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Abstract

Recent advances in wearable camera technology have
led many cognitive psychologists to study the development
of the human visual system by recording the field of view of
infants and toddlers. Meanwhile, the vast success of deep
learning in computer vision is driving researchers in both
disciplines to aim to benefit from each other’s understand-
ing. Towards this goal, we set out to explore how deep
learning models could be used to gain developmentally rel-
evant insight from such first-person data. We consider a
dataset of first-person videos from different people freely in-
teracting with a set of toy objects, and train different object-
recognition models based on each subject’s view. We ob-
serve large inter-observer differences and find that subjects
who created more diverse images of an object result in mod-
els that learn more robust object representations.

1. Introduction

The popular media (and, to a more measured extent,
many computer vision researchers) have drawn analogies
between deep learning techniques and the process by which
human infants learn to make sense of the visual world [16,
22, 36, 38]. This connection is intuitive and appealing:
whereas traditional approaches to computer vision prob-
lems required hand-engineered features, deep learning al-
lows machines to learn from raw visual stimuli. This is pre-
sumably what children must do: although they may be hard-
wired to respond to certain types of visual features [18],
they have to learn, for example, the mapping between visual
features and word names under only very weak supervision.

Of course, the connection between deep and human
learning is just an analogy: although convolutional neural
networks are inspired by what is known about the human vi-
sual and learning systems, they are a crude approximation at
best. More fundamentally, the basic paradigm under which
infants learn is completely different from the way we train

supervised machine learning algorithms. Infant learning oc-
curs in an embodied setting in which the child observes and
interacts with the world, which is completely different from
a machine learning algorithm training on a static set of mil-
lions of photos. Moreover, the very nature of these images
is different: ImageNet [5] consists of mostly clean, indepen-
dently chosen Internet photos, for example, whereas people
learn from the “first-person” imagery they see in their vi-
sual fields during day-to-day life. In addition to being more
cluttered, the “image frames” that people observe are highly
correlated, not independently sampled as with ImageNet.

Intriguingly, head-mounted camera technology now
makes it possible for us to capture video that is an approx-
imation of a person’s visual field [37], potentially letting
us actually train machine learning models on imagery more
similar to what a human learner sees. For example, recent
work compared the performance of machine learning mod-
els trained on raw first-person frames from children and par-
ents, and found that the training data from the kids produced
better models [2]. This result is consistent with hypothe-
ses in cognitive science that infants’ visuomotor systems are
optimized for efficient learning [32].

As an increasing number of behavioral and develop-
mental studies are based on collecting first-person im-
agery [4,7], we set out to explore how deep learning models
could be used to gain developmentally insightful informa-
tion from such data, and in particular to better understand
the connection between first-person training data and the
quality of trained models it produces. We used a dataset of
people freely playing with a set of toy objects, and found an
interesting phenomenon: the performance of models trained
using data from different individuals varied dramatically.
Some people’s data was simply of higher quality than others
for learning models of certain objects.

In this paper, we study this observation in detail. Why
is it that certain people’s data is better for learning mod-
els for certain objects? We begin by studying the relation-
ship between easy-to-measure properties of a person’s first-
person imagery (e.g., number of training exemplars per ob-
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ject, diversity of views, image sharpness, etc.) and the per-
formance of the object recognition models produced when
their first-person imagery is used as training data. We find
that while all of these (dataset size, image quality, dataset
diversity) are positively correlated with recognition perfor-
mance, diversity appears to be essential. Comparing the
neural activation patterns across trained models suggests
that creating visually diverse training instances encourages
the networks to consider more parts and features of an ob-
ject, leading to a more robust representation.

2. Related Work

2.1. Studying human vision with wearable cameras

Yu and Smith [32] studied the development of toddlers’
visual systems using lightweight wearable cameras, finding
that their visual experience is fundamentally shaped (and
limited) by their own bodily structure and motor develop-
ment. Consequently, more and more developmental psy-
chologists have started using wearable technology (includ-
ing wearable eye-tracking) to study various developmental
aspects such as locomotion [8] and attention [37]. For in-
stance, much work has focused on studying how and when
infants learn to recognize distinct objects. Apart from pro-
viding insights into the development of the visual system,
studying object recognition in infants is also foundational to
language learning. Humans break into language by learn-
ing static word-object mappings [31], and head-mounted
cameras provide a naturalistic methodology to study the
statistics of objects in the child’s field of view. Recently,
Fausey et al. [7] used wearable cameras in longitudinal at-
home studies, showing how biases in the infant’s visual in-
put change from faces to hands (and held objects) within the
first two years. Clerkin et al. [4] used a similar paradigm
to show that the distribution of objects that toddlers see
at home is extremely skewed, potentially allowing them to
learn certain word-object mappings despite only weak su-
pervision.

The success of deep learning and convolutional neural
networks (CNNs) in computer vision has generated increas-
ing interest in using similar models to study human vi-
sion [10]. Conversely, experimental paradigms developed
by cognitive psychologists may also help us understand
the properties of deep neural networks. For example, Rit-
ter et al. [26] use data designed to examine human shape
bias (i.e., that humans tend to categorize objects by shape
rather than color) to show that some deep network architec-
tures show a similar behavior. Perhaps most related to the
present study is the work by Bambach et al. [1, 2] that uses
CNNs as tools to evaluate the learnability of visual data cap-
tured with head-mounted cameras, focusing on differences
between toddlers and adults. Our study here is similar in
spirit but examines distinct questions: how first-person im-

agery differs across individuals, and how these differences
in “training data” could impact the quality of object models
that they learn.

2.2. Egocentric Computer Vision

The recent practicality of head and body-worn cameras
has driven computer vision work dedicated to analyzing
first-person images and videos, with researchers exploring
a number of problems and applications. Examples include
activity recognition (either based on reasoning about objects
in view [6, 23] or based on analyzing self-motion [15, 28]),
hand detection [3] and 3D gesture recognition [33], and
video summarization for life-logging cameras [17].

Object recognition for head-mounted cameras was first
explored by Ren and Philipose [25], who argued that the
first-person perspective was inherently supportive of this
task as people tend to bring objects of interest into dominant
view. Follow-up work explored figure-ground segmentation
of held objects based on optical flow [24], which others uti-
lized for object-based activity recognition [6]. While our
work also deals with first-person object recognition at its
core, we are not primarily interested in maximizing perfor-
mance for a potential computer vision application, but focus
on studying inter-subject differences and potential implica-
tions for researchers to use deep neural networks as tools to
study human vision.

2.3. Dataset biases

Ever since machine learning approaches began to dom-
inate the field of object recognition, considering and ad-
dressing possible dataset biases has become a key con-
cern [35]. Recent datasets like ImageNet [5] counter this
problem by collecting large numbers of (approximately) in-
dependent training exemplars from the Internet. But first-
person video is inherently different: temporally-adjacent
frames are of course highly correlated, but even frames
taken at very different periods of time by the same person
tend to be biased because a person’s environment and be-
havior patterns are consistent across time. Many research

Figure 1: Example frames from the first-person videos
captured by various subjects (adults and toddlers) as they
played with a set of toys. The top-left frame depicts the
bounding box annotations that were used to isolate each toy.



areas such as transfer learning [20] and low-shot learn-
ing [12] also deal with generating robust, unbiased models
from relatively few exemplars. In this paper, our goal is not
to correct for dataset bias or to overcome the problem of few
exemplars, because our goal is not to derive the best recog-
nition performance. Our goal is to use deep learning as a
data analysis tool: to characterize and identify differences
between the first-person visual data collected by different
individuals.

3. Dataset

We use the same dataset as Bambach et al. [1], which
consists of videos captured with head-mounted cameras
worn by parents and toddlers as they jointly play with a
set of toys. This data is part of an ongoing research ef-
fort to study the development of the human visual system
by recording the toddler’s field of view and measuring its
statistics [32, 37]. We limit our description of the dataset
and the experimental setup to the aspects that are most rel-
evant to the study presented here, and refer to [1] for more
details.

3.1. First-Person Toy-Play

The dataset consists of 20 videos recorded by 10 parent-
toddler dyads that were each equipped with lightweight,
head-mounted cameras that aimed to approximate their re-
spective fields of view. All videos were recorded in a small
lab set up as a playroom. The dyads were encouraged to
play with a set of 24 toy objects (shown in Figure 2b), but
received no further instructions, allowing for free-flowing,
individual play. Some sample frames are shown in Figure 1.
The videos have an average length of around 8 minutes.

3.2. Creating Subject-dependent Training Sets

From a computer vision perspective, this dataset is in-
teresting because it provides 20 “individualized” perspec-
tives of the same set of 24 objects, with substantial variation
caused by each subject’s behavior: the way the child and
parent chose to view the scene, manipulate the objects, etc.
The dataset includes manually-annotated bounding boxes
for each toy object (see top left frame of Figure 1) at a rate of
1 frame every 5 seconds. We use these annotations to isolate
each object and create 20 subject-dependent datasets. Sam-
ple images of all 24 toys, generated by a single subject, can
be seen in Figure 2a. For the sake of this study, we do not
distinguish between toddlers and adults, but consider them
jointly in order to obtain a large number of subjects. We
had to exclude 3 subjects from our final pool as their videos
did not include instances of all 24 objects. The remaining
17 per-subject datasets included an average of 1,070 images
each (around 45 images per object).

(a) Exemplars of the toy objects as seen by a single observer

(b) Exemplars of the toy objects in the test set

Figure 2: Comparison between the training images cap-
tured by a subject wearing a head-camera (a) and the con-
trolled test images (b). The set of objects includes typical
toys such as cars, figures/puppets, or tools. All images are
scaled to a square aspect ratio for ease of visualization.

3.3. Controlled Test Data

We use a separate test dataset to objectively compare
the performance of the neural network models trained on
each subject’s first-person data. This test dataset consists of
close-up photos of the same 24 toy objects (see Figure 2b).
The photos were taken in a controlled setup such that each
object is seen from a large variety of viewpoints (see [1] for
details). As we are interested in learning about specific ob-
jects (rather than object classes like “dog” or “cat”) we as-
sume that a model’s capacity to recognize an object can be
measured by how well the model recognizes it under var-
ious viewpoints and rotations. Overall, the controlled test
set consists of 128 images for each object and 3,072 images
total.

4. Training CNNs to Represent Subjects

The goal of our training procedure is to produce a sin-
gle multi-class neural network model per subject, such that
each model is trained only on the visual observations (object
instances and views) made by that individual subject while
engaging in the free-form play. Afterwards, we compare
these models on a separate test set which was collected in a
controlled manner, independent of any subject. Comparing
the test performance across different models, each biased by
how its subject saw each object, could give insight into the
properties of the visual training data itself, including which
biases in viewing the objects lead to better recognition.

Once again, our goal here is not to produce the best ob-



ject recognition models, but instead to use CNNs as a way
of characterizing the properties of a training dataset. Thus
our training methodology differs from that of typical ma-
chine learning in several ways: (1) our training set is not
drawn from the same distribution as the test set; (2) each
individual training set is relatively small (the average num-
ber of per-class training exemplars is 45); and (3) we use the
controlled test set from Section 3.3 directly as our validation
set during training (rather than using a separate subset of
the training data). This latter strategy avoids further reduc-
ing the size of our already-limited training dataset, and is
consistent with our research goal of comparing models that
were trained on different datasets. Validating each model on
the same data ensures that each model is trained to the point
where it best “generalizes” to the canonical viewpoints of
each object.1

4.1. Model Selection

We experimented with three well-established CNN ar-
chitectures of increasing recognition capacity (as measured
by their classification accuracy on the ImageNet [5] bench-
mark): VGG16 [30], InceptionV3 [34], and ResNet50 [14].
For each type of network, we start training with network
weights pre-trained on the ImageNet [5] dataset. We found
that, across all subjects, VGG16 actually was able to gen-
eralize best. InceptionV3, while quickly memorizing the
small training sets after 2-3 epochs, performed barely above
chance on the test set. ResNet50 memorized the training
data equally quickly and achieved above chance accuracy,
but still performed significantly worse than VGG16. We
thus used VGG16 for all remaining experiments.

4.2. Fine-tuning Strategies and Robust Results

The stochastic nature of neural network training (e.g.,
random parameter initialization and non-determinstic shuf-
fling of training exemplars) can lead to very different mod-
els across training runs, especially given the very small size
of our datasets [26]. As we are interested in comparing
model performance across different subjects (as measured
by overall accuracy on the test set) and across different
subject-object combinations (as measured by the per-class
accuracy of each subject), it is important to reduce this vari-
ance as much as possible. We do this by training multiple
network instances for each of the 17 subjects, and character-
ize the resulting models based both on mean and variance of
their performance. We also study how different fine-tuning
strategies affect model performance.

1When we use the term “generalize” in this section, we thus refer to
how well the models trained on each subject’s biased object viewpoints can
translate to the subject-independent, canonical viewpoints of those same
objects in the test set.

fine-tuning method (i) (ii) (iii)

avg. mean accuracy across subjects 0.45 0.61 0.43
avg. 95% conf. interval across subjects ±0.03 ±0.03 ±0.03

correlation coefficients
for mean object accuracy

(i) 1 - -
(ii) 0.87 1 -
(iii) 0.67 0.66 1

Table 1: Training multiple instances of VGG16 with differ-
ent fine-tuning strategies. Only initializing the last network
layer randomly (ii) yields best results. The variance in per-
subject accuracy across 10 training instances is rather small.
Accuracies for single objects/classes are highly correlated.

4.2.1 Training and Implementation Details

All of our CNN models are based on the VGG16 [30] ar-
chitecture, which consists of 5 blocks of convolutional and
pooling layers, followed by 3 fully-connected layers. We
consider three ways of fine-tuning the network based on
pre-trained ImageNet [5] weights: (i) initialize all 3 fully-
connected layers randomly, (ii) only initialize the last fully-
connected layer randomly, (iii) only initialize the last layer
randomly and freeze all other weights during training (sim-
ilar to learning a linear classifier on top of deep features).

Each network is trained with stochastic gradient descent
with a learning rate of 0.001, a momentum of 0.9, and a
batch size of 64 images. The loss function is the categorical
cross-entropy across 24 object classes, where each class is
weighted to counter-balance underrepresented classes in the
training data. After each epoch, we compute the accuracy
on the validation set and stop training if the accuracy has
not increased for more than 3 epochs, choosing the network
weights that achieved the highest accuracy up to that point.

We explicitly avoid performing any training data aug-
mentation (such as horizontally flipping images) to ensure
that each subject’s model is learning only based on object
viewpoints that the subject actually generated.

4.2.2 Training Results

For each of the 17 subjects we trained 10 separate network
instances and computed the mean accuracy on the test set.
As shown in Table 1, the average confidence interval across
subjects was around ±3%, indicating that results are rela-
tively stable despite the small training sets. Table 1 further
shows that only initializing the last layer randomly (strategy
(ii) above) leads to the best overall performance.

Since we are using CNN models as a method for char-
acterizing a training dataset as opposed to finding a model
that produces the best accuracy, it would be reassuring to
verify that recognition results are relatively stable across
different choices of network training. As a step towards
verifying this, we compute the correlation coefficients of
the mean per-class accuracies across the three fine-tuning



approaches. As shown in Table 1, accuracies are strongly
correlated, which we take as further evidence that we are
robustly estimating recognition performance as a function
of each training set, despite the non-determinism and lim-
ited quantity of training data.

All of the results in the remainder of the paper are based
on the network models that were trained with fine-tuning
method (ii), and all accuracies are based on the averages of
10 separately trained models.

5. Comparing Object Recognition Results
We begin by investigating whether some subjects indeed

learn to better recognize objects than others. To do this, we
compare the distributions of per-object accuracies across all
17 subjects. The per-object accuracy is measured as the
fraction of test images depicting object c that were cor-
rectly classified as c. The results are summarized in Fig-
ure 3a using box-and-whisker plots. Subjects are ordered by
their median overall recognition accuracy (dark green line),
where the green box depicts upper and lower quartiles and
the whiskers depict the minimum and maximum per-object-
accuracy. For example, Subject 7’s worst object recognition
accuracy is 7%, best accuracy is 96%, and median accuracy
is 50%. Overall, the results indicate that there are signifi-
cant differences across subjects; i.e., some subjects tend to
generate better training data than others. At the same time
there is a large variation in per-object accuracies, with even
the worst subject recognizing some objects nearly perfectly,
and the best subject recognizing some objects rather poorly.

Figure 3b splits the results by each object, comparing
how well it was recognized across the different subjects.
Results indicate that some objects seem to be intrinsically
harder to recognize than others, no matter how they are ob-
served in the training data. Finally, Figure 3c combines all
results by plotting each object based on how well it was
recognized (x-axis) and each subject’s overall recognition
accuracy (y-axis).

Taken together, these results suggest that how well a neu-
ral network can learn to recognize an object depends both
on the intrinsic visual qualities of the object itself, as well as
how a subject observed the objects. In the next two sections
we explore these factors in greater depth.

6. Predicting Recognition Accuracy
Considering each combination of subject and object

yields 17 ∗ 24 = 408 data points, each corresponding to
a set of training images and a corresponding recognition ac-
curacy. With accuracy as the dependent variable, we ex-
plore different qualities of the training data that may predict
whether an object was successfully learned. We separate
these qualities into three categories: interaction, complex-
ity, and diversity.
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Figure 3: Comparing recognition results across different
subjects and objects. Some subjects learn to overall rec-
ognize objects much better than others, while some objects
seem to be intrinsically easier/harder to recognize.

6.1. Object Interaction

Intuitively, one would expect that subjects generate “bet-
ter” training data for objects that they are directly playing
and interacting with, as opposed to objects that mainly ap-
pear in their peripheral vision. We quantify this interaction
with three metrics.

Number of instances. As subjects are likely to generate
more instances of objects they are more interested in, this
metric simply counts the number of images for each object.

Mean instance size. Objects that are held tend to be larger
in the field of view. We capture this by computing the mean
bounding box size for each object instance.

Mean instance centeredness. Objects of interest also tend
to be more centered in the field of view. We capture cen-



teredness by computing the average distance from each ob-
ject (bounding box center) to the center of the frame.

Note that all of these metrics can only indirectly influ-
ence the model because the number of instances per class
is controlled during training, and each training image is
cropped from its frame and rescaled to the same size.

6.2. Complexity

Another possibility is that properties of individual train-
ing images may be predictive of the quality of a training
dataset. We compiled several straightforward metrics that
quantify properties like structure, complexity and colorful-
ness of each image. All metrics are computed after each
image was resized to 224 × 224 pixels, the size of the neu-
ral network input.
RMS contrast. The root mean square (RMS) contrast is the
standard deviation of pixel intensities [21],

RMScontrast(I) =

√√√√ 1

MN

N∑
i=1

M∑
j=1

(Iij − Ī)2,

for an M ×N image I with average intensity Ī .
GLCM contrast. The GLCM contrast is based on the gray
level co-occurrence matrix [11] of an image and is com-
monly used as a metric of how much texture is present. It is
given as

GLCMcontrast(I) =
1∑

i,j p(i, j)

Ng∑
i=1

Ng∑
j=1

(i− j)2 ∗ p(i, j),

where p(i, j) denotes the entry of the GLCM at position
(i, j) and Ng denotes the number of gray level bins (Ng = 8
in our experiments).
Sharpness. We measure image sharpness as proposed by
Gabarda and Cristóbal [9] based on the deviation of the ex-
pectation of the pixel-by-pixel entropy along different direc-
tions. This metric has been shown to be high for in-focus,
noise-free images and low for blurred or degraded images.
Feature congestion. Feature congestion was proposed by
Rosenholtz et al. [27] as a measure of clutter in images,
and is based upon a combination of features computed at
multiple scales that are spatially-pooled to produce a single
measure. Feature congestion has been shown to capture the
“complexity” of an image, in terms of how difficult it is for
a human to comprehend it.
Colorfulness. Colorfulness is a metric proposed by Hasler
and Süsstrunk [13] to measure the perceptual colorfulness
of natural images. It is computed based upon statistics of
the green-red and blue-yellow components of the image in
the CIELab color space, and has been experimentally shown
to accurately predict human ratings.

Each of the above metrics reduces an image to a single
scalar such that we can represent each set of images by the
metric’s average value.

6.3. Diversity

Finally, we aim to quantify how diverse the different
training instances of an object are. Intuitively, subjects who
did not interact with an object should produce very similar
training images, and this may harm learning.

GIST distance. The GIST descriptor [19] captures the
overall spatial structure of a scene, projecting images into
a lower-dimensional space such that images with similar
structure (e.g. streets, mountains, skyscrapers) are close to-
gether. We compute the average GIST distance (L2 norm)
between all pairs of training instances to quantify the vari-
ety of object viewpoints that each subject created.

Mean Squared Error. We also measure the diversity be-
tween images in a more crude way by simply computing
the pixel-wise mean squared error between each image pair
and averaging them across all training images of each ob-
ject.

Complexity metrics. We also compute diversity with re-
spect to each complexity metric listed in Section 6.2. For
example, instead of averaging the RMS contrast values for
each training image, we compute the average contrast dis-
tance between each image pair to capture if the subject col-
lected both low and high contrast images of an object.

6.4. Results

Our results are summarized in Figure 4. The first row
depicts correlation coefficients between accuracy and each
respective metric, computed based on 408 data points (17
subjects × 24 objects). Overall, we observe strong cor-
relations for GLCM contrast (.38) and feature congestion
(.40). Given that a CNN heavily relies on edge filters to an-
alyze images, it makes sense that training images that con-
tain greater structure potentially offer more discriminative
ability than those that contain predominantly plain view-
points of an object. However, the most predictive measures
are based on the diversity of the data that each subject cre-
ates. Intuitively, creating more diverse views of an object
(captured by GIST distance and MSE) allows the model to
observe and learn more features, leading to a more robust
representation. Interestingly, diversity appears to facilitate
learning across virtually any metric. For example, even the
average distance between GLCM contrasts can already pre-
dict 46% of the variance in accuracy. Although the mean
colorfulness of each training image is not predictive of ac-
curacy, the diversity with respect to colorfulness is. Metrics
that aim to capture object interaction predict accuracy less
strongly than the diversity metrics. This is presumably be-
cause object size and centeredness are only rough approx-



# 
of

 in
st

an
ce

s

m
ea

n 
in

st
an

ce
 s

iz
e

m
ea

n 
in

st
. c

en
te

re
dne

ss

R
M

S c
on

tra
st

G
LC

M
 c

on
tra

st

sh
ar

pne
ss

fe
at

ur
e 

co
ng

es
tio

n

co
lo

ur
fu

ln
es

s

R
M

S c
on

tra
st

 d
is
t.

G
LC

M
 c

on
tra

st
 d

is
t.

sh
ar

pne
ss

 d
is
t.

fe
at

ur
e 

co
ng

es
tio

n 
dis

t.

co
lo

ur
fu

ln
es

s 
dis

t.

G
IS

T 
dis

t.

M
SE

0.1

0.2

0.3

0.4

0.33 0.31 0.33 0.11 0.26 0.17 0.20 0.07 0.32 0.35 0.25 0.29 0.30 0.38 0.38corr. (object controlled)

0.35 0.24 0.31 0.29 0.38 0.29 0.40 0.05 0.29 0.46 0.35 0.45 0.34 0.43 0.47correlations

interaction complexity diversity

Figure 4: Correlations coefficients indicating how well various dataset qualities predict accuracy. The first row is based on
all object×subject combinations while the second row only considers variations among subjects. See text for a description
of each metric.

imations of whether a subject actually interacted with an
object, while a diverse set of object images is a direct con-
sequence of such interaction.

Some of these results might be caused by intrinsic visual
qualities of the toys. After all, we know from Figure 3b
that some objects seem to be harder to learn than others.
The second row in Figure 4 controls for this effect by only
computing the correlations across datasets of the same ob-
ject, with variation caused only by subjects (i.e. there are
17 data points per object). The correlation coefficients are
then averaged across toys. Results show that the metrics
that capture image complexity become drastically less pre-
dictive, while metrics based on object interaction and di-
versity (specifically GIST and MSE) remain relatively pre-
dictive. This suggests that creating a dataset that contains
diverse object viewpoints can facilitate learning across hard
and easy to learn objects.

7. Class Activation Mapping
Understanding how neural network models make deci-

sions is an active area of research. Here, we use a recently
proposed method, Grad-CAM [29], in order to investigate
differences between models that robustly learned to recog-
nize an object and models that did not. Grad-CAM is a
generalization of the CAM (class activation mapping) tech-
nique proposed by Zhou et al. [39]. In essence, Grad-CAM
visualizes the activations of the filter responses of the last
convolutional layer in the neural network. These activa-
tions capture a high-level representation of the input image
while still preserving spatial structure. The activations are
weighted by the their average gradients with respect to the
network output for a specific class. For a classification net-
work such as the one we are investigating, one can think
of Grad-CAM as visualizing regions in the image that the
model learned to be most discriminative with respect to a

certain output class.

7.1. Visual Comparison

For each of the 24 toy objects, we find the subject that
learned to recognize the object best (as measured by the
highest per-class accuracy), and the subject with the worst
recognition performance (lowest per-class accuracy). We
then visualize and compare their class activation maps on a
random subset of the test images for each class. These com-
parisons are shown in Figure 5. For example, the first row
shows test images of the snowman object overlaid with the
activations for the snowman class.2 The green box shows
the activations by the model trained on Subject 3’s data,
which classified 100% of the snowman images correctly.
The red box shows activations for Subject 8’s model, which
only classified 39% of the snowman images correctly. The
largest source of confusion for Subject 8 was the police car,
i.e. 19% of the snowmen were classified as police cars.

One observable trend in Figure 5 is that models that
learned to recognize objects well tend to show activations
that cover large areas and many different aspects of the ob-
ject. Considering the snowman example (Figure 5, first
row) again, the training data collected by Subject 8 seems to
have suggested to the CNN that it was sufficient to rely on
local black-and-white patterns (such as the snowman’s arm)
to distinguish it from the remaining objects. However, that
pattern may not always be visible and similar patterns are
also present in the police car. Subject 3 on the other hand
successfully learned to consider multiple snowman patterns
that are visible across multiple viewpoints and do not jointly
occur on other objects, such as the police car.

2As we actually trained 10 neural network models for each subject, we
also produced 10 different activation maps. What we visualize in Figure 5
are the average activations across all models. We found that activation
maps were remarkably consistent across the different model instances.
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Figure 5: Grad-CAM [29] activations for different objects, comparing the subject with the best object classification accuracy
(green) to the subject with the worst accuracy (red). See text for details.

7.2. Large active areas predict recognition

To ensure that the effect shown in Figure 5 is not only
limited to extreme cases, we performed a correlation experi-
ment similar to Section 6. Again considering 17×24 = 408
data points, we correlate each subject’s per-object accuracy
with the mean activation across each test image. Each ac-
tivation map is normalized first, ensuring that large mean
activations are caused by large active areas. We find a very
strong correlation (.51), indicating that the recognition per-
formance is directly related to how many parts or features
of the object are considered important.

8. Summary and Conclusion
Wearable cameras that approximate a person’s field of

view are becoming increasingly popular among develop-
mental scientists. We explore the use of convolutional neu-
ral network models as potential tools to study object recog-
nition across different people. Based on a dataset of 17 sub-
jects who all interact with the same set of toy objects, we
train different CNN models based on the data from each
subject’s head-mounted camera. We find large differences
in model performance across subjects. Models that were
trained with visually diverse exemplars of an object, and
exemplars containing a lot of structure, tend to learn more
robust object representations. Comparing the neural acti-

vations between models revealed that a successful model
learned to discriminate an object based on many different
features and parts.

Overall, our results show that neural networks have the
potential to highlight and quantify biases in the visual data
that humans naturally collect. However, as CNNs are a
crude approximation of the human visual system at best,
any strong conclusions require careful analysis. Moreover,
posing recognition as a classification problem can be prob-
lematic as any model’s capacity to recognize a specific class
also depends on the training exemplars for other classes.
Preliminary investigations on our data indicate that many
sources of class confusion are not immediately interpretable
by a human observer.

Finally, our current approach treats each object in the
field of view equally, which is not an ideal approximation
of the visual system. We are working on collecting eye gaze
data which will allow us to consider visual attention as a su-
pervisory signal, and create training data that more closely
reflects how humans actually see the world.
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