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Abstract

One-shot fine-grained visual recognition often suffers from the problem of training
data scarcity for new fine-grained classes. To alleviate this problem, an off-the-shelf
image generator can be applied to synthesize additional training images, but these
synthesized images are often not helpful for actually improving the accuracy of
one-shot fine-grained recognition. This paper proposes a meta-learning framework
to combine generated images with original images, so that the resulting “hybrid”
training images can improve one-shot learning. Specifically, the generic image
generator is updated by a few training instances of novel classes, and a Meta Image
Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained
recognition as well as image reinforcement. The model is trained in an end-to-end
manner, and our experiments demonstrate consistent improvement over baselines
on one-shot fine-grained image classification benchmarks.

1 Introduction

The availability of vast labeled datasets has been crucial for the recent success of deep learning.
However, there will always be learning tasks for which labeled data is sparse. Fine-grained visual
recognition is one typical example: when images are to be classified into many very specific categories
(such as species of birds), it may be difficult to obtain training examples for rare classes, and producing
the ground truth labels may require significant expertise (e.g., ornithologists). One-shot learning is
thus very desirable for fine-grained visual recognition.

A recent approach to address data scarcity is meta-learning [7,10,24,35], which trains a parameterized
function called a meta-learner that maps labeled training sets to classifiers. The meta-learner is trained
by sampling small training and test sets from a large dataset of a base class. Such a meta-learned
model can be adapted to recognize novel categories with a single training instance per class. Another
way to address data scarcity is to synthesize additional training examples, for example by using
off-the-shelf Generative Adversarial Networks (GANs) [3, 13]. However, classifiers trained from
GAN-generated images are typically inferior to those trained with real images, possibly because the
distribution of generated images may be biased towards frequent patterns (modes) of the original
image distribution [26]. This is especially true in one-shot fine-grained recognition where a tiny
difference (e.g., beak of a bird) can make a large difference in class.

To address these issues, we develop an approach to apply off-the-shelf generative models to synthesize
training data in a way that improves one-shot fine-grained classifiers. We begin by conducting a
pilot study to transfer a generator pre-trained on ImageNet in a one-shot scenario. We show that
the generated images can indeed improve the performance of a one-shot classifier when used with
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a carefully-designed rule to combine the generated images with the originals. Based on these
preliminary results, we propose a meta-learning approach to learn these rules to reinforce the
generated images effectively for few-shot classification.

Our approach has two steps. First, an off-the-shelf generator trained from ImageNet is updated
towards the domain of novel classes by using only a single image (Sec. 4.1). Second, since previous
work and our pilot study (Sec. 3) suggest that simply adding synthesized images to the training data
may not improve one-shot learning, the synthesized images are “mixed” with the original images in
order to bridge the domain gap between the two (Sec. 4.2). The effective mixing strategy is learned
by a meta-learner, which essentially boosts the performance of fine-grained categorization with a
single training instance per class. Lastly, we experimentally validate that our approach can achieve
improved performance over baselines on fine-grained classification datasets in one-shot situations
(Sec. 5).

To summarize, the contributions of this paper are: (1) a method to transfer a pre-trained generator
with a single image, (2) a method to learn to complement real images with synthetic images in a way
that benefits one-shot classifiers, and (3) to experimentally demonstrate that these methods improve
one-shot classification accuracy on fine-grained visual recognition benchmarks.

2 Related Work

Image Generation. Learning to generate realistic images has many potential applications, but is
challenging with typical supervised learning. Supervised learning minimizes a loss function between
the predicted output and the desired output but, for image generation, it is not easy to design such
a perceptually-meaningful loss between images. Generative Adversarial Networks (GANs) [13]
address this issue by learning not only a generator but also a loss function — the discriminator — that
helps the generator to synthesize images indistinguishable from real ones. This adversarial learning
is intuitive but is known to often be unstable [14] in practice. Recent progress includes better CNN
architectures [3, 21], training stabilization tips [2, 14, 19], and interesting applications (e.g. [38]).
In particular, BigGAN [3] trained on ImageNet has shown visually impressive generated images
with stable performance on generic image generation tasks. Several studies [20, 33] have explored
generating images from few examples, but their focus has not been on one shot classification. Several
papers [8, 9, 20] use the idea of adjusting batch normalization layers, which helped inspire our work.
Finally, some work has investigated using GANs to help image classification [1, 12, 26, 27, 37]; our
work differs in that we apply an off-the-shelf generator pre-trained from a large and generic dataset.

Few-shot Meta-learning. Few shot classification [4] is a sub-field of meta-learning (or “learning-to-
learn”) problems, in which the task is to train a classifier with only a few examples per class. Unlike
the typical classification setup, in few-shot classification the labels in the training and test sets have
no overlapping categories. Moreover, the model is trained and evaluated by sampling many few-shot
tasks (or episodes). For example, when training a dog breed classifier, an episode might train to
recognize five dog species with only a single training image per class — a 5-way-1-shot setting. A
meta-learning method trains a meta-model by sampling many episodes from training classes and is
evaluated by sampling many episodes from other unseen classes. With this episodic training, we can
choose several possible approaches to learn to learn. For example, “learning to compare” methods
learn a metric space (e.g., [28,29,31]), while other approaches learn to fine-tune (e.g., [10,11,22,23])
or learn to augment data (e.g., [6, 12, 15, 25, 34]). An advantage of the latter type is that, since it
is data augmentation, we can use it in combination with any other approaches. Our approach also
explores data augmentation by mixing the original images with synthesized images produced by a
fine-tuned generator, but we find that the naive approach of simply adding GAN generated images to
the training dataset does not improve performance. But by carefully combining generated images with
the original images, we find that we can effectively synthesize examples that contribute to increasing
the performance. Thus meta-learning is employed to learn the proper combination strategy.

3 Pilot Study

To explain how we arrived at our approach, we describe some initial experimentation which motivated
the development of our methods.
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Table 1: CUB 5-way-1-shot classification accuracy (%) using ImageNet features. Simply adding
generated images to the training set does not help, but adding hybrid images, as in Fig. 1 (h), can.

Training Data Nearest Neighbor Logistic Regression Softmax Regression

Original 69.6 75.0 74.1
Original + Generated 70.1 74.6 73.8
Original + Mixed 70.6 75.5 74.8

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1: Samples described in Sec. 3. (a) Original image. (b) Result of tuning noise only. (c) Result
of tuning the whole network. (d) Result of tuning batch norm only. (e) Result of tuning batch norm
with perceptual loss. (f) Result of slightly disturbing noise from (e). (g) a 3× 3 block weight matrix
w. (g) Result of mixing (a) and (f) as w×(f) + (1− w)×(a).

How can we transfer generative knowledge from pre-trained GANs? We aim to quickly gener-
ate training images for few-shot classification. Performing adversarial learning (i.e. training generator
and discriminator initializing with pre-trained weights) is not practical when we only have one or two
examples per class. Instead, we want to develop a method that does not depend on the number of
images at all; in fact, we consider the extreme case where only a single image is available, and want
to generate variants of the image using a pre-trained GAN. We tried fixing the generator weights and
optimizing the noise so that it generates the target image, under the assumption that sightly modifying
the optimized noise would produce a variant of the original. However, naively implementing this idea
with BigGAN did not reconstruct the image well, as shown in the sample in Fig. 1(b). We then tried
fine-tuning the generator weights also, but this produced even worse images stuck in a local minima,
as shown in Fig. 1(c).

We speculate that the best approach may be somewhere between the two extremes of tuning noise
only and tuning both noise and weights. Inspired by previous work [8, 9, 20], we propose to fine-tune
only scale and shift parameters in the batch normalization layers. This strategy produces better
images as shown in Fig. 1(d). Finally, again inspired by previous work [20], we not only minimize
the pixel-level distance but also the distance of a pre-trained CNN representation (i.e. perceptual
loss [17]), and we show the slightly improved results in Fig. 1(e). We can also generate slightly
different versions by adding random perturbations to the tuned noise (e.g., the “fattened” version of
the same bird in Fig. 1(f)). The entire training process needs fewer than 500 iterations and takes less
than 20 seconds on an NVidia Titan Xp GPU. We explain the resulting generation strategy developed
based on this pilot study in Sec. 4.

Are generated images helpful for few shot learning? Our goal is not to generate images, but
to augment the training data for few shot learning. A naive way to do this is to apply the above
generation technique for each training image, in order to double the training set. We tested this idea on
a validation set (split the same as [4]) from the Caltech-UCSD bird dataset [32] and computed average
accuracy on 100 episodes of 5-way-1-shot classification. We used pre-trained ImageNet features
from ResNet18 [16] with nearest neighbor, one-vs-all logistic regression, and softmax regression
(or multi-class logistic regression). As shown in Table 1, the accuracy actually drops for two of the
three classifiers when we double the size of our training set by generating synthetic training images,
suggesting that the generated images are harmful for training classifiers.

What is the proper way of synthesizing images to help few-shot learning? Given that the syn-
thetic images appear meaningful to humans, we conjecture that they can benefit few shot classification
when properly mixed with originals to create hybrid images. To empirically test this hypothesis, we
devised a random 3× 3 grid to combine the images. As shown in Fig. 1(h), images (a) and (f) were
combined by taking a linear combination within each cell of the grid of (g). Finally, we added mixed
images like (h) into the training data, and discovered that this produced a modest increase in accuracy
(last row of Table 1). While the increase is marginal, these mixing weights were binary and manually
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Figure 2: Our Meta Image Reinforcing Network (MetaIRNet) has two modules: an image fusion
network, and a one-shot classification network. The image fusion network reinforces generated
images to try to make them beneficial for the one-shot classifier, while the one-shot classifier learns
representations that are suitable to classify unseen examples with few examples. Both networks are
trained end-to-end, so the loss back-propagates from classifier to the fusion network.

selected, and thus likely not optimal. In Sec. 4.2, we show how to learn this mixing strategy in an
end-to-end manner using a meta-learning framework.

4 Method

The results of the pilot study in the last section suggested that producing synthetic images could be
useful for few-shot fine-grained recognition, but only if it is done in a careful way. In this section,
we use these findings to propose a novel technique for doing this effectively. We propose a GAN
fine-tuning method that works with a single image (Sec. 4.1), and an effective meta-learning method
to not only learn to classify with few examples, but also to learn to effectively reinforce the generated
images (Sec. 4.2).

4.1 Fine-tuning Pre-trained Generator for Target Images

GANs typically have a generator G and a discriminator D. Given an input signal z ∼ N (0, 1),
a well-trained generator synthesizes an image G(z). In our tasks, we adapt an off-the-shelf GAN
generator G that is pre-trained on the ImageNet-2012 dataset in order to generate more images in a
target, data-scarce domain. Note that we do not use the discriminator, since adversarial training with a
few images is unstable and may lead to model collapse. Formally, we fine-tune z and the generator G
such that G generates an image Iz from an input vector z by minimizing the distance between G(z)
and Iz , where the vector z is randomly initialized. Inspired by previous work [2, 5, 20], we minimize
a loss function LG with L1 distance and perceptual loss Lperc with earth mover regularization LEM ,

LG (G, Iz, z) = L1 (G(z), Iz) + λpLperc (G(z), Iz) + λzLEM (z, r) , (1)

where LEM is an earth mover distance between z and random noise r ∼ N (0, 1) to regularize z to
be sampled from a Gaussian, and λp and λz are coefficients of each term.

Since only a few training images are available in the target domain, only scale and shift parameters of
the batch normalization of G are updated in practice. Specifically, only the γ and β of each batch
normalization layer are updated in each layer,

x̂ =
x− E(x)√
Var(x) + ε

h = γx̂+ β, (2)
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where x is the input feature from the previous layer, and E and Var indicate the mean and variance
functions, respectively. Intuitively and in principle, updating γ and β only is equivalent to adjusting
the activation of each neuron in a layer. Once updated, the G(z) would be synthesized to reconstruct
the image Iz . Empirically, a small random perturbation ε is added to z as G (z + ε). Examples of Iz ,
G(z) and G (z + ε) are illustrated in in Fig. 1 (a), (e), and (f), respectively.

4.2 Meta Reinforced Synthetic Data for Few-shot Learning

We propose a meta-learning method to add synthetic data to the originals.

One-shot Learning. One-shot classification is a meta-learning problem that divide a dataset into
two sets: meta-training (or base) set and meta-testing (or novel) set. The classes in the base
set and the novel sets are disjoint. In other words, we have Dbase = {(Ii, yi) , yi ∈ Cbase} and
Dnovel = {(Ii, yi) , yi ∈ Cnovel} where Cbase ∪ Cnovel = ∅. The task is to train a classifier on Dbase
that can quickly generalize to unseen classes in Cnovel with one or few examples. To do this, a
meta-learning algorithm performs meta-training by sampling many one-shot tasks from Dbase, and
is evaluated by sampling many similar tasks from Dnovel. Each sampled task (called an episode) is
an n-way-m-shot classification problem with q queries, meaning that we sample n classes with m
training and q test examples for each class. In other words, an episode has a support (or training) set
S and a query (or test) set Q, where |S| = n×m and |Q| = n× q. One-shot learning means m = 1.
The notation Sc means the support examples only belong to the class c, so |Sc| = m.

Meta Image Reinforcing Network (MetaIRNet). We propose a Meta Image Reinforcing Network
(MetaIRNet), which not only learns a few-shot classifier, but also learns to reinforce generated images
by combining real and generated images. MetaIRNet is composed of two modules: an image fusion
network F , and a one-shot classification network C.

The Image Fusion Network F combines a real image I and a corresponding generated image Ig into
a new image Isyn = F (I, Ig) that is beneficial for training a one-shot classifier. Among the many
possible ways to synthesize images, we were inspired by a block augmentation method [6] and use
grid-based linear combination. As shown in Figure 1(g), we divide the images into a 3× 3 grid and
linearly combine the cells with the weights w produced by a CNN conditioned on the two images.
That is,

Isyn = w � I+ (1−w)� Ig (3)

where� is element-wise multiplication, and w is resized to the image size keeping the block structure.
The CNN to produce w extracts the feature vectors of I and Ig , concatenates them, and uses a fully-
connected layer to produce a weight corresponding to each of the nine cells in the 3× 3 grid. Finally,
for each real image Ii, we generate naug images, producing naug synthetic images, and assign the
same class label yi to each synthesized image Ii,jsyn to obtain an augmented support set,

S̃ =
{(

Ii, yi
)
,
{(

Ii,jsyn, y
i
)}naug

j=1

}n×m
i=1

. (4)

The One-Shot Classification Network C maps an input image I into feature maps C (I), and performs
one-shot classification. Although any one-shot classifier can be used, we choose the non-parametric
prototype classifier of Snell et al. [28] due to its superior performance and simplicity. During each
episode, given the sampled S and Q, the image fusion network produces an augmented support set S̃.
This classifier computes the prototype vector pc for each class c in S̃ as an average feature vector,

pc =
1

|S̃c|

∑
(Ii,yi)∈S̃c

C (Ii) . (5)

For a query image Ii ∈ Q, the probability of belonging to a class c is estimated as,

P (yi = c|Ii) =
exp (−‖C (Ii)− pc‖)∑n
k=1 exp (−‖C (Ii)− pk‖)

(6)

where ‖ · ‖ is the Euclidean distance. Then, for a query image, the class with the highest probability
becomes the final prediction of the one-shot classifier.
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Training In the meta-training phase, we jointly train F and C in an end-to-end manner, minimizing
a cross-entropy loss function,

min
θF ,θC

1

|Q|
∑

(Ii,yi)∈Q

−logP (yi | Ii) , (7)

where θF and θC are the learnable parameters of F and C.

5 Experiments

To investigate the effectiveness of our approach, we perform 1-shot-5-way classification following
the meta-learning experimental setup described in Sec. 4.2. We perform 1000 episodes in meta-
testing, with 16 query images per class per episode, and report average classification accuracy and
95% confidence intervals. We use the fine-grained classification dataset of Caltech UCSD Birds
(CUB) [32] for our main experiments, and another fine-grained dataset of North American Birds
(NAB) [30] for secondary experiments. CUB has 11,788 images with 200 classes, and NAB has
48,527 images with 555 classes.

5.1 Implementation Details

While our fine-tuning method introduced in Sec. 4.1 can generate images for each step in meta-
training and meta-testing, it takes around 20 seconds per image, so we apply the generation method
ahead of time to make our experiments more efficient. We use a BigGAN pre-trained on ImageNet,
using the publicly-available weights. We set λp = 0.1 and λz = 0.1, and perform 500 gradient
descent updates with the Adam [18] optimizer with learning rate 0.01 for z and 0.0005 for the
fully connected layers, to produce scale and shift parameters of the batch normalization layers. We
manually chose these hyper-parameters by trying random values from 0.1 to 0.0001 and visually
checking the quality of a few generated images. We only train once for each image, generate 10
random images by perturbing z, and randomly use one of them for each episode (naug = 1). For
image classification, we use ResNet18 [16] pre-trained on ImageNet for the two CNNs in F and one
in C. We train F and C with Adam with a default learning rate of 0.001. We select the best model
based on the validation accuracy, and then compute the final accuracy on the test set. For CUB, we
use the same train/val/test split used in previous work [4], and for NAB we randomly split with a
proportion of train:val:test = 2:1:1; see supplementary material for details. Further implementation
details are available as supplemental source code.2

5.2 Comparative and Ablative Study on CUB dataset

Baselines. We compare our MetaIRNet with three types of baselines. (1) Non-meta learning
classifiers: We directly train the same ImageNet pre-trained CNN used in F to classify images in
Dbase, and use it as a feature extractor for Dnovel. We then use off-the-shelf classifiers nearest
neighbor, logistic regression (one-vs-all classifier), and softmax regression (also called multi-class
logistic regression). (2) Meta-learning classifiers: We try the meta-learning method of prototypical
network (ProtoNet [28]). ProtoNet computes an average prototype vector for each class and performs
nearest neighbor with the prototypes. We note that our MetaIRNet adapts ProtoNet as a choice of
F so this is an ablative version of our model (MetaIRNet without the image fusion module). (3)
Data augmentation: Because our MetaIRNet learns data-augmentation as a sub-module, we also
compare with three data augmentation strategies, Flip, Gaussian, and FinetuneGAN. Flip horizontally
flips the images. Gaussian adds Gaussian noise with standard deviation 0.01 into the CNN features.
FinetuneGAN (introduced in Sec. 4.1) generates augmented images by fine-tuning the ImageNet-
pretrained BigGAN with each support set. Note that we do these augmentations in the meta-testing
stage to increase the support set. For fair comparison, we use ProtoNet as the base classifier of these
data augmentation baselines.

Results. As shown in Table 2, our MetaIRNet is superior to all baselines including the meta-learning
classifier of ProtoNet (84.13% vs. 81.73%) on the CUB dataset. It is notable that while ProtoNet has
worse accuracy when simply using the generated images as data augmentation, our method shows an

2http://vision.soic.indiana.edu/metairnet/
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Table 2: 5-way-1-shot accuracy (%) on CUB/NAB dataset with ImageNet pre-trained ResNet18

Method Data Augmentation CUB Acc. NAB Acc.

Nearest Neighbor - 79.00± 0.62 80.58± 0.59
Logistic Regression - 81.17± 0.60 82.70± 0.57
Softmax Regression - 80.77± 0.60 82.38± 0.57

ProtoNet - 81.73± 0.63 87.91± 0.52
ProtoNet FinetuneGAN 79.40± 0.69 85.40± 0.59
ProtoNet Flip 82.66± 0.61 88.55± 0.50
ProtoNet Gaussian 81.75± 0.63 87.90± 0.52

MetaIRNet (Ours) FinetuneGAN 84.13± 0.58 89.19± 0.51
MetaIRNet (Ours) FinetuneGAN, Flip 84.80± 0.56 89.57± 0.49

Table 3: 5-way-1-shot accuracy (%) on CUB dataset with Conv4 without ImageNet pre-training

MetaIRNet ProtoNet [28] MatchingNet [31] MAML [10] RelationNet [29]

65.86± 0.72 63.50± 0.70 61.16± 0.89 [4] 55.92± 0.95 [4] 62.45± 0.98 [4]

accuracy increase from ProtoNet, which is equivalent to MetaIRNet without the image fusion module.
This indicates that our image fusion module can effectively complement the original images while
removing harmful elements from generated ones.

Interestingly, horizontal flip augmentation yields nearly a 1% accuracy increase for ProtoNet. Because
flipping augmentation cannot be learned directly by our method, we conjectured that our method
could also benefit from it. The final line of the table shows an additional experiment with our
MetaIRNet combined with random flip augmentation, showing an additional accuracy increase from
84.13% to 84.80%. This suggests that our method provides an improvement that is orthogonal to flip
augmentation.

Figure 3: t-SNE plot

Case Studies. We show some sample visualizations in Fig. 4. We ob-
serve that image generation often works well, but sometimes completely
fails. An advantage of our technique is that even in these failure cases,
our fused images often maintain some of the object’s shape, even if the
images themselves do not look realistic. In order to investigate the quality
of generated images in more detail, we randomly pick two classes, sample
100 images for each class, and a show t-SNE visualization of real images
(•), generated images (N), and augmented fused images (+) in Fig. 3,
with classes shown in red and blue. It is reasonable that the generated
images are closer to the real ones, because our loss function (equation 1)
encourages this to be so. Interestingly, perhaps due to artifacts of 3× 3
patches, the fused images are distinctive from the real/generated images,
extending the decision boundary.

Comparing with state-of-the-art meta-learning classifiers. It is a convention in the machine
learning community to compare any new technique with the performance of many state-of-the-art
methods reported in the literature. This is somewhat difficult for us to do fairly, however: we use
ImageNet-pre-trained features as a starting point (which is a natural design decision considering that
our focus is how to use ImageNet pre-trained generators for improving fine-grained one-shot classifi-
cation), but much of the one/few-shot learning literature focuses on algorithmic improvements and
thus trains from scratch (often with non-fine-grained datasets). The Delta Encoder [25], which uses
the idea of learning data augmentation in the feature space, reports 82.2% on one-shot classification
on the CUB dataset with ImageNet-pre-trained features, but this is an average of only 10 episodes.

To provide more stable comparison, we cite a benchmark study [4] reporting accuracy of other
meta-learners [10, 29, 31] on the CUB dataset with 600 episodes. To compare with these scores,
we experimented with our MetaIRNet and the ProtoNet baseline using the same four-layered CNN.
As shown in Table 3, our MetaIRNet performs better than the other methods with more than 2%
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Original Generated Fused Weight Original Generated Fused Weight

Figure 4: Samples of original image, generated image, fused image, and mixing weight w. Higher
weight (red) means more original image used, and lower weight (blue) means more generated image
used. We show three types of samples based on the quality of generated images: very good (top row),
relatively good (middle row), and very bad or broken (last row).

absolute improvement. We note that this comparison is not totally fair because we use images
generated from a generator pre-trained from ImageNet. However, our contribution is not to establish
a new state-of-the-art score but to present the idea of transferring an ImageNet pre-trained GAN for
improving one shot classifiers, so we believe this comparison is still informative.

5.3 Results on NAB Dataset

We also performed similar experiments on the NAB dataset, which is more than four times larger than
CUB, and the results are shown in the last column of Table 2. We observe similar results as CUB,
and that our method improves classification accuracy from a ProtoNet baseline (89.19% vs. 87.91%).

6 Conclusion

We introduce an effective way to employ an ImageNet-pre-trained image generator for the purpose
of improving fine-grained one-shot classification when data is scarce. As a way to fine-tune the
pre-trained generator, our pilot study finds that adjusting only scale and shift parameters in batch
normalization can produce a visually realistic images. This technique works with a single image,
making the method less dependent on the number of available images. Furthermore, although naively
adding the generated images into the training set does not improve performance, we show that it can
improve performance if we mix generated with original images to create hybrid training exemplars.
In order to learn the parameters of this mixing, we adapt a meta-learning framework. We implement
this idea and demonstrate a consistent and significant improvement over several classifiers on two
fine-grained benchmark datasets.
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7 Supplementary

7.1 Five-shot Experiments

Although our paper focuses on one-shot learning, we also try a five-shot scenario. We use the
ImageNet-pretrained ResNet18 [16] as a backbone. We also try the four layer-CNN (Conv-4) without
ImageNet pretraining in order to compare with other reported scores in a benchmark study [4].
The results are summarized in Table 4. When we use ImageNet pretrained ResNet, our method is
slightly (92.66% v.s 92.83%) better than the ProtoNet. Given that non-meta-learning linear classifiers
(softmax regression and logistic regression) can achieve more than 92% accuracy, we believe that
ImageNet features are already strong enough when used with five examples per class.

Table 4: 5-way-5-shot Accuracy (%) on CUB dataset.

Method Base Network Initialization Accuracy

Nearest neighbor ResNet18 ImageNet 89.44± 0.36
Softmax regression ResNet18 ImageNet 92.28± 0.30
Logistic regression ResNet18 ImageNet 92.34± 0.30
ProtoNet [28] ResNet18 ImageNet 92.97± 0.31
MetaIRNet (Ours) ResNet18 ImageNet 93.09± 0.30

MAML [10] Conv-4 Random 72.09± 0.76 [4]
MatchingNet [31] Conv-4 Random 72.86± 0.76 [4]
RelationNet [29] Conv-4 Random 76.11± 0.69 [4]
ProtoNet [28] Conv-4 Random 80.75± 0.46
MetaIRNet (Ours) Conv-4 Random 81.16± 0.47

7.2 An Implementation Detail: Class label input of BigGAN

Part of the noise z used in BigGAN is class conditional, and we did not explicitly discuss this part in
the main paper, so here we provide details. We optimize the class conditional embedding and regard
it as part of the input noise. Generally speaking, a conditional GAN uses input noise conditioned on
the label of the image to generate. BigGAN also follows this approach, but our fine-tuning technique
uses a single image to train. In other words, we only have a single class label and can then optimize
the class embedding as part of the input noise.

7.3 More Experiments

Increasing the number of generated examples. It is interesting to know if our method can benefit
by increasing the number of generated examples. We try naug = 1, 2, 3, 5, 10 on CUB and obtain
accuracies 84.13± 0.60, 83.45± 0.60, 80.99± 0.62, 81.21± 0.62, and 80.49± 0.69, respectively.
Too many augmented images seems to bias the classifier. We conclude that the performance gain is
marginal or even harmful when increasing naug .

Mixup baseline. Mixup [36] uses random 1× 1 weights to mix two images, which can be viewed
as a much simpler version of our method to mix a real and generated image pairs. We test this baseline
and obtain one-shot accuracy of 82.24 ± 0.59 and 88.33 ± 0.53 on CUB and NAB, respectively.
These results are higher than baselines but still lower than ours.

Image deformation baseline. Image deformation net [7] also uses similar 3× 3 patch based data
augmentation learning. The key difference is that while that method augments support image by
fusing with external real images called a gallery set, our model fuses with images synthesized by
GANs. Further, to adapt a generic pretrained GAN to a new domain, we introduce a technique
of optimizing only the noise z and BatchNorm parameters rather than the full generator, which is
not explored by deformation net [7]. We try this baseline by using a gallery set of random images
sampled from the meta-training set, and obtain 1-shot-5-way accuracies of 82.84± 0.62 on CUB and
88.42± 0.59 on NAB, which is higher than the baselines but not as high as ours.
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Training from scratch or end-to-end. It is an interesting direction to train the generator end-to-end
and without ImageNet pretraining. Theoretically, we can do end-to-end training of all components,
but in practice we are limited by our GPU memory, which is not large enough to hold both our model
and BigGAN. In order to simulate the end-to-end and scratch training, we introduce two constraints.
1) We simplified BigGAN with one-quarter the number of channels and train from scratch so that
we train the generator with a relatively small meta-training set. 2) We do not propagate the gradient
from classifier to the generator so that we do not have to put both models onto GPU. We apply our
approach with a four-layer CNN backbone with random initialization and achieved an 1-shot-5-way
accuracy of 63.77± 0.71 on CUB.

Experiment on Mini-ImageNet . Although our method is designed for fine-grained recognition,
it is interesting to apply this to course-grained recognition. Because the public BigGAN model was
trained on images including the meta-testing set of ImageNet, we cannot use it as-is. Hence we
train the simplified generator (see above paragraph) from scratch using the meta-training set only.
Using a backbone of ResNet18, the 1-shot-5-way accuracy on Mini-ImageNet is 53.97± 0.63 and
55.01± 0.62 for ProtoNet and MetaIRNet, respectively.

7.4 Dataset Split for NAB

We used the following dataset split for the North American Bird (NAB) [30] dataset.

Label IDs used for training set 295, 297, 299, 314, 316, 318, 320, 322, 324, 326, 328,
330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362,
364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 393, 395, 397, 399, 401, 446, 448,
450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472, 474, 476, 478, 480, 482,
484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514, 516,
518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544, 546, 548, 550,
552, 554, 556, 558, 560, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621,
623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655,
657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 697, 699, 746, 748,
750, 752, 754, 756, 758, 760, 762, 764, 766, 768, 770, 772, 774, 776, 778, 780, 782,
784, 786, 788, 790, 792, 794, 796, 798, 800, 802, 804, 806, 808, 810, 812, 814, 816,
818, 820, 822, 824, 826, 828, 830, 832, 834, 836, 838, 840, 842, 844, 846, 848, 850,
852, 854, 856, 858, 860, 862, 864, 866, 868, 870, 872, 874, 876, 878, 880, 882, 884,
886, 888, 890, 892, 894, 896, 898, 900, 902, 904, 906, 908, 910, 912, 914, 916, 918,
920, 922, 924, 926, 928, 930, 932, 934, 936, 938, 940, 942, 944, 946, 948, 950, 952,
954, 956, 958, 960, 962, 964, 966, 968, 970, 972, 974, 976, 978, 980, 982, 984, 986,
988, 990, 992, 994, 996, 998, 1000, 1002, 1004, 1006, 1008, 1010

Label IDs used for validation set 298, 315, 319, 323, 327, 331, 335, 339, 343, 347,
351, 355, 359, 363, 367, 371, 375, 379, 392, 396, 400, 447, 451, 455, 459, 463, 467,
471, 475, 479, 483, 487, 491, 495, 499, 503, 507, 511, 515, 519, 523, 527, 531, 535,
539, 543, 547, 551, 555, 559, 600, 604, 608, 612, 616, 620, 624, 628, 632, 636, 640,
644, 648, 652, 656, 660, 664, 668, 672, 676, 680, 698, 747, 751, 755, 759, 763, 767,
771, 775, 779, 783, 787, 791, 795, 799, 803, 807, 811, 815, 819, 823, 827, 831, 835,
839, 843, 847, 851, 855, 859, 863, 867, 871, 875, 879, 883, 887, 891, 895, 899, 903,
907, 911, 915, 919, 923, 927, 931, 935, 939, 943, 947, 951, 955, 959, 963, 967, 971,
975, 979, 983, 987, 991, 995, 999, 1003, 1007

Label IDs used for test set 296, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353,
357, 361, 365, 369, 373, 377, 381, 394, 398, 402, 449, 453, 457, 461, 465, 469, 473,
477, 481, 485, 489, 493, 497, 501, 505, 509, 513, 517, 521, 525, 529, 533, 537, 541,
545, 549, 553, 557, 561, 602, 606, 610, 614, 618, 622, 626, 630, 634, 638, 642, 646,
650, 654, 658, 662, 666, 670, 674, 678, 696, 700, 749, 753, 757, 761, 765, 769, 773,
777, 781, 785, 789, 793, 797, 801, 805, 809, 813, 817, 821, 825, 829, 833, 837, 841,
845, 849, 853, 857, 861, 865, 869, 873, 877, 881, 885, 889, 893, 897, 901, 905, 909,
913, 917, 921, 925, 929, 933, 937, 941, 945, 949, 953, 957, 961, 965, 969, 973, 977,
981, 985, 989, 993, 997, 1001, 1005, 1009
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