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Abstract 

The processes and mechanisms of human learning are central to inquiries in a number of 

fields including psychology, cognitive science, development, education, and artificial 

intelligence. Arguments, debates, and controversies linger over the questions of human learning 

with one of the most contentious being whether simple associative processes could explain 

human children's prodigious learning, and in doing so, could lead to artificial intelligence that 

parallels human learning. One phenomenon at the center of these debates concerns a form of far 

generalization, sometimes referred to as “generative learning”, because the learner’s behavior 

seems to reflect more than co-occurrences among specifically experienced instances and to be 

based on principles through which new instances may be generated. In two experimental studies 

(N =148) of preschool children’s learning of how multi-digit number names map to their written 

forms and in a computational modeling experiment using a deep learning neural network, we 

show that data sets with a suite of inter-correlated imperfect predictive components yield far and 

systematic generalizations that accord with generative principles and do so despite limited 

examples and exceptions in the training data. Implications for human cognition, cognitive 

development, education, and machine learning are discussed. 

Key words: Associative learning; Statistical learning; Deep learning; Generative 

learning; Symbol systems; Education 
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Introduction 

There are two different stories that one can tell about human learning (Griffiths, Chater, 

Kemp, Perfors, & Tenenbaum, 2010; McClelland et al., 2010). In some tasks, learning is slow 

with generalization requiring extensive experience with many examples, and even then, 

generalization may be limited and error-prone (Bion, Borovsky, & Fernald, 2013; Fuson & 

Briars, 1990; Gentner, 2010; McMurray, Horst, & Samuelson, 2012). Many categories of school 

learning including early reading and mathematics seem to fit this description (Chi, Kristensen, & 

Roscoe, 2012; Siegler & Lortie-Forgues, 2017). However, in other contexts, human learning 

appears much less data-hungry and can be characterized as showing extensive generalization 

from limited experience with a small portion of possible instances (Aslin, 2017; Carey & 

Bartlett, 1978; Casler & Kelemen, 2005). Generalization from a few examples is sometimes 

known as “few-shot learning” and has been documented in domains such as object recognition 

(Krizhevsky, Sutskever, & Hinton, 2012), letter recognition (Lake, Salakhutdinov, & 

Tenenbaum, 2015), and word learning by children (Smith, Jones, Landau, Gershkoff-Stowe, & 

Samuelson, 2002; F. Xu & Tenenbaum, 2007). For example, typically-developing 2.5-year-old 

children appropriately extend a newly-heard object name to new instances of the category given 

experience with just one named object from that category (Landau, Smith, & Jones, 1988; Smith, 

Jones, & Landau, 1996; Smith et al., 2002).  

Rapid and far generalization has also been characterized as a form of “generative 

learning” because the learner seems not to just learn about specifically experienced instances but 

rather to learn principles through which new instances may be generated (Lake, Linzen, & 

Baroni, 2019; Son, Smith, & Goldstone, 2012). For example, typically-developing preschool 

children learning English can generate the regular plural form for a seemingly unlimited number 
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of nouns, needing only one exposure to the singular form of the noun to do so (Berko, 1958; 

Brown, 1973; Mervis & Johnson, 1991; Treiman, 1993). Given that human learning often seems 

slowly incremental and limited in generalizability, these cases of principled far generalization 

have attracted considerable research attention in domains as diverse as cognitive development 

and machine learning (Fe-Fei, Fergus, & Perona, 2003; Imai, Gentner, & Uchida, 1994; Kemp, 

Perfors, & Tenenbaum, 2007; Lake et al., 2019; Smith & Samuelson, 2006). 

Current theoretical debates are focused on the learning mechanisms. By most accounts,  

the critical factor is prior knowledge of the principles for representing instances within the to-be-

learned domain (Fe-Fei et al., 2003; Griffiths et al., 2010; Lake et al., 2015; Tenenbaum, Kemp, 

Griffiths, & Goodman, 2011). These prior principles could be domain-specific and part of human 

core (and innate) knowledge systems (Gopnik & Bonawitz, 2015; Spelke, 2016), making rapid 

generalization a specialization for only some core domains. Others have suggested that these 

generative principles can be discovered through more general learning mechanisms and in many 

different domains. By some accounts, associative learning mechanisms may be sufficient (e.g., 

Botvinick & Plaut, 2004; Colunga & Smith, 2005; Elman, 1990; McClelland et al., 2010; Rogers 

& McClelland, 2004) but others have argued that associative mechanisms—even in their most 

currently advanced forms such as deep learning neural networks—are fundamentally limited, 

requiring extensive training and even then can only approximate the learning of generative 

principles (Griffiths et al., 2010; Tenenbaum et al., 2011). By these accounts, more powerful 

statistical learning mechanisms and computations are required to discover generative principles 

from limited training data (Kemp, Goodman, & Tenenbaum, 2008; Kemp et al., 2007; Rule, 

Dechter, & Tenenbaum, 2015; F. Xu & Tenenbaum, 2007).  
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In these debates and the related experimental and theoretical studies, there has been little 

consideration of the properties of data structures that support principled and far generalization 

from limited training experiences. However, debates about learning mechanisms cannot be 

divorced from the data structures on which those mechanisms operate as all learning depends on 

the learning mechanisms, the statistical structure of the experiences on which they operate, and 

the match between the two (Dupoux, 2018). The real-world cases (e.g., novel object name 

generalization, regular plural forms of English nouns) used to document human propensity for 

principled far generalization have data structures different from those used in most laboratory 

studies (but see, Billman, 1989, 1993; Billman & Knutson, 1996). They are characterized by 

multiple inter-predictive features that are redundant, degenerate, overlapping, imperfect, and that 

offer multiple pathways to generalization (Bloom et al., 2006; Colunga & Smith, 2005; 

MacWhinney, Leinbach, Taraban, & McDonald, 1989; Yoshida & Smith, 2003). By hypothesis, 

a suite of inter-correlated imperfect predictive components can give rise to generalizations that 

accord with generative principles and can do so despite limited training data, exceptions, and 

idiosyncratic individual experiences. 

Here we provide initial evidence for this hypothesis by showing that preschool children 

and a general-purpose deep-learning neural network trained on a limited data set with a multiple 

inter-predictive structure show principled extensive generalization. The domain we use to make 

this initial case is the human-invented symbol system through which we name and write multi-

digit numbers. We chose this domain for five reasons. First, it is a real-world system but, as a 

relatively recent human invention, it is a knowledge domain without specifically evolved core 

mechanisms. Second, it is well documented that the base-10 notational system—and the 

multiplicative hierarchical structures that underlie it—are difficult for school-aged children to 



 6 

master (Fuson, 1988; Mann, Moeller, Pixner, Kaufmann, & Nuerk, 2012; Ross, 1995). Third, 

there is suggestive evidence that at least some preschool children know how to map never-

before-encountered multi-digit number names to their written forms, despite likely minimal 

experience with the names and written forms of multi-digit numbers (Mix, Prather, Smith, & 

Stockton, 2014; Yuan, Prather, Mix, & Smith, 2019). Fourth, and as we expand below, spoken 

and written number names have a data structure of co-predicting surface features that are 

redundant, overlapping, and imperfect, but provide multiple paths to correct generalization. Fifth, 

this case provides a grounding for consideration of the distinction (and potential relation) 

between generalization that is consistent with generative principles versus the explicit 

representation of those principles (Lake, Ullman, Tenenbaum, & Gershman, 2016; Wu, 

Yildirim, Lim, Freeman, & Tenenbaum, 2015).  

Informal experiences of hearing the spoken names for written multi-digit numbers and 

seeing their corresponding written forms—for example hearing “seven hundred sixty-two” while 

seeing “762”—comprise a data set of potential interest for learning about place value (Grossberg 

& Repin, 2003; Rule et al., 2015). Figure 1 illustrates—for a very small set of possible 

numbers—the many redundant and overlapping mappings (represented by the edges) among the 

surface structure of written numbers and their spoken names (represented by the nodes). For 

example, in the written form “535” there are two “5”s, one on the far left and one on the far 

right, and in the spoken name “five hundred and thirty-five,” “five” occurs twice, in the first 

position and in the last. The written form “3” systematically co-occurs with “three,” “thirty,” and 

“three hundred.” “Thirty” and “sixty” both end in “-ty,” and in their co-occurring written forms, 

the digits named with a “-ty” appear just before the last (rightmost) position in the string of 

digits. “Eighty” and “ninety” (but not “eleven” nor “twenty”) contain the name most strongly 
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associated with the written form of a single digit (8 and 9). These patterns provide a hodgepodge 

of paths to mapping a heard multi-digit name to its written form. As we consider in the General 

Discussion, they also may provide a path to a deeper understanding of the generative principles 

that are the source of these exploitable surface properties. 

Both spoken and written forms have their origins in underlying principles of the base-10 

multiplicative hierarchy of places. Thus, “762” and “seven hundred and sixty-two” each refer to 

the same decomposition of the quantity: to 7 sets of 100, 6 sets of 10, and 2 sets of 1 with 100 

equal to 10 sets of 10, and 10 equal to 10 sets of 1. Ultimately, children need to explicitly 

understand these principles if they are to successfully calculate with multi-digit numbers. But, by 

hypothesis, they do not need knowledge of the underlying multiplicative hierarchy to map any 

heard number to its written form; all they need to do is exploit the plethora of predictive surface 

properties to map number names to written forms. These multiple predictive surface properties 

linking names to written forms will not lead to perfect performance (because they are imperfect 

and local predictors); but, by hypothesis, they can lead to far generalizations at levels well above 

chance in mapping newly encountered individual multi-digit number names to their written 

forms. 

In contrast to this characterization of possible early knowledge of multi-digit numbers, 

the consensus view on the development of place value concepts is that the mapping of number 

names to written multi-digit numbers is hard and error-filled even for school age children and 

tightly tied to understanding the underlying base-10 principles (Fuson & Kwon, 1991, 1992; 

Geary, Bow-Thomas, Liu, & Siegler, 1996; Ho & Fuson, 1998). For the most part, this 

conclusion derives from studies of school-age children’s understanding of the underlying base-

10 principles, studies that find predictive errors in naming written forms and in calculating with 
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multi-digit numbers (Cooper & Tomayko, 2011; Fuson & Kwon, 1991) and studies focused on 

children’s difficulties with the exceptions in the naming system (e.g., the teens, Miura & 

Okamoto, 1989; Saxton & Towse, 1998). The general conclusion is that explicit formal training 

of the notational principles is essential to both understanding the notational system and to using 

it to calculate (Fuson, 1986; Fuson & Briars, 1990). From these findings, the general view in the 

education literature and education practice is that introducing multi-digit numbers is best delayed 

until the start of formal teaching about the base-10 system, typically first or second grade (Fuson, 

1986; Hanich, Jordan, Kaplan, & Dick, 2001; Kamii, 1986).  

However, several recent studies indicate that at least some preschool children know how 

number names map to written digits, performing well above chance when asked to pick the 

written version of three- and four-digit numbers given the spoken name (Byrge, Smith, & Mix, 

2014; Mix, Prather, Smith, & Stockton, 2014; Yuan, Prather, Mix, & Smith, 2019), for example, 

choosing 836 over 834 or 863, given the spoken name of  “eight-hundred and thirty-six.” Less 

clear is how these children learned whatever knowledge allowed them to succeed in this task. 

Considerable evidence indicates that number talk to preschool children is quite sparse and talk 

about multi-digit numbers is exceedingly rare (Dehaene, 1992; Dehaene & Mehler, 1992; 

Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010). By these estimates, then, the 

likelihood that the preschool children showing early competence in mapping names to multidigit 

numbers had encountered the name and written form of any particular 3-digit number (e.g., 836) 

tested in these previous studies is vanishingly small. We propose that the children who 

performed well acquired the general ability to map heard names to written multi-digit numbers 

from limited exposure through learning mechanisms that exploit the multiple correlated—albeit  

imperfect—regularities that link number names and written forms. 
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We test this hypothesis in three studies. The first two are experimental studies that show 

that preschool children show systematic generalization in mapping the names to written forms 

given minimal exposure to a small set of multi-digit numbers and their names. The third study is 

a computational modeling experiment. The purpose of this modeling experiment is not to provide 

a complete or accurate model of children’s internal learning mechanisms but rather to show that 

an associative learning mechanism given a data set with imperfect, redundant local predictors 

will exhibit far generalization. To this end, we used a general-purpose deep neural network 

trained similarly to the children in the two experiments. The modeling experiment provides 

evidence for generalization consistent with generative principles without explicit representation 

of those principles. 

Study 1 

Participants 

The final sample consisted of forty preschool children (mean age: 4.5 years, range: 3.16-

5.94 years) from a Midwestern town in the United States. There were 18 females and 22 males. 

Families were contacted about the study through a consented database or through local 

preschools and day care centers that served families from a wide range of economic 

circumstances. Informed consent was obtained from each participant’s legal guardian prior to the 

study. Each child participated in five successive sessions (pre-test, 3 days of training, post-test) 

on separate days of the week (i.e., Monday to Friday). If the child missed one and only one 

session during the week, he or she participated on the next available weekday. Five additional 

participants were excluded from the study due to missing one or more sessions during the study. 

Forty children participated in the training condition; an additional seventeen children participated 

in a no-training control condition included to check on test-retest effects. On pre-test and post-
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test days (but not training days), some children also participated in other tasks (including 

magnitude judgements) that were components of other experiments being conducted in these 

same schools and daycares.  

Stimuli and Procedure 

Training. The training was designed to present children with minimal training and 

minimal experience with specific multi-digit numbers. The selection of training numbers was 

designed to mimic likely real-world experiences of young children in which a few single- and 

double-digit numbers were repeated with most 3- to 4-digit numbers encountered only once 

(Dehaene, 1992; Levine et al., 2010). There were 18 trials on each of the 3 training days for a 

total of 54 learning trials for the entire study. Across the 3 days of training and total of 54 trials, 

children heard the names and saw the written forms of 36 unique numbers that varied from 1- to 

4-digit numbers. Of the 36 unique numbers, 12 were repeated during training and each of the 24 

other unique instances occurred just once in training. Three-digit numbers were named with the 

word “hundred” as in “three-hundred fifty-two” and 4-digit numbers were pronounced with the 

word “thousand” as in “two-thousand five-hundred twenty-one”.  

Training was embedded in casual learning activities meant to mimic possible everyday 

contexts through which preschool children might encounter multi-digit numbers and their names. 

The contexts were designed so that there was no explicit teaching or mention of the underlying 

syntactic rules and no specific task with strictly defined right or wrong responses from the 

children. Rather, children were simply encouraged to follow along and have fun with two 

engaging activities: storybook reading and making numbers with cards. We used two training 

orders, one in which similar numbers (e.g., 223, 224) occurred in close proximity (N = 20) and 

one in which the order was randomly determined (N = 20). These different orders had no effects 
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that approached statistical significance (see supplementary material) and are not considered 

further. Table 1 shows all training numbers and Figure 2 shows the training materials.  

For the Storybook reading component of the training, three picture books (one for each 

training session) were created with each containing four stories. Each page was printed on A4-

sized horizontally arranged paper. Most of the pages consisted of a cartoon caricature (roughly 2 

inches tall and 1 inch wide), some objects (roughly 2 inches tall and 1 inch wide) and printed 

multi-digit numbers (see Figure 2 for an example). The numbers were printed in 42-point Arial 

font. Each story had five pages which were put into a clear sheet protector and stored in a binder. 

A sample story about saving money is illustrated on Figure 2. The experimenter first presented 

Page A and explained to the child, “Johnny wants to save money to buy his favorite food and 

toys. Do you want to see what Johnny wants to buy?” Then she presented Page B and said, “He 

wants to buy a big cake.” Pointing to the written number, the experimenter asked, “Do you know 

how much it costs?” Children were not expected to and typically did not respond to this 

rhetorical question but regardless of the nature of any response, the experimenter immediately 

said, “It costs forty (pointing to the digits sequence, i.e.,“4” followed by “0”) dollars.” She then 

repeated the number once more, still pointing to the written digits in sequence while saying, 

“The big cake costs forty dollars.” She next presented Pages C and D in an identically structured 

narrative with the only change being the object’s name and the corresponding numbers. On Page 

E, the experimenter asked the child, “Can you tell me which thing costs the most money?” 

Regardless of the child’s response (or nonresponse), the experimenter immediately stated the 

relation—“The cake costs forty dollars (while pointing to the digits in the written numeral “40” 

in sequence); the bicycle costs sixty dollars (pointing to the digits in the written numeral “60” in 

sequence); and the toy car costs seventy dollars (pointing to the digits in the written numeral 
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“70” in sequence). So, the item that costs the most money is the car (point to the toy car).” This 

mention of relative magnitudes was included to encourage children to connect and compare the 

number names and written forms for different quantities which has been shown to highlight the 

common relational structures (Gentner, 1983; Gentner et al., 2016; Kotovsky & Gentner, 1996; 

Yuan, Uttal, & Gentner, 2017), and in this case the many predictive elements characterizing 

multi-digit number names and their written forms.  

In the Make-a-number game, two identical sets of number cards were created to be used 

by the experimenter and the participant. The cards were made from 1-inch by 2-inch foam sheet 

and number stickers. Each card depicted just one digit that had the dimension of roughly 1 

(width) by 2 (height) inch. During the training, the experimenter first made a number using her 

set of digit cards. For example, she first told the child what number they were going to make: 

“We are going to make two hundred thirty-five. Watch me, I am going to make two hundred 

thirty-five.” She then picked up the card “2” and said, “I need a 2 for two hundred” while putting 

it down on the table. She then picked up the card “3” and said, “I need a 3 for thirty” while 

putting it on the right of the card “2”. Lastly, she picked up the card “5” and said, “I need a 5 for 

five” while putting it on the right of the card “3”. She then invited the child to make the same 

number by saying “Can you make two hundred thirty-five?” This task only required the child to 

copy the just-preceding behavior of the experimenter and the still-in-view example. If the child 

had trouble doing so, the experimenter coached the child to make the correct number in a 

naturalist way, such as reminding the child that “We need a 2 for two hundred.” After the child 

finished making the number, the experimenter asked, “What number did you just make?” 

Regardless of the child’s response, the experimenter repeated the name of the number one more 

time by saying, “Good job. You just made two hundred thirty-five.” Again, the goal of training 
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was only to expose children to corresponding names and numbers and in an engaging and active 

way.   

Pre- and posttests. The Which-is-N test (Mix et al., 2014; Yuan et al., 2019) is a 

commonly-used measure of children’s ability to map spoken names to written numbers. The 

structure of the task, a two-alternative forced choice between two written forms given a spoken 

name, differs from the casual structure of storybook reading and the make-a-number game.  

There were 16 test items: 8-vs-2, 15-vs-5, 12-vs-22, 11-vs-24, 85-vs-850, 105-vs-125, 201-vs-21, 

206-vs-260, 36-vs-306, 350-vs-305, 402-vs-42, 64-vs-604, 670-vs-67, 807-vs-78, 1000-vs-100, 

1002-vs-1020. All test pairs included at least one number never seen in training. For half the test 

items, one (but not both) of the choice numbers (but not necessarily the target) was presented 

during training; for the remining test items, both choice numbers were novel. In this way, the test 

is a strong measure of generalization. Single digit numbers were included to provide children 

with some easy trials and avoid floor effects. The choice items were presented on an A4-sized 

page in a binder. The numbers were printed in 42-point Arial font and were arranged horizontally 

across the center of the page. Two sets of orders (Set A, Set B) were created and counterbalanced 

across subjects.  

Each child completed five sessions (pre-test, three training sessions, post-test), and each 

lasted 10 to 18 minutes, appropriate to the attentional abilities of preschool children. 30% of 

participants (we substantially increased this proportion in Study 2) were blind tested by an 

experimenter who was not aware of the conditional assignment of the participant. There was no 

significant difference in the learning outcome between children who were blind tested and those 

who were tested and trained by the same experimenter (see supplemental materials).  
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Baseline Measures of Improvement. Although unlikely, children could, in principle, 

show improved performance at post-test because of a test-retest effect or because of increasing 

comfort with experimenters. Accordingly, an additional group of children (n = 17) participated in 

an identical training to the main experimental condition, but instead of spoken number names 

and written forms, their training involved spoken words and their written forms. For example, in 

the storybook reading activity shown in Figure 2, the experimenter said, “Johnny wants to buy a 

big cake.” She then pointed to the letter “C,” and asked, “What letter is this?” Regardless of the 

child’s response, the experimenter would say, “It is C. C for cake. Johnny wants to buy a big 

cake.” Later, the experimenter asked, “So what does Johnny want to buy? C (point to the letter 

C) for cake, B (point to the letter B) for bike, and C (point to the letter C) for car.” The Make-a-

word game was the same as the Make-a-number game except that the child and experimenter 

spelled words using letter cards. For a sample of the words used, see Supplemental Materials. 

Children were tested in the same number pretest and post-tests tasks as the children in the main 

experiment. There was also no significant difference in the ages or pretest scores between 

participants in the training condition and those in the baseline measures condition (see 

supplemental materials). Children in the baseline measures condition showed no increase in 

performance on post-test relative to pretest. A Linear Mixed Effect Model was conducted in 

which time was entered as a fixed effect and participant was entered as a random effect. The 

model failed to find a main effect of time, F (1, 16) = 0.08, p = .79. Accuracy at pre-test (M = 

0.60, SE = 0.03) and at post-test (M = 0.59, SE = 0.03), t (16) = 0.27, p = .79, d = 0.07, did not 

differ. Thus, pre- and post-test effects or similar experiences with the experimenter appear at best 

minimal.   
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Results and discussion 

Children from the main Training Experiment showed modest above chance performance 

at pretest, t (39) = 4.49, p < .0001, M = 0.61, SE = 0.03, d = 0.71, consistent with previous 

studies showing that some preschool children have early multi-digit number knowledge (Mix et 

al., 2014; Yuan et al., 2019). As can be seen in Figure 3, these children improved significantly 

from pretest (M = 0.61, SE = 0.02) to posttest (M = 0.69, SE = 0.02), t (39) = 3.69, p < .001, d = 

0.58. This training effect was also confirmed by a Linear Mixed Effect model (LMM) conducted 

in the R environment (R Core Team, 2017) using the lme4 package (Bates et al., 2015). 

Significance values were obtained using the Afex package (Singmann, Bolker, & Westfall, 2015) 

with the KR method, which uses the Kenward-Roger’s approximation to calculate the p values 

(Luke, 2017). Time (pre- or post-test) was entered as a fixed effect and participant was entered as 

a random effect. There was a significant main effect of time, F (1, 39) = 13.64, p < .001, again 

indicating an effect of training.  

The scientific significance of the improvement, even though its absolute magnitude might 

seem small (an average increase of .08), arises from the minimal nature of the training (3 days, a 

total of 36 unique numbers with just a few repetitions) and was evident on novel test items. A 

direct test of performance on partially novel and totally novel test pairs, excluding items that may 

be solved by knowledge of single-digit numbers alone (i.e., "8 vs 2", "15 vs 5"), revealed no 

significant difference, t (39) = 1.68, p = .10, d = 0.27, in post-test performance on the two classes 

of test items, consistent with the predicted far generalization from minimal learning to novel 

items.  This conclusion is also supported by a comparison of pre- and post-test performance on 

the test items in which both target and foil were novel. A Linear Mixed Effect Model was 

conducted using only the trials in which both the names and the written choices were novel; time 
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was entered as a fixed effect and participant was entered as a random effect. Results showed a 

significant main effect of time, F (1, 39) = 7.32, p = .01. For these totally novel test items, 

children’s performance significantly improved from pretest (M = 0.54, SE = 0.04) to posttest (M 

= 0.63, SE = 0.03), t (39) = 2.71, p = .01, d = 0.43.  

To further explore how overall learning was related to individual factors, a multiple linear 

regression was conducted using age, gender and pretest score to predict learning (defined as 

changes in scores from pretest to posttest). Learning was not related to gender (b = -0.02, p 

= .62), but modestly and positively related to continuous age (b = 0.05, p = .03) with pretest 

score being the most predictable factor in how much children learned from the training (b = -

0.55, p < .001). As can be seen in Figure 3, children with the lowest pretest scores increased the 

most from pre-test to post-test, a finding that also supports the effectiveness of the limited 

training exposure to number names and written multi-digit numbers.   

The results of Experiment 1 provide initial support for the hypothesis that—given the 

right data structure—minimal experience with a relatively few instances from the entire domain 

(in the present case, all numbers up to 9999) can lead to broad generalized knowledge to novel 

instances sampled from that same domain. Moreover, the core of the training was simply 

exposure to the corresponding spoken names and written forms. There was no special teaching 

method or explicit explanation of why or how multi-digit numbers work as they do. 

Study 2 

Study 2 tested the robustness of the training effect observed in Study 1 with four 

modifications. First, children received either the storybook reading or the making numbers with 

cards training; in this way, the experiment provides evidence for the idea that that exposure to 

corresponding number names and written forms—not the particular activity—is the key factor in 
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learning. Second, we generated an entirely new set of training numbers to show that the effects 

of Study 1 were not driven by the specific 36 unique training instances chosen for that study. 

Third, to provide a more sensitive test of the effects of training, we excluded children who 

performed above 85% correct on the pre-test. Fourth, to provide a more sensitive test of the 

potential effect of learning specific items, we also counterbalanced whether numbers that 

appeared during the training were the target or the foil number during testing (which was not 

done in Study 1).  

Participants 

The final sample (66 in the Main Experiment and 25 in the Control measures) were 

recruited from the same general population as Study 1. The mean age of the participants was 4.4 

years (range: 2.89 – 5.99). There were 49 males and 42 females. The experiment settings and 

timelines were identical to Experiment 1. There were two training activities (N = 30 and N = 36) 

as described below. Eight participants were excluded from the study due to missing one or more 

sessions during the study. An additional fifteen participants were excluded due to pretest scores 

higher than 85% correct.  

Stimuli and Procedures 

Main Training Experiment. As shown in Figure 4, the procedures in the training 

conditions were identical to Study 1 with two exceptions. First, a new set of training numbers 

(shown in Table 2) was selected to follow the same distributional properties (e.g., numbers with 

1- to 4-digits numbers, repetitions) as Study 1 but differed in the specific multi-digit numbers 

used (which were randomly selected from possible numbers fitting the distributional constraints). 

Second, each participant received only one condition—either the storybook reading activity (N = 

36) or the making numbers with cards activity (N = 30). As in Study 1, each participant received 
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18 training trials on each day with 54 trials in total across three training sessions. Pre- and post-

tests. The pre- and posttest items and the procedures for administering them were identical to 

Study 1 with the exception of the counter balanced designation as target or foil of the 8 training 

items that were the post-test. 64% of participants were blind tested by an experimenter who was 

not aware of the conditional assignment of the participant. There was no significant difference in 

the learning outcome between children who were blind tested and those who were tested and 

trained by the same experimenter (see supplemental materials).  

Baseline Measures of Improvement. Again, to rule out possible test-retest effects and 

exposure to the experimenter, we again collected pre- and post-test data from children who did 

not experience corresponding spoken names and written forms of multi-digit numbers. For this 

pre- to post-test measure, a separate group of children (N = 25) was exposed to just one stream of 

the training information (i.e., either the auditory or visual stream) that was used in the main 

training condition (see Figure 4). These experiences are near identical to the training experiences 

in the storybook training condition but differ only in missing the training in mapping the heard 

number name to the written form. The children who received only one stream of information 

(either written numbers or spoken number names) did not demonstrate learning. A Linear Mixed 

Effect Model was conducted in which time was entered as a fixed effect and participant was 

entered as a random effect. Results failed to find a significant main effect of time, F (1, 24) = 

1.08, p = .31. Children’s performance at pretest (M = 0.55, SE = 0.03) and at posttest (M = 0.59, 

SE = 0.04) did not differ significantly, t (24) = 1.04, p = .31, d = 0.21. These results again 

suggest minimal if any test-retest effects, minimal effects of familiarity with the experimenters, 

or with one modality of the training information but no association between names and numbers.  

Further, there was no significant difference in the ages or pretest scores between participants in 
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the main training condition and those in the baseline measures condition (see supplemental 

materials). 

Results and discussion. 

Consistent with Study 1, children from the training condition showed modest but above 

chance performance at pretest, t (65) = 4.89, p < .001, d = 0.60, M = 0.58, SE = 0.02. To examine 

the training effect, a Linear Mixed Effect model was conducted in which time (i.e., pretest or 

posttest) and training activity (i.e., storybook reading or making numbers with cards) were 

entered as fixed effects and participant was entered as a random effect. Results showed a 

significant main effect of time, F (1, 64) = 11.80, p < .001. Neither the effect of training activity, 

F (1, 64) = 0.52, p = .47, nor the interaction between time and training activity reached 

significance level, F (1, 64) = 0.16, p = .69. Overall, as can be seen in Figure 5, children who 

received training improved significantly from pretest (M = 0.58, SE = 0.02) to posttest (M = 0.65, 

SE = 0.02), t (65) = 3.5, p < .001, d = 0.43. The lack of differences between the two training 

formats suggests that the nature of the activity—listening to a story or actively building 

numbers—is not a key factor. What is similar across the two training activities is exposure to co-

occurring multi-digit number names and their written forms. 

A direct test of performance on partially novel and totally novel test items, excluding 

items that may be solved by knowledge of single-digit numbers alone (i.e., "8 vs 2", "15 vs 5"), 

revealed no significance difference between these two classes of test items, t (65) = 1.18, p = .24, 

d = 0.15. Focusing only on the trials in which both target and foil were novel, a Linear Mixed 

Effect Model (with time was entered as a fixed effect and participant was entered as a random 

effect) revealed a significant main effect of time, F (1, 65) = 15.41, p < .001. As shown in Figure 

5, for these totally novel test items, children’s performance significantly improved from pretest 
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(M = 0.53, SE = 0.02) to posttest (M = 0.64, SE = 0.03), t (65) = 3.93, p < .001, d = 0.48, 

providing unambiguous evidence for the generalizability of learning. 

In sum, Study 2 in conjunction with Study 1 indicates that preschool children can learn 

and generalize the patterns that link spoken names to written multi-digit numbers. The key 

findings are: (1) generalization to novel numbers—numbers not experienced in training and each 

individually quite rare in everyday child experience (Dehaene, 1992; Gunderson & Levine, 2011; 

Levine et al., 2010)—is comparable or better than performance on partially experienced items 

and (2) this generalization did not require extensive experience with any individual items, a large 

sample of potential instances, or explicit instruction. We propose that this is because the many 

associations that emerge from the surface structures of the multi-digit names and multi-digit 

numbers support systematic seemingly principled generalization.  

Study 3 

Study 3 uses a computational model to provide evidence that far generalization can result 

from associative learning given a data set of multiple co-predicting features that provide many 

overlapping and redundant pathways to the mapping between a number name and its written 

form. We used a form of a deep recurrent network, a general purpose associative learner, that is 

known to solve complex problems by exploiting multiple predictive relations (Hasson, Nastase, 

& Goldstein, 2019; Lecun, Bengio, & Hinton, 2015), a fact that has led them to be criticized as 

un-principled, un-interpretable, and not human-like (Lake et al., 2016; Marcus, 2018). In using 

this general-purpose model, we make no claims that the model operates or learns in the same 

way as young children. Instead, the goal is to demonstrate the co-predictive properties between 

number names and their written forms, albeit imperfect and local predictors, are sufficient for an 

associative learner that does not explicitly represent any rules or principles to make far and 
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systematic generalizations (see also, Bloom et al., 2006; Colunga & Smith, 2005; MacWhinney, 

Leinbach, Taraban, & McDonald, 1989; Yoshida & Smith, 2003). 

The architecture  

The learning task requires linking the structure of a series of words (the number name) to 

the structure of an image (the written form). Specifically, on each trial of the training phase in 

Study 1 & 2, children were shown an image of a multi-digit number (e.g., “124”), and the 

experimenter provided the sequence of number names verbally (e.g., “one hundred twenty four”) 

while drawing children’s attention to the corresponding written digits using gesture (e.g., saying 

“four” while pointing to “4”). Accordingly, we used an image caption model (Lecun et al., 2015; 

Vinyals, Toshev, Bengio, & Erhan, 2015; K. Xu et al., 2015) as the algorithmic-level 

implementation for the proposed learning mechanism as these models are trained to generate 

lexical descriptions of images. Typically, these models are used to generate verbal descriptions 

of everyday photographs, for example, “The man in the red shirt is throwing a ball,” from an 

image with that content. To do this, the algorithm not only has to learn to recognize individual 

components of the image—e.g., objects, attributes, actions—but also their relational structure 

and how those relations relate to the relational structure of the lexical components of the verbal 

description. The computational problem is thus similar to our proposed account of how 

generalized knowledge of multi-digit number names and written forms might emerge. As shown 

in Figure 6, we used an image caption model that is a deep neural network and has an encoder-

decoder architecture with an attention mechanism (K. Xu et al., 2015). As described below, the 

encoder is used to construct a sequence of feature maps for an input image (corresponding to the 

images that children saw during the training), the decoder is used to generate the sequence of 

output words (corresponding to the sequence of number words that children heard during the 
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training), and the attention mechanism allows the model to learn to focus on the part of the image 

that is most relevant to the current output word at each time step (corresponding to children’s 

attention to individual written digits following the experimenter’s gesture). All code, training, 

testing materials and results are available at: https://github.com/iucvl/Learning-generative-

principles-of-a-symbol-system 

Encoder. The encoder is a deep convolutional neural network (CNN) that takes an image 

and passes it through multiple convolution, non-linear activation, and subsampling stages. The 

main difference between CNNs and traditional feed-forward neural networks is that instead of 

fully-connected layers where each neuron is connected to all neurons in the previous layer, the 

network includes convolutional layers where neurons are connected to a local subset of the 

neurons in the previous layer. This encourages them to learn convolutional filters (e.g., 3x3 

matrices) that extract local features (e.g., edges, textures). The subsampling stages pool features 

from larger spatial neighborhoods, which means that later layers of the network produce 

response maps that are based on evidence from larger and larger areas of the original image. In 

this work, we used Resnet101 (He, Zhang, Ren, & Sun, 2016), which is a particular CNN 

architecture that has demonstrated performance in various image classification tasks to extract 

features from input images. This network consists of 101 convolution and pooling layers in total. 

Each layer includes multiple levels of convolution followed by a non-linear activation. A pooling 

layer is used to reduce the size of output from the previous layers resulting in a collection of  

2048 14x14 feature maps. These feature maps can be thought of as a mathematical representation 

of the abstract content of the input image (i.e., written multi-digit numbers). The network is 

trained using standard back propagation algorithm, in which the errors are propagated back from 

the output of the decoder. 
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Attention Mechanism. Because a sequence of words is generated by the model to 

describe each visual image, the decoder needs an attention mechanism to focus on different 

elements in the image at each time step. We use the “soft” attention mechanism proposed by 

Bahdanau, Cho, & Bengio (2014): each feature map, which is reshaped into a feature vector as 

input to the LSTM network, is assigned a weight at each time step during decoding. The weights, 

updated with forward and backward propagation, are deterministic and represent the probabilities 

that each pixel is the place to look to generate the next word. Further details are available at: 

https://github.com/iucvl/Learning-generative-principles-of-a-symbol-system 

 Decoder. The decoder is a long short-term memory network (LSTM) accompanied with 

attention mechanism described above. This LSTM network takes a sequence, where at each time 

step inputs are all the feature maps (extracted by the encoder) and attention mechanism is used to 

decide which feature maps or parts of the feature maps are used to generate the output—in our 

case number names such as “three,” “hundred,” “thirty,” and “five” to describe the feature maps. 

LSTM is a type of recurrent neural network (RNN) frequently used for tasks that require 

sequence-to-sequence learning such as machine translation. RNNs contain loops in their hidden 

layers such that previous outputs can be used as input for the next training trial (Elman, 1990; 

Hochreiter & Schmidhuber, 1997). Thus, they are capable of learning the long-term 

dependencies among component names in a number word and the myriad correlations across 

different number words. LSTM networks have advantages over traditional RNNs 

in retaining memory of earlier time steps (Hochreiter & Schmidhuber, 1997). The network is 

trained with back propagation and is optimized by a loss function, which computes the cross 

entropy between the predicted probability (a value between 0 and 1) of the correct word and 

actual probability (1) for the correct word at each time step. 
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Training procedures  

 Because there is good reason to assume that most preschool children have experience 

with single-digit numbers, we trained the model with all single-digit numbers, including the ones 

that were already in the training set from Study 1 & 2. To prepare the training data for the model, 

we combined the training sets from Study 1 & 2. Thus, the model was given (and preliminary 

work showed required) more extensive training than the children (who might have had some 

experiences with multidigit numbers prior to the experiment). At any rate, the final training data 

consisted of only 64 training trials with each trial presenting one unique number. Although larger 

than what was presented to children, this data set is still a quite limited sample of all the possible 

numbers from 1 to 9999. 

 The training material consisted of two streams of information—images of the written 

numbers and the names. For the visual information, 64 images were generated in Arial with the 

overall image size being constant (240 x 240 pixels). Thus, the font size of the numbers changed 

based on the total number of digits. This was done to prevent the model from learning based on 

overall size of the image (e.g., that 3-digit numbers are visually larger than 2-digit numbers). The 

CNN model that we used for the encoder is scale invariant; thus, changing the size of the 

individual digits poses no problem for this model.  

 Weights were initialized following a uniform distribution in the range of -0.1 to 0.1 for 

the decoder. The learning rate for the encoder and decoder were set to be 1e-4 and 4e-4 

respectively. A total of 100 epochs were repeated for each model with the dropout rate of 0.5. 

Also following standard practice in the computer vision community, we pre-trained this network 

on ImageNet (Russakovsky et al., 2015) images of everyday scenes, so that the network began 

learning about digits with network parameters that had some ability to represent general visual 
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features of objects (Krizhevsky et al., 2012; Simon, Rodner, & Denzler, 2016). We ran 100 

models: 50 models that were trained on pairs of input (equivalent to a post-test) and 50 models 

that were not trained to provide a baseline control (equivalent to a pre-test).   

Testing procedures 

The name of a written form was presented to the network as a sequence in time, as in 

spoken number names. As with all recurrent neural networks used for generating sequences of 

words, at each time step, the model generates a probability for each token in a library of all 

possible tokens. The library used in the current study included 29 tokens (see supplemental 

materials) that can be combined to label all numbers in the 1-9999 range. The sequence of tokens 

with the highest probability was taken as the number name generated by the model, and the 

words were combined into a final label for each input image (e.g., “one hundred twenty five” for 

“125”).  

The children in Study 1 & 2 were tested in a two-alternative forced-choice task: given 

both a target number and a foil number, they needed to choose the one that matched the name. 

Thus, to provide comparable measures, the models were tested on all numbers in the 16 testing 

pairs used in Study 1 & 2. Because there are fewer constraints on testing automated models than 

on testing children (e.g., fatigue), and in an effort to provide more accurate estimates of the 

models’ performance, we added 32 structurally-similar testing pairs for the model, yielding a 

total of 48 testing pairs (see supplemental materials for all testing items). Similar to Study 1 & 2, 

half of these pairs included one number (as either foil or target) number that appeared during 

training; for the other half of the pairs, both of the two numbers were completely novel. As 

described below, we provide multiple converging measures of the model’s learning, from those 
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similar to the children’s forced choice task to others that probe more deeply the nature and bases 

of the models’ performance.  

Results and discussion 

 Measures of the accuracy of multi-component captions of images are not straightforward 

(Callison-Burch, Osborne, & Koehn, 2006; Papineni, Roukos, Ward, & Zhu, 2001; Vedantam, 

Zitnick, & Parikh, 2015). Accordingly, we used five measures that quantify performance in 

different but complementary ways. 

Edit distance measure. This measure resembled the two-alternative forced-choice nature 

of the test, asking how similar the description provided by the model was to each of the two 

alternatives, with model’s choice taken as the item most similar to the model’s output 

description. We used the Edit distance measure that quantifies the similarity between two strings 

by computing the minimum number of operations required to transform one string to the other 

(Levenshtein, 1966). For example, to convert “eight” to “five”, we need to substitute “e” with 

“f,” delete “g,” “h,” and “t,” and insert “v” and “e,” resulting in a total of 6 steps. Thus, a smaller 

edit distance means the two strings are more similar to each other than a larger edit distance. For 

the purpose of the current study, for each trial (composed of a target image and a foil image), we 

calculate: a) the edit distance between the true label of the target image and the model-generated 

label based on the target image and b) the edit distance between the true label of the target image 

and the model-generated label based on the foil image. If either a) or b) is zero, meaning the 

model correctly generated the label for either or both of the target image and foil image, we 

scored the model as correct. If neither a) nor b) is zero, but a) < b), we scored the model as 

correct. If neither a) or b) is zero, and a) > b), we scored the model as incorrect.  

Figure 7 (a) shows the edit distance measure for the untrained models (n = 50) and the 
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trained models (n = 50) after 100 iterations. A linear mixed effect model (LMM) was conducted 

in which time was entered as a fixed effect and model identity was entered as a random effect. 

Results showed a significant main effect of training, F (1, 49) = 170.79, p < .0001. The trained 

models performed significantly better (M = 0.82, SE = 0.005) than the untrained models (M = 

0.76, SE = 0.005) in their ability to provide a label that was more similar to the correct number 

name than to that of the foil, t (49) = 13, p < .0001, d = 1.84. A separate linear mixed effect 

model (LMM) was conducted—on only test items containing numbers that never occurred in the 

training—with time as a fixed effect and model (trained versus untrained) as a random effect 

yielded a significant main effect of training, F (1,49) = 38.75, p < .0001. The trained models 

performed significantly better (M = 0.77, SE = 0.01) than the untrained models (M = 0.72, SE = 

0.01) in their ability to choose a written untrained number between two choices given a number 

name, t (49) = 6.20, p < .0001, d = .88. 

Probability measure. The model outputs a distribution of probabilities for all tokens (the 

components of number names) in the library at each time step. We computed the average 

probability for the correct tokens as follows. Suppose the current trial includes two numbers “78” 

(the target) and “260” (the foil), with the desired label being “seventy eight.” For the target 

image, at time step 1, we took the model-generated probability of the token “seventy” (P1) 

(regardless of whether that token had the highest probability). At time step 2, we took the 

probability for the token “eight” (P2) (regardless of whether that token had the highest 

probability). The overall probability for the target image was then computed by averaging P1 and 

P2. This number can be interpreted as how probable the model thinks that the target image 

should be named by the desired label. Similarly, for the foil image, at time step 1, we took the 

model-generated probability of the token “seventy” (P3) and at time step 2, we took the 
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probability for the token “eight” (P4). The overall probability for the foil image was then 

computed by averaging P3 and P4, and can be interpreted as how probable the model thinks that 

the foil image should be named by the desired label. If the overall probability of the target image 

was higher than that of the foil image, then the current trial was scored as correct.  

A linear mixed effect model (LMM) with time entered as a fixed effect and model 

identity entered as a random effect yielded a significant main effect of training, F (1, 49) = 

771.05, p < .0001. As shown in Figure 7 (b), the trained models performed significantly better 

(M = 0.82, SE = 0.01) than the untrained models (M = 0.49, SE = 0.01) in their ability to choose a 

written number between two choices given a number name, t (49) = 28, p < .0001, d = 3.92. 

Performance on test items that involved completely novel target and foil numbers was examined 

in a Linear Mixed Effect model (LMM) with time was entered as a fixed effect and model 

identity as a random effect and yielded a significant main effect of training, F (1, 49) = 265.53, p 

< .0001. The trained models performed significantly better (M = 0.83, SE = 0.01) than the 

untrained models (M = 0.49, SE = 0.02) as measured by a better matching output description for 

the target than the foil, t (49) = 16, p < .0001, d = 2.3. 

Correlation measure. The first two measures assess the relative similarity of the output 

number name for the target versus the foil. But one can also ask how well the generated name 

captures correct components of the target, even if not totally correct. For example, if the model’s 

output for the numbers “256” and “147” are “two hundred fifty” and “one hundred seven,” the 

model would seem to have partial knowledge of how names map to written forms. At the very 

least, the outputs preserve the ordinal relation between the numbers (256 > 147, “two hundred 

fifty” > “one hundred seven”). One way to capture this is to compute the correlation between the 

numerical values of the true labels and the numerical values of the generated labels (Yuan et al., 
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2019). We did this for all input images, target and foil (n = 4800). The generated value and the 

true value were highly correlated, Spearman correlation r = .83, p < .0001.   

Attention measure. Image caption models have to learn where to look in a scene. If the 

models have learned how the temporal order of elements in the name corresponds to the spatial 

elements of the written form, they should show systematic biases in how the temporal sequences 

of tokens are related to the attended spatial locations in the input image. That is, the model 

should “inspect” the image from left-to-right while producing the number words. Accordingly, 

we calculated the probability that the model was “attending” to the left versus right side of the 

image, when the first word versus the last word of the label was outputted by the model. As 

expected, the models were more likely to attend to the left side of the image when the first word 

was “spoken” (56% vs 44%), but more likely to attend to the right side of the image when the 

last word was “spoken” (31% vs 69%), excluding single digit numbers and numbers composed 

of only one word (17% of total data).  

Error patterns. To provide further evidence that it is the overlapping surface predictors 

that are the basis of the networks and the children’s far generalization, we examined the kinds of 

item types on which models and children (in Study 1 and Study 2) were most likely to make 

errors. If the model and the children were generalizing on the basis of the same kinds of partial 

local predictive relations, they should show a pattern of errors predictable by overlapping 

predictors that match versus distinguish the target from the foil. Past research (Yuan et al., 2019) 

on children’s errors classified the relation between target and foil into four mutually exclusive 

categories: single digit numbers (S, e.g., 2 vs 8) which have no overlapping predictors between 

the name and the form, multi-digit numbers with different numbers of places (M-DP, e.g., 25 vs 

405) which can be discriminated by predictors such as “hundred” and “-ty” as well as individual 
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components, multi-digit numbers with the same number of places but no transposition (M-SP-

no-T, e.g., 608 vs 658) which can be discriminated by at least one spoken name to digit (e.g., 

“fifty” predicting 5), and multi-digit numbers with the same number of places and transpositions 

(M-SP-T, e.g., 306 vs 360). Success on this last type of items requires the simultaneous 

application of more predictive elements. For example, to solve items that are multi-digit numbers 

with the same number of places and transpositions (e.g., 306 versus 360)—M-SP-T—the model 

or the child has to know the precise mapping between place value terms and the individual digits 

in a number but that the symbol “0” does not get named, that “hundred” signals the “3” in “306”, 

and that the temporal sequence of number words corresponds to the spatial location from left-to-

right in the written form. Items in the other categories may be solved with just one or several 

predictive components. For example, to figure out which number is “twenty five” in the pair of 

“25” and “405”, the child or the network may rely on any of these associations—that “twenty” 

refers to numbers with a “2”, that three-digit numbers must have the word “hundred” in its name, 

that “4” corresponds to “four” in the name, and so on. If this analysis is correct, then children 

and the networks should perform most poorly in the M-SP-T category and better on M-DP and 

M-SP-no-T categories. Performance on mapping number names to single digits (which is 

required along with other associations on the other items) should yield the best performance. We 

used both the edit distance and the probability measure to assess the networks’ performances. As 

shown in Figure 8, the neural networks and children in Study 1 and 2 showed the same ordinal 

pattern of errors, consistent with their use of the same kinds of information. Clearly, there are 

also differences suggesting that the children and the model may weight different predictive 

factors differently based on prior experience or that mechanisms at the response stage influence 

children’s behaviors.  
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 Overall, the above five measures provide converging evidence that (1) learned 

associations between a limited sampling of multi-digit number names and written forms are 

sufficient to yield knowledge about how number names in general map to written multi-digit 

numbers, and (2) that learning about multiple and local predictive relations between surface 

properties of names and numbers leads to far generalization. These findings from the model 

provide additional support for our main conclusion: Data sets with several local predictors and 

thus many paths to generalization lead to rapid learning and systematic generalization from just a 

few examples. 

General Discussion 

Trained with just 36 unique numbers and their names and with just one exposure for most 

of the numbers and names, preschool children mapped multi-digit names to their written forms 

for instances not experienced in the training, instances that were also individually unlikely to 

have been encountered in everyday experiences. Studies 1 and 2 used two different randomly 

selected training sets, suggesting that the particular training items do not matter, and that many 

different samples of numbers across the range 1 to 9999 would be effective. Studies 1 and 2 used 

two different training contexts—in combination and alone—yielding the same outcomes and 

suggesting that the particular training context in which the names and written forms co-occur is 

also not critical. Presented with a slightly larger training set (64 unique items) and no repetitions, 

the model in Study 3 also performed well, generating number names given images of untrained 

multi-digit numbers. Previous research indicates that preschool children have minimal 

understanding of the actual meaning of places (Fuson, 1990; Mix, Smith, & Crespo, 2019; Ross, 

1995), and many school-aged children as late as 5th grade (Ross, 1986; Ross & Sunflower, 1995) 

still struggle to understand the multiplicative hierarchy that underlies base-10 notation. Thus, it is 
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highly unlikely that the minimal training in Studies 1 and 2 taught the children the meaning of 

the places, for example, that the “4” in “346” represents 4 sets of 10. Rather, children’s 

generalizations to novel instances likely reflect the acquisition and exploitation of a myriad of 

predictive relations between names and written forms: for example, that “two hundred fifty-six” 

as well as “forty-two” predict a “2” somewhere in the written form, that “two hundred fifty-two” 

predicts two “2’s” with one in the left-most position, that “twenty” and “two” both predict a “2” 

in the written form, and so forth. There is good reason to believe that the network models in 

Study 3 succeeded on a similar basis (LeCun, Bengio, & Hinton, 2015; Rumelhart, Hinton, & 

Williams, 1985; Schmidhuber, 2015). Thus, the entire pattern of results provides evidence for 

systematic and broad generalization from a relatively few training instances that is not dependent 

on the explicit learning or representation of the underlying generative principles. 

In her earlier work on this idea, Billman (Billman, 1989, 1993; Billman & Knutson, 

1996) used the term systematicity to refer to multiple inter-predictive features that offer multiple 

pathways to generalization. This kind of systematicity in a data set appears to be readily 

exploitable by human learners and may characterize a variety of knowledge domains shared by 

many individuals—not just the surface properties of place value notation but also many aspects 

of language (Bloom et al., 2006; Christiansen & Monaghan, 2010; MacWhinney et al., 1989), as 

well as superordinate-level and basic-level object categories (McMurray et al., 2012; Rogers & 

McClelland, 2004; Rosch, 1978; Samuelson, 2002). In these cases, individual learners can have 

quite idiosyncratic experiences—specific to their personal history—and yet generalize and 

generate patterns consistent with other learners. This robustness, as well as the ability to 

generalize from relatively few experiences, may emerge because such Billman-style 

systematicity builds on many overlapping inter-predictive features with most encountered 
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instances (with some exceptions such as “eleven”) presenting at least some of these many 

predictive features. Knowledge domains learned and used by many individuals may evolve to 

increase local overlapping predictive patterns precisely because human learners are sensitive to 

and readily exploit them (Christiansen & Kirby, 2003; Kirby, Griffiths, & Smith, 2014; 

Monaghan, Shillcock, Christiansen, & Kirby, 2014). Thus, in many domains of human cognition, 

a hodgepodge of multiple inter-predictive features may be sufficient to account for human 

generalization (Colunga & Smith, 2005; Hasson et al., 2019; MacWhinney et al., 1989; 

Seidenberg & McClelland, 1989). 

 The children (and the model) in the present studies were purposely given minimal 

training to make the point that this kind of systematicity is easily found and generalized by 

learners. Although the findings show clear evidence for this conclusion, performance was well 

below mastery. There could be more dramatic generalizations given further experiences with 

number names and their written forms. If one examines the patterns of overlapping associations 

in Figure 1, one can see that two spoken elements form a hub, “-ty” and “hundred” which mark 

the places and form categories of the digits that fall in them. If the example network had included 

4-digit numbers, “thousand” would also be part of that hub. Given this structure, more 

experiences and a well-entrenched learning of the inter-predictive patterns for 1 to 9999, children 

(and deep learning networks) might well show one-shot learning (extrapolation) beyond that 

range: exposure to the name and written form for just one novel number, such as 21,578, might 

be sufficient for the learner to generate number names for any number from 1 to 99,999. The 

learning and explicit representation of well-formed rules and principles often seems to be the 

pinnacle of human learning (Lake et al., 2015; Rule et al., 2015; Tenenbaum et al., 2011), but a 

great deal of human intelligence could rest on exploiting a plethora of local, inter-predictive, and 
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imperfect surface features. This in-principle possibility is well-demonstrated in contemporary 

machine learning.  

However, to succeed in the basics of arithmetic, young children must go beyond the 

predictive patterns in the surface forms to understand the meaning of places and the 

multiplicative hierarchy that provides that meaning. How might learning about the inter-

predictive surface patterns be related to learning about the generative principles? Many related 

variants of this question populate the literature in cognitive science: implicit versus explicit 

learning (Reber, 1989), associative versus propositional representations (Chomsky, 1980; Fodor 

& Pylyshyn, 1988), intuitive processes versus conscious rule interpreters (Smolensky, 1988), 

intuitive and rational processing (Hinton, 1990), associative versus rule-based reasoning 

(Sloman, 1996), connectionism versus probabilistic reasoning (Griffiths et al., 2010; McClelland 

et al., 2010), statistical learning versus hypothesis testing (Medina, Snedeker, Trueswell, & 

Gleitman, 2011; Smith & Yu, 2008). We believe that children’s learning about base-10 notation 

provides a rich and well-defined context within which to make progress on these inter-related 

issues. With this larger goal in mind, we offer two hypotheses about how learning the multiple 

predictive patterns in the surface structure of number names and written forms may be related to 

learning the principles underlying the multiplicative hierarchy of places. 

One possibility is that these are fundamentally distinct forms of knowledge. Nonetheless,  

the early learning of predictive patterns relating number names and written multi-digit forms 

may support learning the principles of base-10 notation by guiding in-the-moment attentional 

processes during formal instruction (Yuan et al., 2019). A large literature shows that known 

words automatically direct attention to referents in crowded visual fields (Huettig & McQueen, 

2007; Lupyan & Ward, 2013; Spivey, Tyler, Eberhard, & Tanenhaus, 2001). Formal in-school 
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instruction about the multiplicative hierarchy often occurs in highly cluttered contexts of number 

lines and number boards with many written multi-digit numbers in view, heard number talk, and 

grounding activities such as the bundling and unbundling of physical sets of 10. To learn, 

children must look to relevant visual information at the right moment. The modeling results of 

Study 3 show that the surface regularities in number names and corresponding written forms are 

sufficient for the internal components of spoken number names to direct attention to the spatial 

regions within a multi-digit number. This facility in looking behavior—acquired through learned 

associations between the number names and written forms—may enable children to more 

accurately attend to the components of a string of digits and enable them to connect the relevant 

components to each other and to grounding activities about sets of 10. In so doing, early  

learning of the partial inter-predictive mappings between names and written forms may prevent 

the formation of wrong ideas that characterize some children’s knowledge of the place value 

system even as late as 5th grade (Gervasoni et al., 2011; Ross & Sunflower, 1995). This 

possibility has direct and actionable implications for understanding why some children falter in 

learning about the place value system while other children—in the same classrooms—readily 

succeed (Yuan et al., 2019). 

The second possibility is that that the key grounding for learning about base-10 notation 

lies not in the world and concrete examples of bundled sets of 10 sticks, but in the latent 

structure of many predictive correlations within the symbol system itself, the latent knowledge 

apparent in the hub at the center of network of surface-level associations (Figure 1). Advanced 

associative models can find higher-order correlations that represent abstract categories such as 

nouns and verbs, or the distinction between mass nouns and count nouns (Colunga & Smith, 

2005; Landauer & Dumais, 1997; Rogers & McClelland, 2004). Image captioning algorithms, 
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like that used in Study 3, trained on visual scenes and sentences describing those scenes have 

sufficient latent knowledge to generate grammatically-correct sentences without any training on 

syntactic categories (Datta et al., 2019; K. Xu et al., 2015). Thus, children’s learning of many 

overlapping inter-predictive features between the surface properties of names and the written 

symbols may form the internal knowledge of places that is made explicit with formal training, 

just as training in grammar brings forward explicit knowledge about nouns phrases and verb 

phrases. Ultimately, the understanding of place value requires an understanding of the relational 

structure among the places; forming latent categories of places may be essential for such an 

explicit understanding of the multiplicative hierarchy. This idea that meaning of places originates 

in the latent structure inherent in the surfaces features of the symbol system may explain why 

fully generative principles can be approached but perhaps not fully realized for human learners, 

as evident in the limits on many adults’ understanding of the base-10 notation when confronted 

with very large numbers (e.g., millions and billions, Landy, Charlesworth, & Ottmar, 2016; 

Landy, Silbert, & Goldin, 2013).  

Each of these two possibilities—being facile with the symbols benefits explicit learning 

about place value and early statistical learning teaches the underlying relational structure—are 

not mutually exclusive and both require more extensive empirical study. The contribution of the 

present work to research on education is three-fold: First, it highlights a potential educational 

role for statistical learning from mere experience—without tasks, explanations or feedback. 

Second, it offers an origin for and potential solution to the problem of why some children 

succeed and others falter from the same formal instruction about place value. Some children may 

have discovered the statistical regularities behind these mappings long before school; and finally, 

the results suggest a new agenda for research on early mathematics education, one that focuses 
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less on grounding and explanation of abstract concepts and more on how learners form latent 

knowledge about the symbol systems that affects future learning. 

In conclusion, learning depends on the internal mechanisms, the structure of the learning 

domain, and the prior learning of the learner. The study of children’s learning about the place 

value system offers a complex and tractable domain within which to make progress on how all 

these components fit together. Critical to this progress is the study of the data structures that 

characterize real world learning problems as they naturally occur. Growing evidence suggests 

that the statistical structure of everyday experience often differs fundamentally from the kinds of 

data structures used in laboratory experiments of human learning and those used to train machine 

learning models (Bambach, Crandall, Smith, & Yu, 2018; Dupoux, 2018; Frankenhuis, Nettle, & 

Dall, 2019; Smith & Slone, 2017). Current deep learning models are commonly criticized as data 

hungry and as being able to learn only local similarities—not general principles—despite all that 

data (Feinman & Lake, 2018; Lake et al., 2016; Marcus, 2018). The present findings suggest a 

more complete and unified understanding of all forms of learning and their relation to each other 

might best begin by studying natural real-world data sets for real world learning problems.   
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Table 1. All training activities and numbers used in Study 1.  
Activity 

 
Order 

 Trial  
Training 

day 1 
Training 

day 2 
Training 

day 3 
Total 

subjects 
Storybook Grouped 1 2 2 14 20 
Storybook Grouped 2 3 3 15 20 
Storybook Grouped 3 4 4 16 20 
Storybook Grouped 4 223 125 515 20 
Storybook Grouped 5 224 135 525 20 
Storybook Grouped 6 225 145 535 20 
Storybook Grouped 7 40 14 2 20 
Storybook Grouped 8 60 15 3 20 
Storybook Grouped 9 70 16 4 20 
Storybook Grouped 10 402 250 2520 20 
Storybook Grouped 11 502 350 3520 20 
Storybook Grouped 12 602 450 4520 20 

Make-a-number Grouped 13 14 1000 21 20 
Make-a-number Grouped 14 15 2000 121 20 
Make-a-number Grouped 15 16 3000 221 20 
Make-a-number Grouped 16 470 21 40 20 
Make-a-number Grouped 17 570 121 60 20 
Make-a-number Grouped 18 670 221 70 20 

Storybook Random 1 502 3 525 20 
Storybook Random 2 2 135 3 20 
Storybook Random 3 60 250 4520 20 
Storybook Random 4 14 16 21 20 
Storybook Random 5 402 1000 16 20 
Storybook Random 6 670 21 40 20 
Storybook Random 7 224 2 515 20 
Storybook Random 8 570 145 2 20 
Storybook Random 9 602 450 3520 20 
Storybook Random 10 470 15 121 20 
Storybook Random 11 70 3000 15 20 
Storybook Random 12 3 221 60 20 

Make-a-number Random 13 40 4 535 20 
Make-a-number Random 14 15 125 4 20 
Make-a-number Random 15 225 350 2520 20 
Make-a-number Random 16 4 14 221 20 
Make-a-number Random 17 223 2000 14 20 
Make-a-number Random 18 16 121 70 20 
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Table 2. All training activities and numbers used in Experiment 2 
Sole Activity Order Trial Training 

day 1 
Training 

day 2 
Training 

day 3 
Total 

subjects 
Storybook Random 1 321 19 515 36 
Storybook Random 2 261 305 124 36 
Storybook Random 3 4 124 80 36 
Storybook Random 4 30 4 2620 36 
Storybook Random 5 421 125 4 36 
Storybook Random 6 15 205 30 36 
Storybook Random 7 570 405 14 36 
Storybook Random 8 80 1002 324 36 
Storybook Random 9 19 324 535 36 
Storybook Random 10 2 3002 24 36 
Storybook Random 11 470 6 3620 36 
Storybook Random 12 262 105 525 36 
Storybook Random 13 570 14 2 36 
Storybook Random 14 14 205 60 36 
Storybook Random 15 6 2 19 36 
Storybook Random 16 260 145 15 36 
Storybook Random 17 60 15 6 36 
Storybook Random 18 521 2002 4620 36 

Make-a-number Random 1 321 19 515 30 
Make-a-number Random 2 261 305 124 30 
Make-a-number Random 3 4 124 80 30 
Make-a-number Random 4 30 4 2620 30 
Make-a-number Random 5 421 125 4 30 
Make-a-number Random 6 15 205 30 30 
Make-a-number Random 7 570 405 14 30 
Make-a-number Random 8 80 1002 324 30 
Make-a-number Random 9 19 324 535 30 
Make-a-number Random 10 2 3002 24 30 
Make-a-number Random 11 470 6 3620 30 
Make-a-number Random 12 262 105 525 30 
Make-a-number Random 13 570 14 2 30 
Make-a-number Random 14 14 205 60 30 
Make-a-number Random 15 6 2 19 30 
Make-a-number Random 16 260 145 15 30 
Make-a-number Random 17 60 15 6 30 
Make-a-number Random 18 521 2002 4620 30 
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Figure 1. An illustration of all possible partial mappings within and between written 

number symbols and spoken number names for four randomly chosen numbers 37, 65, 535 and 

762. The nodes depict individual components of written number symbols or spoken number 

names. The edges depict co-occurrences and partial mappings among the nodes. As can be seen, 

there are massive overlapping and redundant connections among pairs of written symbols and 

their component names that instantiate the to-be-learned generative principles.
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Figure 2. a) Sample book from the storybook reading activity in Study 1. Each book has 5 

pages from P.1 to P.5. Materials were identical between the training condition (top row) and the 

control condition (bottom row), with the only difference being that the training condition 

involved numbers, and the control condition involved spelling. b) Sample materials for the 

making numbers (or words) with cards game in Study 1. The child and the experimenter each 

have a set of cards; the only difference between the training and the control condition is the 

content on the cards—individual digits for the training and individual letters for the control 

condition.  
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Figure 3. Proportion of correct trials at pretest and posttest for all children and children 

with different levels of early knowledge in Study 1 (defined as above or below 65% accuracy at 

pretest). Error bars indicate standard errors.  
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Figure 4. Sample for the book reading activity for the two control conditions in Study 2. 

a) the visual only—no number words condition. Children saw pictures of objects and written 

numbers on the pages, but the experimenter did not provide number names during the training. b) 

the number words only—no visual condition. Children saw pictures of objects and heard number 

words from the experimenter’s instruction, but never saw written numbers on the page.  

 

  



 44 

       

Figure 5. Proportion of correct trials at pretest and posttest in the training condition 

(including both the story-book activity and the making numbers with card activity) in Study 2, 

for all items and for items that involved completely novel items. Error bars indicate standard 

errors. 
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Note. The input to the LSTM network and on which the attention mechanism operates was the 

series of localized feature maps extracted by the CNN. But, for the ease of interpretation, the raw 

input image was shown at the bottom to demonstrate the final learning outcome of the attention 

mechanism where the network over time learned to prioritize the most relevant part of the image 

for predicting the current component word.    

 

Figure 6. Illustration of the architecture of the model, which has three basic components: 

1) A convolutional neural network (CNN) as an encoder for extracting visual features from an 

input image, 2) A Long short-term memory (LSTM) recurrent neural network (RNN) as an 

decoder for linking visual input with a sequence of tokens, and 3) An attention mechanism that 

learns to align tokens with corresponding parts in the visual input (the shaded region represents 

the parts of the image that are most relevant to the token in the current time step).  
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                             a) 

 
                             b) 

 
 

Figure 7. Model performance based on (a) the edit distance measure (b) the probability 

measure after 0 epoch and 100 epochs. Error bars indicate standard errors. 
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a)  Models’ performance on the edit distance measure after training 

 
b) Models’ performance on the probability measure after training 

 
c) Children’s performance after training in Study 1 and 2 

 

 
Figure 8. Error patterns across different types of testing items—S = single digit numbers, 

M-DP = multi-digit numbers with different numbers of places, M-SP-no-T = multi-digit numbers 

with the same number of places but no transpositions, M-SP-T = multi-digit numbers with the 

same number of places and transpositions—for models’ performance on the edit distance 

measure after training (a), models’ performance on the probability measure after training (b), and 

children’s performance after training in Study 1 and 2 (c). Error bars indicate standard errors. 
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