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Abstract

With vast quantities of imagery now available online, re-
searchers have begun to explore whether visual patterns
can be discovered automatically. Here we consider the
particular domain of architecture, using huge collections
of street-level imagery to find visual patterns that corre-
spond to semantic-level architectural elements distinctive
to particular time periods. We use this analysis both to
date buildings, as well as to discover how functionally-
similar architectural elements (e.g. windows, doors, bal-
conies, etc.) have changed over time due to evolving styles.
We validate the methods by combining a large dataset of
nearly 150,000 Google Street View images from Paris with
a cadastre map to infer approximate construction date for
each facade. Not only could our analysis be used for dating
or geo-localizing buildings based on architectural features,
but it also could give architects and historians new tools for
confirming known theories or even discovering new ones.

1. Introduction
With the era of “big data” at hand, many academic disci-

plines are beginning to use online data to perform analyses
that would have been impossible with traditional methods.
For example, collaborations between sociologists and com-
puter scientists are using online social network data to mea-
sure human behavior at unprecedented scales [16], while
work in health informatics is using online data to monitor
outbreaks of diseases [11] and to predict their spread [22]
(albeit with some controversy [21] and missteps [15]). In
the humanities, analysis of online data has given insight
into historical legal records [14] and the dynamics of cul-
tural history [23]. Large-scale analysis of digitized books
through several centuries has been used to quantify changes
in linguistic and cultural phenomena over time [18].

The vast majority of this analysis has been on textual
content, often looking at simple features like occurrences
and co-occurrences of keywords [11,18]. But analyzing im-
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Figure 1: Using thousands of Street View images aligned
to a cadastral map, we automatically find visual elements
distinctive to particular architectural periods. For example,
the patch in white above was found to be distinctive to the
Haussmann period (late 1800’s) in Paris, while the heat map
(inset) reveals that the ornate balcony supports are the most
distinctive features. We can also find functionally-similar
elements from the same and different time periods (bottom).

ages could help unlock other latent sources of data for the
sciences and humanities. Some work has investigated us-
ing vision to organize and navigate historical images [4,24]
and to discover hidden features in artwork [13, 28], but is
limited in scale by the relatively small number of artifacts
available. In these cases when big datasets are not involved,
human experts can often perform the analysis as well and as
quickly as the automated algorithms.

Here we consider a domain in which we can study the
dynamics of the past through vast image collections from
the present: architecture. Architecture involves creating
buildings “taking both aesthetic and practical factors into
account” [20]. Thus architectural styles change over time,



reflecting the evolving artistic design, social and cultural at-
titudes, and technological and socioeconomic conditions of
the peoples that built them. Studying features of buildings
gives a window into the past, letting us observe properties
of style and design at the time they were built.

Of course, manually collecting building data and images
would be extremely tedious. We propose a novel analysis
using Google Street View images geo-referenced against
digitized maps. Street View includes street-level imagery
from over 5 million miles of roads in more than 39 coun-
tries and 3,000 cities [9], capturing a huge number and va-
riety of buildings around the world. For a given city (in our
case, Paris), we associate individual building facades within
Street View images and fine-grain urban planning records,
letting us annotate each individual facade image with an ap-
proximate year of its construction.

With these combined data sources, we use mid-level vi-
sual features (similar to those of Doersch et al. [8]) to dis-
cover visual elements that are distinctive to particular archi-
tectural periods. We visualize these features over space and
time, using a novel graph-based formulation to find func-
tional elements (e.g. windows, doorways, etc.) whose style
has changed across periods. In our experiments, we apply
this analysis to nearly 150,000 images of 120,000 build-
ings of Paris. We show that these visual elements are use-
ful for classifying the architectural style and construction
date of buildings based on visual information alone (which
could be useful for example for geo-localizing images by
matching to city planning maps or for dating vintage pho-
tos), while potentially also generating new insights into how
architectural styles have changed over time.

A key challenge is that we want to perform all of this
analysis automatically. It is easy to find repeated visual
elements in Street View, but most correspond to architec-
turally uninteresting objects like signs, bus stops, etc. We
are instead interested in elements having roughly the same
appearance because they correspond to the same function
(balconies, windows, etc.), but whose appearance changes
across time as styles evolved. Of course, boundaries be-
tween architectural styles are inherently blurry with a high
degree of visual similarity between adjacent periods, and
multiple distinct styles can exist within one time period.
Important stylistic elements also wax and wane in popu-
larity and can quickly rise to prominence only to be for-
gotten. Our approaches allow us to detect many diverse
features, and connect functionally-similar elements through
time with arbitrary start and end points. We evaluate our
techniques both quantitatively and qualitatively.

To summarize our contributions, we:

1. generate large-scale architecture datasets automati-
cally, using a novel combination of Street View image
data aligned to cadastral maps;

2. discover architectural elements distinctive to particular

time periods;
3. visualize these elements in detail, including which sub-

elements make them distinctive, and how they com-
bine to form distinctive facades;

4. find chains of visual elements corresponding to func-
tional elements whose appearance has evolved; and

5. evaluate these techniques both quantitatively and qual-
itatively on a dataset of Paris.

2. Related Work
Perhaps most related to this paper is work in mid-

level visual mining that tries to find discriminative im-
age patches. Doersch et al. [7, 8] discover patches that
discriminate between different cities using geo-referenced
street-level imagery from Street View. The method re-
quires iterative refinement of the patches using SVMs. Like
us, Lee et al. [17] consider the temporal domain, find-
ing style-independent classifiers of style-discriminative el-
ements present throughout multiple time periods (like au-
tomotive headlights, which have been on cars for fifty
years but whose style has changed dramatically over time).
Our work also tries to find patches with similar semantics
through time, but we face the additional challenge that ele-
ments in architecture are much more dynamic, with certain
elements such as window shutters rising to prominence for
decades only to fall out of favor later.

Some work in computer vision has considered archi-
tecture applications, including classifying between differ-
ent architectural styles. For example, Shalunts et al. [25,
26] classify specific elements like windows and domes
into three architectural periods (Gothic, Baroque, and Ro-
manesque). Their results are promising, although their
dataset was small (a few hundred images manually cropped
around each element), in contrast to our huge collection
of unconstrained Street View images. Xu et al. [31] clas-
sify whole building facades in about 5,000 images from
Wikimedia, where buildings are well-centered and in full
view. Since Wikimedia images are selected to be good ex-
amples of specific styles, they exhibit little of the blend-
ing and other complications that one observes in practice.
They use deformable part-based models to visualize which
facade elements are characteristic of which styles. Other
work parses facade images into predefined elements such
as doors, walls, windows, roofs, and balconies [6, 27, 30].
These approaches generally require cropped and rectified
facade images. Though this parsing allows for well-aligned
comparison of elements, defining elements by hand can be
tedious and can introduce bias, so we instead follow a data-
driven approach here in which elements are discovered au-
tomatically from large-scale image data.

Other recent work has used Google Street View, but for
other applications than ours. Arietta et al. [3] use regres-
sors based on mid-level patches to predict geospatially dis-
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Figure 2: Overview of data generation from Google Street View images and cadastre maps. We first (a) cast 30m rays to the
sides of each Street View capture location at 1◦ intervals, then (b) compute intersections with facades and select the widest
view, and (c) project onto the panoramas and crop and warp the facade images according to Street View metadata.

tributed statistics such as crime rate and wealth. Ordonez
and Berg [19] predict attributes of neighborhood safety,
uniqueness, and wealth. Zhou et al. [32] demonstrate that
the frequency with which Street View images contain cer-
tain attributes like green space, tall buildings, water, and
social activities can be used to identify a particular city.

3. Data

We start by introducing our large-scale dataset of build-
ing facades constructed through many time periods. Rather
than manually photographing buildings and researching
their construction dates, we employ a noisy but automated
process combining images from Google Street View, a 3D
city map, and real estate records. We focus here on Paris,
because it is one of the world’s best-known cities and be-
cause fine-grained data on building construction dates is
available (but our analysis could be easily applied to any
other city covered by Street View).

Fine-grained building geometry. We use a digital cadas-
tre (a survey of real estate boundaries) of Paris to re-
trieve detailed building geometry and construction dates.
The cadastre was provided by the Paris Urban Planning
Agency (Atelier Parisien d’Urbanisme) [2] and comes pre-
pared in a standard GIS format including over 120,000
buildings (almost the entire city). The building geome-
tries are recorded as 2d polygons plus maximum building
height. Almost all of the buildings have a label indicat-
ing their coarse construction period, in terms of 10 periods:
pre-1800, 1801-1850, 1851-1914, 1915-1939, 1940-1967,
1968-1975, 1976-1981, 1982-1989, 1990-1999, and after
2000. Some periods contain more buildings, like 1851-1914
during which the city grew from about 1 to nearly 3 million
citizens. The cadastre also includes construction years for
about 57% of buildings, although like much real-world data,
these are noisy (for example, a suspiciously large number of
years are divisible by 10).

Street View images. We collected every current Street View
image and location metadata taken within the Paris city lim-
its, yielding about 145,000 panoramas. The images were
primarily captured in 2008 and 2012, with only about 11%
captured in other years. The panoramas are composites of

multiple images and have a resolution of about 13,300 by
6,600 pixels. They were generated from arrays of 9 to 15
cameras using Google’s custom Street View vehicles [1].

Combining Street View and cadastre data. To link Street
View images and building information, we need to align the
images with the cadastre data. Each Street View image has
a GPS coordinate, but we must still decide which buildings
an image has captured and how to crop the panoramas to ex-
tract individual images. To do this, for each panorama we
look up the Street View vehicle’s heading from the metadata
and cast rays in 160◦ cones from each side of the vehicle.
The rays are cast at 1◦ intervals and are 30 meters long,
which is sufficient to reach the buildings on even the larger
Parisian thoroughfares (see Figure 2a). We compute the first
facade encountered by each ray, and select the pair of rays
from each facade with the greatest angular difference (see
Figure 2b). We then crop and warp the panoramas to pro-
duce multiple facade images per Street View panorama.

A temporally labeled architectural dataset. Many of these
450,000 candidate facade images are not suitable for anal-
ysis because of extreme skews and angles of view. We re-
move facades which we see too narrowly, thresholding at
a minimum field of view of 50◦. To avoid images with
high degrees of perspective warping, we remove facades
that are within 5m of the camera or that are more than 10
degrees askew from the heading direction. This leaves us
with images that are nearly parallel to the vehicle, such that
the building facade is approximately planar. We crop the
ground floor from all facades, since ground floors are of-
ten renovated and are poor representations of period archi-
tecture. From the remaining 70,000 facades, we sampled
20,000 images for analysis, evenly distributed among the
construction periods such that each has 2,000 facades.

4. Discovering period-discriminative elements

Given our large dataset of building facades with time
period annotations, our goal is to automatically discover
discriminative architectural elements, and to capture their
characteristics at multiple scales through time. We begin
by finding patches that are highly representative of their
respective time periods, by randomly sampling candidate



patches and then performing nearest neighbor searches to
evaluate discriminativeness. We then connect high quality
patches to discover evolving trends across time periods.

4.1. Candidate generation

We begin with a mining approach similar to that of Do-
ersch et al. [8], generating a large set P of candidate vi-
sual elements by sampling 25 patches at different reso-
lutions from each of 2,000 images (which are then with-
held from the remaining analysis). These images were se-
lected uniformly across the periods, with low-gradient re-
gions ignored during patch extraction. We represented each
patch in Whitened HOG (WHO) space [10, 12], with WHO
mean and covariance parameters learned over the 2,000 im-
ages. For each of the 50,000 patches, we build a set of
initial “detections” by finding the closest match in each
of the remaining 18,000 images, across all scales of the
WHO pyramid. The result is a set of nearly 1 billion as-
sociations between images and patches, which we denote
C = {C1, C2, ..., C50000} where Ci = (Di,1, ..., Di,18000)
andDi,j is the location and WHO distance of the best match
of patch i in image j, sorted in order of increasing distance.

4.2. Identifying stylistically important elements

We define a patch to be stylistically important if it oc-
curs often in one construction time period and rarely in oth-
ers [17]. For each patch Ci, we find the closest 200 im-
age matches (i.e. Di,1, ..., Di,200) to evaluate its discrimi-
nativeness. We observe that matches past these 200 often
degrade to the point that visual correspondences are weak
and would add noise to our analysis. (If our task were clas-
sification, we would not be concerned about this noise as
long as it improved performance, but here we are attempt-
ing to find salient elements.) To evaluate each candidate
Ci, we give each of the 200 close detections a binary label
indicating whether the close detection is in the same pe-
riod as the candidate. We define a simple linear classifier
fi(x) = sign(Ĉi · x + bi), where Ĉi is the whitened HOG
descriptor of the candidate written as a vector, and bi is a
scalar bias. This choice of classifier is justified because the
vector Ĉi can be interpreted as a classifier trained with the
square loss from the candidate Ci as a positive example and
large number of negative data points [4, 10, 12].

We apply fi(x) to each of the image matches Dij and
vary bi to produce a precision-recall curve. We rank the
candidates Ci by area under the curve (AUC), because can-
didates high AUC should be distinctive to a given period.
We prune this set by finding candidates that have overlap-
ping detections (i.e. two detections in the same image which
have an intersection over union greater than 0.5) and re-
moving the one with the weakest rank. Typically this pro-
cess culls the population down to a few thousand per period.
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Figure 3: Sample chain graph. Elements in adjacent pe-
riods are fully connected with weights depending on their
co-occurrence, while the source and sink connect to every
node with weights that penalize the number of skipped pe-
riods. Here, the shortest path (in red) skips pre-1800 and
1915-1939 because they lack the long balconies of the other
periods. (For clarity, this visualization shows only four peri-
ods (instead of ten), and only some source and sink edges.)

This procedure finds visual elements whose appearance cor-
relates with building age, and ignores other common ele-
ments found throughout the city (like pavement, signs, bus
stops, etc.) due to their very poor ranking; Figure 4 shows
some examples. Some of the remaining elements are dis-
tinct to a given period, while others correspond to elements
that have undergone visual evolution, as we now discuss.

4.3. Tracking the evolution of style

Functionally-identical elements of buildings can change
substantially over time; for example, the styles of win-
dows, doors, balconies, etc. vary dramatically across dif-
ferent architectural periods. We try to automatically iden-
tify these evolutions by looking for “chains” of elements
that are discriminative to a particular time period, but that
are still coarsely similar in visual appearance to elements
in neighboring periods. More concretely, given the set of
deduplicated and ranked candidates Ĉ with period labels
L generated as described in the previous section, we want
to find a chain C1, . . . , Ck of similar elements such that
LCi+1 = LCi + 1. We cannot fix the length k of the chain
or the beginning or ending periods (LC1

or LCk
) in ad-

vance, since elements may appear or disappear over time.
This problem is reminiscent of multiple-target tracking [5],
in which detections of an object from sequential frames of
video are stitched together to form trajectories, except that
we are “tracking” patches over sets of images from different
time periods.

We define a directed acyclic graphG = {V, E} such that
V = {s, t} ∪ Ĉ where s and t are special source and sink
nodes. The graph forms a trellis, such that each patch in
any given time period has an outgoing edge to every patch



in the next period, while the source and sink connect to all
nodes (in all time periods) of the graph. Figure 3 presents
a sample graph with four periods and three patches per pe-
riod. Intuitively, the inter-period connections provide pos-
sible evolutions of corresponding elements. The source and
sink nodes are added to determine the start and end of a
chain, with weights such that if many matches for a patch
are from the future, it is likely to be a starting point; other-
wise, it tends to be an ending point.

For the edge weights, we need a measure of visual sim-
ilarity that will connect patches likely to correspond to the
same functional elements (e.g. windows, balconies, etc.).
We could use visual similarity in WHO space, except that
the appearance of some functional elements varies rather
dramatically across time. We thus instead use relationships
between images and candidate patches, looking at the spa-
tial consistency of detections between candidates as a mea-
sure of similarity. For example, even if a window from 1939
looks quite different from one from the 1800s, it will still
likely find its closest detection on a window region instead
of anywhere else on a facade.

In particular, for pairs of patches Ci and Cj with
(Ci, Cj) ∈ E , we compute the intersection-over-union
between their top 200 detections, (Di,1...Di,200) and
(Dj,1...Dj,200). We store this overlap value and the spatial
offsets of the centers of overlapping pairs as θ and ∆, where
θ ∈ RN and ∆ ∈ RN×2 and N is the number of overlap-
ping pairs. We also compute the component-wise trimmed
mean ∆̄, discarding outliers outside the 0.1 and 0.9 quan-
tiles. To capture the consistency of the overlaps, we take a
mean deviation µ∆ = 1

n

∑
||∆i− ∆̄||, where higher values

indicate less consistency, and compute an edge weight,

wij = µ∆ ∗ eλ/
∑
θ,

where λ is a constant (5 in our experiments) controlling how
steeply the cost rises for low confidence overlaps. The ex-
ponential term incorporates our level of confidence in µ∆

based on the number and quality of the overlaps. Intuitively,
two elements i and j that co-occur in the same images with
a consistent spatial offset will have a low weight.

The source and sink nodes are attached to every other
node with weights dependent on each candidate’s closest
detections. In particular, the weight from source to Ci is
defined as n< ∗ β ∗ f< where f< is the fraction of the top
200 detections for Ci that are from periods before LCi and
n< is the number of periods before LCi

. The weights to
the sink are defined similarly, considering periods and frac-
tions of those periods past LCi

. Generally these weights
will be low when a patch lacks many detections in earlier
or later periods respectively. We set β empirically as a typ-
ical edge cost in a high quality chain, so that these weights
balance the total cost of continuing the chain, amortized by
how likely the chain should continue. To generate chains we

greedily find the shortest path from source to sink, remove
it, and repeat.

5. Results
We now evaluate our dataset construction and visual el-

ement discovery methodology on our large-scale dataset
from Paris. Our goal of automatically producing informa-
tive architectural visualizations is inherently qualitative, so
we evaluate it in several different ways. First we view the
problem in terms of the discriminativeness of our patches.
Then we look in detail at sample output and identify histor-
ical trends that our automatic methods have captured. Fi-
nally, we report on qualitative results based on the feedback
of an expert on Parisian architecture, who used an interac-
tive version of our analysis.

5.1. Period-wise Analysis

One way of evaluating our discriminative patches is to
test their classification effectiveness, i.e. how well they dis-
cern visually similar elements from different periods. As
discussed in Section 4, we score our candidate patches by
taking the nearest 200 detections for each candidate as our
collection of visually similar elements, and compute the
area under a precision-recall curve for each patch. We show
the top eight elements ranked by AUC for each period in
Figure 4.

In Figure 5a we plot the mean AUC for the highest
ranked k patches from each period, varying k between 1
and 200. Note that after about the 10th to 30th best patch,
the mean AUC drops substantially for all periods. We take
this to imply that periods are surprisingly well characterized
by only about a dozen key elements. Also interesting is the
relatively higher mean AUC for the two periods spanning
1801-1914. These periods include Haussmann’s renovation
of Paris (during which Emperor Napoléon III commissioned
Georges-Eugène Haussmann to redesign much of the city
center) and perhaps are more cohesive because of the heavy
influence of a single person. Figure 5b shows the distribu-
tion of period labels for the 200 nearest detections for the
top 200 patches in each period. As we would expect, much
of the mass is around the diagonals, indicating that most
confusion is with adjacent periods. Both Figures 5a and 5b
show that later periods are more challenging than earlier
ones, perhaps because they are shorter and thus presumably
more similar to neighboring periods.

Facade-level analysis. While these results suggest that we
are discovering discriminative patches, one of our larger
goals is to find patches that are relevant and useful to studies
of architecture. This is difficult to quantify, so we showed
our discovered patches to an expert on Parisian architecture
and asked for feedback [29]. They informed us that many of
the patches did capture key elements known to be prevalent



(a) Pre-1800 (b) 1801–1850

(c) 1851–1914 (d) 1915–1939

(e) 1940–1967 (f) 1968–1975

(g) 1976–1981 (h) 1982–1989

(i) 1990–1999 (j) After 2000

Figure 4: Top 8 discriminative elements for each period. For each element, five example patches are shown in a row. Notice
how as we move towards modern times the patches largely become repeated geometries.
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Figure 5: Evaluation of top 200 patches per period: (a) Mean AUC as a function of number of top candidates. (b) Distribution
of labels in top detections for each period.

in their respective periods, but that architects usually look at
entire facades where many details combine to indicate the
facade’s period, as opposed to studying individual features.

Inspired by this observation, we used our ranked can-
didates to evaluate the ‘periodness’ of whole facades. For
each facade, we found the top 100 detected patches. We
sum the AUC of the detected patches for each period in a
facade to produce an unnormalized distribution over how
well each period’s patches fit the given facade. In Figure 6
we show the highest likelihood facade for each period. Each
image is accompanied by an over-painting of patch detec-
tions with colors corresponding to source period (using the
same color coding as in Figure 5a) and a “reconstruction” of
the image made by averaging these detections. For instance,
notice how the 1851-1914 facade demonstrates the similar-
ity in the periods spanning pre-1800 to 1914; its overpaint-
ing has colors corresponding to patch detections from pre-
1800 (red) and 1801-1850 (orange) in addition to its own
(yellow). The figure presents a sense of the progression in
style and types of buildings constructed in Paris over the last
two centuries, as modern materials gradually overtake old.
The confusion about later periods is again seen here, with
later periods exhibiting higher degrees of confusion (indi-
cated by more mixture of color in the over-painting).

Fine-grained substructures. We also took a finer-grained
perspective, looking for the most discriminative substruc-
tures within each patch. In particular, we drop each spatial
cell of the WHO feature in sequence, by recomputing the
patch’s distances and AUC while ignoring that cell. This
shows us which spatial cells are important, by observing
drops in the AUC relative to the entire patch. We visualize
this with a histogram of these differences where the i, j-th
entry is the difference in AUC when the i, j-th spatial bin
is masked. A sample of these visualizations is shown in
Figure 7 along with some candidates and their nearest de-
tections. The 1915-1939 period is characterized by new raw

(a) 1915-1939 (AUC: 0.43) (b) 1801-1850 (AUC: 0.75)

(c) 1990-1999 (AUC: 0.50) (d) 1851-1914 (AUC: 0.53)

(e) 1915-1939 (AUC: 0.30) (f) 1915-1939 (AUC: 0.34)

Figure 7: Sample discriminative elements. Each figure
shows a patch (top left), a fine-grained importance map (top
right), close examples from the same (bottom left) and other
(bottom right) time periods. Best viewed in color.

brick facades, highlighted in Figure 7a. Figures 7b and 7c
give importance to details not identified by our expert. In
Figure 7b, the spacing between adjacent window shutters
appears to be influential in discerning between periods. In
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Figure 6: Exemplars of each period according to facade level analysis. In each row we show the original facade (left), the
original overpainted with the periods of the top 100 detections (middle), and a reconstructed version of the facade where
the period patches are replaced by their average images (right). Note the progression of style and the types of building
constructed over the 200 year span. (Best viewed in color.)



Figure 7c the additional horizontal line is missing in many
similar pre-1990 facades. The cap in Figure 7d is high-
lighted as well. Interestingly the highlight extends off the
right-hand side indicating that the continued horizontal may
also be important. The railing in Figure 7e sets itself apart
from other similar elements by the plainness of its columns
as compared to close negative patches. Figure 7f is unique
among the examples because the map highlights an area be-
cause of what is not present: in the close negative examples,
the white trim extends down the side of the window.

5.2. Style chains

Next we evaluated our technique for finding “chains” of
similar functional elements whose appearance has evolved
over time. Figure 8 shows sample chains of varying length
and differing elements. Figures 8a and 8i show increasingly
ornate window dressings starting from very plain structures
before 1800, to multiple decorative structures in the 1851–
1914 period. Figure 8c shows the long window balconies
of the 1850s to 1940s, while Figure 8d shows an evolution
of short balconies. Many similar chains are produced as
there is a great deal of variety in balcony shapes over time.
Some chains show consistent directions of change, for in-
stance Figure 8e demonstrates the increasing depth of win-
dows. The last chain in Figure 8f highlights railings for
large buildings after 1940, with the railings transitioning to
glass in 1982–1989 and into metal in the 1990s.

6. Conclusion
We presented simple but effective methods to automat-

ically discover and track visually important architectural
elements using an automatically annotated collection of
thousands of street-level images of Paris. The images are
mapped to buildings in a fine-grain urban planning model
that annotates each with a rough construction date. Using
these combined data sources, we mine for period specific
stylistics elements, analyze facade-level architectural influ-
ences, and find evolutions of elements across times. This
work is one step towards a longer-term goal of developing
automatic techniques to mine large-scale image collections
in order to help experts in other disciplines discover impor-
tant and meaningful visual patterns.
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