a naturalistic
home-like environment. At the end of this free-play session
infants perform a word-learning test to measure which of the
specific toys they successfully learned the names for. While
infants and their caregivers are allowed to behave freely as
they normally would, the lab based environment offers a con-
trolled setting in which to extract natural behaviors from the
dyads and to test immediate word learning outcomes. See
Figure 1 for example egocentric frames taken from two dif-
ferent groups of infants at the moment that their caregiver
labeled the object “moose”. One of these groups of infants
would ultimately learn that the label “moose” was associated
with the toy moose.

Our goal in this paper is to test whether our model, trained
by egocentric vision recorded during naturalistic infant-
parent toy play, can successfully simulate individual infant



learning performance for individual words. Specifically, in
Study 1 we used our model to predict infants’ word learning
performance using only images taken from the child’s point
of view during labeling instances. In Study 2, we used the
model to simulate different types of statistical evidence that
learners may aggregate. Here we used the strength of associ-
ation between visual features in the egocentric scene and their
associated learning outcomes as a measure of the quality of
visual sensory input delivered to each infant. Using this mea-
sure we computed each subject’s accumulated sensory evi-
dence for each individual object in order to test whether the
quality of visual sensory input may explain individual word
learning performance.

Behavioral Data Collection

Twenty-four infants (mean age: 17.5mo, range: 12.6-25.8)
and their parent were recruited to play in a home-like lab as
part of a larger experiment. Parents were not told we were in-
terested in word learning. The parent-infant dyads were given
10 novel toys to play with for a 10 minute session where
parents were asked to use specific labels for each toy. The
objects and their associated labels were chosen so that there
was a low probability that children in this age group already
knew these specific words. Parents were told to simply play
as they would at home, without further instructions. While
playing, both parent and infant wore wireless head-mounted
eye trackers (Pupil Labs). The parent’s eye tracker was worn
like a pair of glasses and the infant’s eye tracker was modified
to be attached to a soft hat. The eye trackers were connected
to a smart phone (Google). Participants wore a custom-made
jacket with a pocket in the back to hold the phone while they
played. The wireless eye tracking allowed infants and parents
to move freely, capturing more naturalistic interactions than
most lab studies on word learning.

Following the play session, infants’ knowledge of the 10
label-object mappings was tested using a screen-based task.
Two objects were presented on the screen at a time and the in-
fant was prompted to look at a labeled object. A trial was con-
sidered correct if the infant looked at the target object longer
than the distractor. Infants were tested on each object twice.
A word was considered “learned” if both trials were correct
and “not learned” if both trials were incorrect. On average,
2.3 objects were coded as “learned” and 1.9 objects as “not
learned” per infant. The remaining items could not be conclu-
sively scored as the infant did not attend to the screen for the
majority of a trial and/or the infant only got one trial correct.
After the experiment, the eye tracking videos were calibrated
to generate an estimate of the (x, y) coordinates correspond-
ing to subjects’ gaze. Parent speech was also transcribed to
find instances when they labeled any of the 10 objects (both
those that the infants did and did not learn).
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Study 1: Simulating Infant Word Learning
Outcomes Using Egocentric Video Frames

As an initial step towards linking first-person visual scenes
to early word learning, we demonstrate that a computational
model can predict infants’ learning outcomes above chance
using only images from their field of view (FOV) during a
labeling event. We train a deep convolutional neural network
(CNN) to discriminate frames from subjects who ultimately
learned the meanings of these words at the end of the play
session vs. those who did not. By solving this classification
task, the model must learn to associate visual features in the
egocentric scene with the relative success of those labeling
moments, and in so doing it becomes sensitive to the visual
features that constitute an ideal learning moment.

Data and Computational Models

We collect all the video frames centered around a labeling
moment (3 seconds surrounding the utterance), collapsing
across subjects and grouping together all the frames associ-
ated with a common label. Due to differences in relative rates
of naming and word learning for different objects, we omit
half of the items from further analysis due to lack of data.
These specific objects had large class imbalances (> 75% of
frames are either all “learned” or all “not learned”), prevent-
ing us from training and testing models on these particular
items. This yielded 5 viable objects which had a balance of
both learned and not-learned instances associated with them.
For each of these 5 objects, we train a separate set of binary
classifiers on all the frames associated with labeling events
for that specific object. The goal of these models is to dis-
criminate whether or not an image was taken from a subject
who ultimately learned the word uttered by the caregiver vs.
a subject who did not learn the meaning of the specific word
uttered at that labeling moment.

Our networks are organized in a feedforward architecture,
where input images are fed through a deep convolutional
network followed by a fully connected layer with two out-
puts. We train the network end-to-end using a cross-entropy
loss. Ground truth labels for each frame (i.e. learned vs.
not learned) are determined by each specific infants’ word
learning results at the end of the play session. For exam-
ple, if an infant learned “koala” by the end of the experiment,
the ground truth for all the frames associated with their own
“koala” labeling events would be marked as “learned;” if they
did not learn “koala,” these frames would be marked ‘“not-
learned” (Figure 2).

We report analyses using a pretrained ResNet-50 as our
deep CNN architecture (He, Zhang, Ren, & Sun, 2016), al-
though we found similar results using other backbone archi-
tectures. This model was pretrained on the ImageNet dataset
(Deng et al., 2009) and fine-tuned on our set of infants’ ego-
centric scene images. To robustly estimate accuracy of our
models, we test using 5-fold cross-validation with 3 separate
training trials on each of the folds (each initialized with dif-
ferent random seeds). When splitting data for training and
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Figure 2: Using a classification based approach to model visual features associated with successful word learning outcomes.
We train independent binary classifiers for each of the 5 different objects

testing, we partition by event rather than by frames, so that
all scene images associated with a given labeling event will
either be in the training or test set. Otherwise, due to the
close temporal contiguity for frames within a labeling event,
the model could memorize the visual similarities specific to
a particular event rather than learning features that generalize
across labeling events. See Figure 2 for a schematic of our
analyses.

Testing and Cross-Validation Procedure During training
we use a frequency weighted loss to mitigate the model’s ex-
posure to class imbalances inherent to the training set. Dur-
ing testing, for any given testing fold, we subsample from the
larger class to produce a balanced dataset (with a 50% ran-
dom baseline). The classification accuracies we report here
are averages across multiple random subsamplings (n=100).

Results

Figure 3 presents the accuracies of our learned versus not-
learned classifier across the five objects in the dataset. Our
models successfully classify word learning outcomes above
chance (50% random baseline) for all 5 objects using the held
out images taken from never before seen labeling events.
These results demonstrate how infants’ embodied interac-
tion with their environment leaves a unique signature on the
visual scenes that they experience. Our models are able to
extract these signatures from the first-person visual signal
and successfully link patterns in these signals to infants’ own
word learning, offering a proof-of-concept that this is pos-
sible, in principle, using a sensory grounded computational
model. While these results demonstrate how word learn-
ing outcomes can be derived from information taken in-the-
moment, we know that word learning is a process that’s ex-
tended across multiple episodes, as numerous pieces of evi-
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Figure 3: Classification accuracy on held out test frames,
where independent models are trained for each object. Our
models are able to predict learning outcomes for labeling
events that were never seen by the model during train-
ing, demonstrating an ability to generalize to novel labeling
events. Plots reflect aggregate classification accuracies of bal-
anced test samples across 5 folds.

dence regarding the meanings of words are collected and inte-
grated over time. This statistical aspect of word learning will
be the focus of Study 2 where we address how different forms
of evidence are integrated over time during word learning.

Study 2: Aggregating FOV frames to predict
learning of individual words from individual
infants

Here we use our model to quantify the quality of visual infor-
mation present in an individual infant’s FOV during labeling
moments, so that we may study the integration of visual sen-
sory information during statistical word learning. To do this,
we make use of the model’s own internal sense of uncertainty
in its classifications for each input frame. For every input im-



age the network will assign a final confidence score which it
will use to determine learned vs. not-learned classifications
(see the red and blue units in the “binary classifier” section
in Figure 2). When the score for “learned” classification is
greater than the score for “not-learned” (i.e. > 0.5), the model
classifies the input image as “learned”, and vice versa in the
case of “not-learned”.

While the accuracy results reported in Study 1 reflect
the model’s general performance characteristics in predict-
ing learning, they do not reflect the model’s internal sense of
how strongly a frame is associated with “learned” vs. “not-
learned” outcomes. Even in the frames correctly classified as
“learned,” some frames may be more strongly associated with
”learned” outcomes compared to others, reflecting a greater
association between the visual features in that frame and suc-
cessful word learning. When a frame has a large confidence
score associated to it, we interpret this to mean the sensory ev-
idence contained within the frame is more strongly associated
with learning. This is because the target of the referent uttered
at that specific labeling moment ended up being learned given
the specific sensory information contained within that frame.

Information Integration During Word Learning When
these confidence scores are taken in aggregate across all the
frames associated with a subject-object pair, they serve as
a weighted measure of the accumulated sensory information
present in the visual input from interactions associated with
each subject and object pair. In contrast to analyses in Study
1 which only looked at word learning in-the-moment, classi-
fying single frames as learned vs. not learned, the analyses in
Study 2 allow us to study information integration over time,
incorporating both labelling frequency and quality effects in
our modeling.

We use our model to study three different forms of evi-
dence accumulation, determining the type of a labeling in-
stance (informative vs. misleading) on the basis of our
model’s classification accuracy and using the confidence val-
ues associated with each frame to model the degree of infor-
mativeness for any specific interaction. Here different sub-
jects will have different number of frames associated with
each object, reflecting differences in the quantity of labeling
input across subject-object pairs. To model differences in the
quality of their visual input, we use these confidence values
to score frames associated with each subject-object pair for
their degree of association with learning outcomes. Here we
modeling 3 different types of evidence accumulation during
statistical word learning.

Correct Classifications To model the accumulation of sen-
sory evidence, both highly informative and ambiguous, we
accumulate the scores for all the frames that were correctly
classified by the model, reflecting the total degree of sensory
evidence that was positively associated to learning at the in-
dividual subject-object level.
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Incorrect Classifications To model the accumulation of
misleading sensory evidence, we accumulate the scores for
all the frames that were incorrectly classified by the model.
This reflects the total amount of misleading evidence, that is,
when frames were visually similar to successful word learn-
ing moments but did not actually lead to successful learning
outcomes, or alternatively frames that were similar to not-
learned instances but where these subjects in fact ended up
learning these words given this specific input.

Integrated Evidence To model the integration of both in-
formative as well as misleading sensory evidence, we accu-
mulate the confidence scores for all the frames which were
correctly classified by the model and then subtract the accu-
mulated scores for all the incorrectly classified frames. This
is meant to reflect the interaction of both positive and negative
evidence during statistical word learning as misleading infor-
mation is integrated with high quality visual evidence over
time.

Results

We plot the accumulated sensory evidence for the 3 differ-
ent integration types in Figure 4, along with the associated
ground-truth learning outcomes for each subject-object pair.
We also include model comparisons of 3 different logistic fits
predicting individual subject-object learning outcomes using
confidence values from the 3 different evidence accumulation
types. We find that a model that integrates both negative as
well as positive evidence is a better fit to the individual sub-
jects’ learning outcomes than models that use either positive
or negative evidence alone. Moreover, a two-sided Mann-
Whitney U test indicated that, at the per-subject/item level,
the raw number of frames (which reflects the frequency of an
individual object’s naming) was not significantly different for
learned vs. not learned items (U = 993.0, p = 0.43). This
suggests that the specific quality of the sensory information,
rather than the mere labeling frequency, may better explain
the learning effects we observe here.

Discussion

We used computational modeling to quantifying infants’ vi-
sual sensory experiences and track learning progress during
free-flowing, naturalistic parent-infant interactions — a type of
analysis that would be impossible with conventional behav-
ioral studies. In Study 1, we trained a computational model
to classify word learning outcomes using images taken from
infants’ FOV and showed that it can generalize beyond its
training set to predict infant word learning on never-before-
seen labeling events. In Study 2, we quantified the real-
time sensory evidence in free-flowing interactions by using
the model’s internal degrees of uncertainty as a measure of
the quality of information in each naming event. This al-
lowed us to study statistical word learning at the sensorimotor
level, by tracking how infants may accumulate and integrate
informative vs. misleading evidence over time. We found
that a model which incorporates both positive and mislead-
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from either type of classification alone.

ing evidence accumulation is better at predicting individual
subject-object word learning outcomes than models which
only include positive or only negative evidence accumulation
alone, consistent with prior work studying infant word learn-
ing (Zhang & Yu, 2017). Moreover, we find that mere label-
ing frequency is unable to account for this learning effect, and
that we are only able to successfully simulate infants’ word
learning outcomes by considering the specific quality of the
sensory information available to individual infants.

We used a novel classification-based approach to begin
studying the visual properties associated with informative as
well as misleading word learning moments. To our knowl-
edge, this is the first computational model to successfully
associate infants’ raw, first-person visual input with their
own word learning outcomes. While these machine learning
methods have regularly been used in functional neuroimaging
work to model complex patterns of neural activity (F. Pereira,
Mitchell, & Botvinick, 2009), few studies have leveraged this
class of techniques to study real-world language learning.
With steady improvements in technology, we are able to col-
lect high density behavioral and sensory data which require
similar improvements in our analytical approaches. Rather
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than reduce the complexity of natural data for the sake of sim-
ple statistical models, classifiers like the ones we have pre-
sented here have started to find use in discovering meaning-
ful patterns in rich multimodal data associated with language
learning (Piazza, Iordan, & Lew-Williams, 2017; Ludusan,
Mazuka, & Dupoux, 2020; Amatuni & Yu, 2020).

Nonetheless, there are limitations to our approach. One
limitation concerns the use of the pretrained CNN in our
classifier. While pretraining allows us to bypass early vi-
sual sensory learning (i.e. learning about edges, textures and
shapes, which is not the focus of the present work), the pre-
training likely introduces biases which are specific to both
the pretraining dataset (e.g. object-centered scenes in non-
naturalistic poses in ImageNet) as well as the pretraining task
(i.e. image classification). In future analyses we hope to miti-
gate this bias by training networks from scratch using infants’
own first person experiences. Another limitation is that our
current work only approximates the input for early language
learning. In the course of real language learning, multimodal
and social information beyond the visual modality plays a
crucial role in learning — e.g., the content of parent speech or
whether the infant is holding the labeled object. Our current



paper focuses purely on the visual domain, using a deep CNN
as a model of complex sensory input in the visual modality. In
future work we hope to incorporate multiple sources of sen-
sory and social information in a unified computational model
of multimodal word learning.

Here we used a computational model to successfully as-
sociate visual properties in infants’ FOV with infants’ word
learning, allowing us to model ideal visual contexts for learn-
ing words. We accomplished this by training a deep CNN
classifier to discriminate whether or not a frame taken from
infants’” FOV within a free-flowing parent-infant interaction
would lead to word learning by the infant. Our model used
only images collected from infants’ egocentric scenes dur-
ing naming instances, the same visual information an infant
has access to. Further, we show that both positive and neg-
ative evidence may play a role in language learning at the
sensory level, demonstrating how a model which integrates
both forms of evidence is a better fit to individual learning
outcomes than models that look at only positive or only nega-
tive sensory evidence alone. Our results suggest that complex
sensory experience, rather than being a problem for language
learning, may be a critical part of the solution, and that we
may better understand it when we look at how it is grounded
in infants’ sensory input.
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