Reinforcing Generated Images via Meta-learning for One-Shot Fine-Grained Visual Recognition

Satoshi Tsutsui, Yanwei Fu, David Crandall, Member, IEEE

Abstract—One-shot fine-grained visual recognition often suffers from the problem of having few training examples for new fine-grained classes. To alleviate this problem, off-the-shelf image generation techniques based on Generative Adversarial Networks (GANs) can potentially create additional training images. However, these GAN-generated images are often not helpful for actually improving the accuracy of one-shot fine-grained recognition. In this paper, we propose a meta-learning framework to combine generated images with original images, so that the resulting “hybrid” training images improve one-shot learning. Specifically, the generic image generator is updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. Our experiments demonstrate consistent improvement over baselines on one-shot fine-grained image classification benchmarks. Furthermore, our analysis shows that the reinforced images have more diversity compared to the original and GAN-generated images.

Index Terms—Fine-grained visual recognition, One-shot learning, Meta-learning.

1 INTRODUCTION

The availability of vast labeled datasets has been crucial for the recent success of deep learning. However, there will always be learning tasks for which labeled data is sparse. Fine-grained visual recognition is one typical example: when images are to be classified into many very specific categories (such as species of birds), it may be difficult to obtain training examples for rare classes, and producing the ground truth labels may require significant expertise (e.g., from ornithologists). One-shot learning is thus very desirable for fine-grained visual recognition.

A recent approach to address data scarcity is meta-learning [1]–[4], which trains a parameterized function called a meta-learner that maps labeled training sets to classifiers. The meta-learner is trained by sampling small training and test sets from a large dataset of a base class. Such a meta-learned model can be adapted to recognize novel categories with a single training instance per class. Another way to address data scarcity is to synthesize additional training examples, for example by using Generative Adversarial Networks (GANs) [5], [6]. However, classifiers trained from GAN-generated images are typically inferior to those trained with real images, possibly because the distribution of generated images is biased towards frequent patterns (modes) of the original image distribution [7]. This is especially true in one-shot fine-grained recognition where a tiny difference (e.g., beak of a bird) can make a large difference in class.

In this paper, we develop an approach to apply off-the-shelf generative models to synthesize training data in a way that improves one-shot fine-grained classifiers. We begin by conducting a pilot study in which we investigate using a generator pre-trained on ImageNet in a one-shot scenario. We show that the generated images can indeed improve the performance of a one-shot classifier when used with a manually designed rule to combine the generated images with the originals using the weights of a 3×3 block matrix (like Fig. 3 (g)). These preliminary results lead us to consider optimizing these block matrices in a data-driven manner. Thus, we propose a meta-learning approach to learn these
block matrices to reinforce the generated images effectively for few-shot classification.

Our approach has two steps. First, an off-the-shelf generator trained from ImageNet is updated towards the domain of novel classes by using only a single image (Sec. 4.1). Second, since previous work and our pilot study (Sec. 2.4) suggest that simply adding synthesized images to the training data may not improve one-shot learning, the synthesized images are “mixed” with the original images in order to bridge the domain gap between the two (Sec. 4.2). The effective mixing strategy is learned by a meta-learner, which essentially boosts the performance of fine-grained categorization with a single training instance per class. We experimentally validate that our approach can achieve improved performance over baselines on fine-grained classification datasets in one-shot situations (Sec. 5). Moreover, we empirically analyze the mixed images and investigate how our learned mixing strategy reinforces the original images (Sec. 6). As highlighted in Figure 2, we show that while the GAN-generated images lack diversity compared to the original, our mixed images effectively introduce additional diversity.

Contributions of this paper are that we: 1) Introduce a method to transfer a pre-trained generator with a single image; 2) Propose a meta-learning method to learn to complement real images with synthetic images in a way that benefits one-shot classifiers; 3) Demonstrate that these methods improve one-shot classification accuracy on fine-grained visual recognition benchmarks; and 4) Analyze our resulting mixed images and empirically show that our method can help diversify the dataset. A preliminary version of this paper appeared in NeurIPS [8].

2 RELATED WORK

Our paper relates to three main lines of work: GAN-generated images for training, few-shot meta-learning, and data augmentation to diversify training examples.

2.1 Image Generation by GANs

Learning to generate realistic images is challenging because it is difficult to define a loss function that accurately measures perceptual photo realism. Generative Adversarial Networks (GANs) [5] address this issue by learning not only a generator but also a loss function — the discriminator — that helps the generator to synthesize images indistinguishable from real ones. This adversarial learning is intuitive but is often unstable in practice [9]. Recent progress includes better CNN architectures [6], [10], training stabilization [9], [11]–[13], and exciting applications (e.g., [14], [15]). BigGAN [6] trained on ImageNet has shown visually- impressive generated images with stable performance on generic image generation tasks. Several studies [16], [17] have explored generating images from few examples, but their focus has not been on one-shot classification. Several papers [16], [18], [19] also use the idea of adjusting batch normalization layers, which helped to inspire our work. Finally, work has investigated using GANs to help image classification [7], [20], [23], ours differs in that we apply an off-the-shelf generator pre-trained from a large and generic dataset.

2.2 Few-shot Meta-learning

Few shot classification [24] with meta-learning has received much attention after the introduction of MetaDataset [25]. The task is to train a classifier with only a few examples per class. Unlike the typical classification setup, the classes in the training and test sets have no overlap, and the model is trained and evaluated by sampling many few-shot tasks (or episodes). For example, when training a dog breed classifier, an episode might train to recognize five dog species with only a single training image per class — a 5-way-1-shot setting. A meta-learning method trains a meta-model by sampling many episodes from training classes and is evaluated by sampling many episodes from other unseen classes. With this episodic training, we can choose several possible approaches to “learn to learn.” For example, “learning to compare” methods learn a metric space (e.g., [26]–[29]), while other approaches learn to fine-tune (e.g., [30], [31], [32]) or learn to augment data (e.g., [23], [33]–[36]). Our approach also explores data augmentation by mixing the original images with synthesized images produced by a fine-tuned generator, but we find that the naive approach of simply adding GAN-generated images to the training dataset does not improve performance. However, by carefully combining generated images with the original images, we find that we can synthesize examples that do increase the performance. Thus we employ meta-learning to learn the proper combination strategy.

2.3 Data Augmentation

Data augmentation is often an integral part of training deep CNNs; in fact, AlexNet [37] describes data augmentation as one of “the two primary ways in which we combat overfitting.” Since then, data augmentation strategies have been explored [38], but they are manually designed and thus not scalable for many domain-specific tasks. Recent work uses automated approaches to search for the optimal augmentation policy using reinforcement learning [39] or by directly optimizing the augmentation policy by making it differentiable [40]. Moreover, some researchers perform empirical analysis on data augmentation as a distributional shift [41], or develop a theoretical framework of data augmentation as a Markov process [42]. Our work is most closely related to augmentation based on mixing images. For example, Mixup [43] linearly mixes two random images with a random weight. Manifold Mixup performs a similar operation to the CNN representation of the images [44]. CutMix [45] overlays randomly-cropped images onto other images at random locations. While these methods randomly mix images while ignoring the content of them, our method learns to adjust the mixing technique for given images via meta-learning that optimizes the parameterized mixing strategy to help one-shot learning.

3 PILOT STUDY

To explain how we arrived at our approach, we describe the initial experimentation which motivated our methods.
entire training process requires fewer than 500 iterations and the "fattened" version of the same bird in Fig. 3(f)). The results (Fig. 3(e)). We can generate slightly different versions presentation (perceptual loss [46]), yielding slightly improved distance but also the distance of a pre-trained CNN repre-

by previous work [16], we not only minimize the pixel-level better images, as shown in Fig. 3(d). Finally, again inspired in the batch normalization layers. This strategy produces both noise and weights. Inspired by previous work [16], [18], in between the two extremes of tuning noise only and tuning local minimum, as shown in Fig 3(c).

weights, but this produced even worse images stuck in a in Fig. 3(b). We then tried also fine-tuning the generator not reconstruct the image well, as shown in the example however, naively implementing this idea with BigGAN did not reconstruct the image well, as shown in the example in Fig. 3(b). We then tried also fine-tuning the generator weights, but this produced even worse images stuck in a local minimum, as shown in Fig 3(c).

We speculate that the best approach may be somewhere in between the two extremes of tuning noise only and tuning both noise and weights. Inspired by previous work [16], [18], [19], we propose to fine-tune only scale and shift parameters in the batch normalization layers. This strategy produces better images, as shown in Fig. 3(d). Finally, again inspired by previous work [16], we not only minimize the pixel-level distance but also the distance of a pre-trained CNN representation (perceptual loss [46]), yielding slightly improved results (Fig. 3(e)). We can generate slightly different versions by adding random perturbations to the tuned noise (e.g., the "fattened" version of the same bird in Fig. 3(f)). The entire training process requires fewer than 500 iterations and takes less than 20 seconds on an NVidia Titan Xp GPU. We explain the generation strategy that we developed based on this pilot study in Sec. 4.

3.2 Do generated images help few-shot learning?
Our goal is not to generate images, but to augment the training data for few shot learning. A naive way to do this is to apply the above generation technique for each training image, in order to double the training set. We tested this idea on a validation set (split the same as [24]) from the Caltech-UCSD bird dataset [17] and computed mean accuracy and 95% confidence intervals on 2000 episodes of 5-way-1-shot classification. We used pre-trained ImageNet features from ResNet18 [48] with nearest neighbor, one-vs-all logistic regression, and softmax regression (or multi-class logistic regression). As shown in Table 1 the accuracy actually drops for two of the three classifiers when we double the size of our training set by generating synthetic training images, suggesting that the generated images are harmful for training classifiers.

3.3 How to synthesize images for few-shot learning?
Given that the synthetic images appear meaningful to humans, we conjecture that they can benefit few-shot classification when properly mixed with originals to create hybrid images. To empirically test this hypothesis, we devised a random 3×3 visual jigsaw pretraining. As shown in Fig. 3(h), images (a) and (f) were combined by taking a linear combination within each cell of the grid shown in (g). Finally, we added mixed images like (h) into the training data, and discovered that this produced a modest increase in accuracy (last row of Table 1). While the increase is marginal, these mixing weights were binary and manually selected, and thus likely not optimal. In Sec. 4.2, we show how to learn this mixing strategy in an end-to-end manner using a meta-learning framework.

4 Method
The results of the pilot study in the last section suggested that producing synthetic images could be useful for few-shot fine-grained recognition, but only if done in a careful way. In this section, we use these findings to propose a novel technique that does this effectively. We propose a GAN fine-tuning method that works with a single image (Sec. 4.1), and a meta-learning method to not only learn to classify with few examples, but also to learn to reinforce the generated images (Sec. 4.2).

4.1 FinetuneGAN: Fine-tuning Pre-trained Generator for Target Images
GANs typically have a generator G and a discriminator D. Given an input signal $z \sim \mathcal{N}(0, 1)$, a well-trained generator synthesizes an image $G(z)$. In our tasks, we adapt an off-the-shelf GAN generator G that is pre-trained on the ImageNet-2012 dataset in order to generate more images in a target, data-scarce domain. Note that we do not use the discriminator, since adversarial training with a few images is unstable.
and may lead to model collapse. Formally, we fine-tune z and the generator G such that G generates an image I_z from an input vector z by minimizing the distance between $G(z)$ and I_z, where the vector z is randomly initialized. Inspired by previous work [11], [16], [36], we minimize a loss function L_G with L_1 distance and perceptual loss L_{perc} with earth mover regularization L_{EM},

$$L_G(G, I_z, z) = L_1(G(z), I_z) + \lambda_p L_{perc}(G(z), I_z) + \lambda_r L_{EM}(z, r),$$

where λ_p and λ_r are coefficients of each term. The first term is the L_1 distance of $G(z)$ and I_z using pixels. The second term is basically L_2 distance of $G(z)$ and I_z but using, instead of pixels, the intermediate feature maps from all convolution layers of ImageNet-trained VGG16 [50]. The last term is the earth mover distance of z and $r \sim N(0, 1)$ (random noise sampled from the normal distribution).

Since only a few training images are available in the target domain, only scale and shift parameters of the batch normalization of G are updated in practice. Specifically, only the γ and β of each batch normalization layer are updated in each layer,

$$\gamma \left(\frac{x - E(x)}{\sqrt{\text{Var}(x)} + \epsilon}\right) + \beta,$$

where x is the input feature from the previous layer, and E and Var indicate the mean and variance functions, respectively. Intuitively and in principle, updating γ and β only is equivalent to adjusting the activation of each neuron in a layer. Once updated, the $G(z)$ would be synthesized to reconstruct the image I_z. Empirically, a small random perturbation ϵ is added to z as $G(z + \epsilon)$. Examples of I_z, $G(z)$ and $G(z + \epsilon)$ are illustrated in in Fig. 3(a), (e), and (f), respectively.

4.2 Meta-Reinforced Synthetic Data

4.2.1 One-shot Learning Defined

One-shot classification is a meta-learning problem that divides a dataset into two sets: meta-training (or base) set and meta-testing (or novel) set. The classes in the base and novel sets are disjoint. In other words,

$$D_{base} = \{(I_i, y_i), y_i \in C_{base}\},$$

$$D_{novel} = \{(I_i, y_i), y_i \in C_{novel}\},$$

where $C_{base} \cup C_{novel} = \emptyset$.

The task is to train a classifier on D_{base} that can quickly generalize to unseen classes in C_{novel} with one or few examples. To do this, a meta-learning algorithm performs meta-training by sampling many one-shot tasks from D_{base}, and is evaluated by sampling many similar tasks from D_{novel}. Each sampled task (called an episode) is an n-way-m-shot classification problem with q queries, meaning that we sample n classes with m training and q test examples for each class. In other words, an episode has a support (or training) set S and a query (or test) set Q, where $|S| = n \times m$ and $|Q| = n \times q$. One-shot learning means $m = 1$. The notation S_e means the support examples only belong to the class c, so $|S_e| = m$.

4.2.2 Meta Image Reinforcing Network (MetaIRNet)

We propose a Meta Image Reinforcing Network (MetaIRNet), which not only learns a few-shot classifier, but also learns to reinforce generated images by combining real and generated images. MetaIRNet is composed of two modules: an image fusion network F, and a one-shot classifier C.

Image Fusion Network F combines a real image I and a corresponding generated image I_g into a new image $I_{syn} = F(I, I_g)$, which will be added into the support set, which means the size of the support set will be doubled. Note that for each real image (regardless of whether it is a positive or negative example) in the support set, we use a single image generated by FinetuneGAN for mixing. While there could be many possible ways to mix the two images (i.e., the design decision of F), we were inspired by 3×3 visual jigsaw pretraining [49] and its data augmentation applications [34]. Thus, as shown in Figure 3(g), we divide the images into a 3×3 grid and linearly combine the cells with the weights w produced by a CNN conditioned on the two images,

$$I_{syn} = w \odot I + (1 - w) \odot I_g,$$

where \odot is element-wise multiplication, and w is resized to the image size keeping the block structure. The CNN that produces w extracts the feature vectors of I and I_g, concatenates them, and uses a fully-connected layer to produce a weight corresponding to each of the nine cells in the 3×3 grid. Finally, for each real image I, we generate n_{aug} synthetic images, and assign the same class label y_i to each synthesized image I_{syn}^j to obtain an augmented support set,

$$\hat{S} = \{(I_i^j, y_i^j) \mid \{I_{syn}^j, y_i^j\}_{j=1}^{n_{aug}}\}_{i=1}^{n \times m}.$$

One-Shot Classifier C maps an input image I into feature maps $C(I)$, and performs one-shot classification. Although any one-shot classifier can be used, we choose the non-parametric prototype classifier of Snell et al. [27] due to its superior performance and simplicity. During each episode, given the sampled S and Q, the image fusion network produces an augmented support set \hat{S}. This classifier computes the prototype vector p_c for each class c in \hat{S} as an average feature vector,

$$p_c = \frac{1}{|S_e|} \sum_{(I_i, y_i) \in S_e} C(I_i).$$

For a query image $I_i \in Q$, the probability of belonging to a class c is estimated as,

$$P(y_i = c | I_i) = \frac{\exp \left(-\|C(I_i) - p_c\|\right)}{\sum_{k=1}^{C} \exp \left(-\|C(I_i) - p_k\|\right)} ,$$

where $\| \cdot \|$ is the Euclidean distance. Then, for a query image, the class with the highest probability becomes the final prediction of the one-shot classifier.

Training

In the meta-training phase, we jointly train F and C end-to-end, minimizing a cross-entropy loss,

$$\min_{\theta_F, \theta_C} \frac{1}{|Q|} \sum_{(I_i, y_i) \in Q} -\log P(y_i | I_i),$$

where θ_F and θ_C are the learnable parameters of F and C.
and randomly use one of them for each episode (5). We only train once for the fully connected layers. We manually chose these hyper-parameters by trying different values during scale and shift parameters of the batch normalization layer and then computing the final accuracy on the test set. We use the same train/val/test split used in previous studies [8], [24] for CUB and NAB, respectively. Further implementation details are available as supplemental source code.

5 Experiments

To investigate the effectiveness of our approach, we perform 1-shot-5-way classification following the meta-learning experimental setup described in Sec. 4.2. We perform 1000 episodes in meta-testing, with 16 query images per class per episode, and report average classification accuracy and 95% confidence intervals. We use the fine-grained classification dataset of Caltech UCSD Birds (CUB) [17], for our main experiments, and another fine-grained dataset, North American Birds (NAB) [51], for secondary experiments. CUB has 11,788 images with 200 classes, and NAB has 48,527 images with 555 classes.

5.1 Implementation Details

While our fine-tuning method introduced in Sec. 4.1 can generate images for each step in meta-training and meta-testing, it takes around 20 seconds per image, so we apply the generation method after a round of experiments to make our experiments more efficient. This means that the generator is trained independently. We use a BigGAN pre-trained on ImageNet, using the publicly-available weights. We set $\lambda_p = 0.1$ and $\lambda_z = 0.1$, and perform 500 gradient descent updates with the Adam optimizer with learning rate 0.01 for z and 0.0005 for the fully connected layers, to produce scale and shift parameters of the batch normalization layers. We manually chose these hyper-parameters by trying random values from 0.1 to 0.0001 and visually checking the quality of a few generated images. We only train once for each image, generate 10 random images per perturbing z, and randomly use one of them for each episode ($\nu_{aug} = 1$). For image classification, we use ResNet18 [48] pre-trained on ImageNet for the two CNNs in F and one in C. Note that we do not share weights among the three CNNs, which means that our model has three ResNets inside. We train F and C with Adam with a default learning rate of 0.001.

We select the best model based on the validation accuracy, and then compute the final accuracy on the test set. We use the same train/val/test split used in previous studies [8], [24] for CUB and NAB, respectively. Further implementation details are available as supplemental source code.

5.2 Baselines

Non-meta learning classifiers. We directly train the same ImageNet pre-trained CNN used in F to classify images in D_{base}, and use it as a feature extractor for D_{novel}. We then use the following off-the-shelf classifiers: (1) Nearest Neighbor; (2) Logistic Regression (one-vs-all classifier); (3) Softmax Regression (also called multi-class logistic regression).

Meta-learning classifiers. We try the meta-learning method of prototypical network (ProtoNet [27]). ProtoNet computes an average prototype vector for each class and performs k-nn classification following the meta-learning stage to increase the support set. For fair comparison, we use ProtoNet as the base classifier of all these baselines.

Data augmentation. We compare against simply using the generated images as data augmentation, as well as applying typical data augmentations. Moreover, because our MetaIRNet uses meta-learning to find the best way to mix the original and GAN-generated images, we compare against several alternative ways of mixing them: (1) Flip horizontally flips the images; (2) Gaussian adds Gaussian noise with standard deviation 0.01 into the CNN features; (3) FinetuneGAN (introduced in Sec. 4.1) generates augmented images by fine-tuning the ImageNet-pretrained BigGAN with each support set; (4) Mixup [43] mixes two images with a randomly sampled weight; (5) Manifold Mixup [44] does mixup in the CNN representation of images; and (6) CutMix [45] mixes the two images with randomly sampled locations. We do these augmentations in the meta-testing stage to increase the support set. For fair comparison, we use ProtoNet as the base classifier of all these baselines.

Mix with other images. To evaluate the utility of our generated images, we use our meta-learning technique (MetaIRNet) to mix with images that are not from our FinetuneGAN: (1) FreezeGAN [55] fine-tunes GANs by performing adversarial training using a stabilization technique of freezing the discriminator; and (2) Jitter produces data-augmented images by randomly jittering the original images.

5.3 Results

As shown in Table 2, our MetaIRNet is superior to all baselines including the meta-learning classifier of ProtoNet (84.13% vs. 81.73%) on the CUB dataset. It is notable that while ProtoNet has worse accuracy when simply using the generated images as data augmentation, our method shows an accuracy increase from ProtoNet, which is equivalent to MetaIRNet without the image fusion module. This indicates that our image fusion module can effectively complement the original images while removing harmful elements from them.

<table>
<thead>
<tr>
<th>Method</th>
<th>CUB Acc.</th>
<th>NAB Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest Neighbor</td>
<td>79.00 ± 0.62</td>
<td>80.58 ± 0.59</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>81.17 ± 0.60</td>
<td>82.70 ± 0.57</td>
</tr>
<tr>
<td>Softmax Regression</td>
<td>80.77 ± 0.60</td>
<td>82.38 ± 0.57</td>
</tr>
<tr>
<td>ProtoNet</td>
<td>81.73 ± 0.63</td>
<td>87.91 ± 0.52</td>
</tr>
<tr>
<td>ProtoNet (+Flip)</td>
<td>82.66 ± 0.61</td>
<td>88.55 ± 0.50</td>
</tr>
<tr>
<td>ProtoNet (+FinetuneGAN)</td>
<td>79.40 ± 0.60</td>
<td>85.40 ± 0.59</td>
</tr>
<tr>
<td>ProtoNet (+Gaussian)</td>
<td>81.75 ± 0.63</td>
<td>87.90 ± 0.52</td>
</tr>
<tr>
<td>ProtoNet (+Mixup)</td>
<td>82.65 ± 0.59</td>
<td>88.12 ± 0.52</td>
</tr>
<tr>
<td>ProtoNet (+Manifold Mixup)</td>
<td>81.78 ± 0.58</td>
<td>85.31 ± 0.51</td>
</tr>
<tr>
<td>ProtoNet (+CutMix)</td>
<td>80.81 ± 0.71</td>
<td>86.12 ± 0.53</td>
</tr>
<tr>
<td>MetalIRNet (+FreezeGAN)</td>
<td>81.93 ± 0.62</td>
<td>88.26 ± 0.57</td>
</tr>
<tr>
<td>MetalIRNet (+Jitter)</td>
<td>82.69 ± 0.63</td>
<td>88.31 ± 0.55</td>
</tr>
<tr>
<td>Ours: MetalIRNet (+FinetuneGAN)</td>
<td>84.13 ± 0.58</td>
<td>89.19 ± 0.51</td>
</tr>
<tr>
<td>Ours: MetalIRNet (+FinetuneGAN, Flip)</td>
<td>84.80 ± 0.56</td>
<td>89.57 ± 0.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>CUB Acc.</th>
<th>NAB Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetalIRNet</td>
<td>65.86 ± 0.72</td>
<td>63.50 ± 0.70</td>
</tr>
<tr>
<td>ProtoNet [27]</td>
<td>63.50 ± 0.70</td>
<td>61.16 ± 0.89</td>
</tr>
<tr>
<td>MatchingNet [25]</td>
<td>61.74 ± 0.95</td>
<td>55.92 ± 0.95</td>
</tr>
<tr>
<td>MAML [3]</td>
<td>62.45 ± 0.91</td>
<td>64.25 ± 0.91</td>
</tr>
<tr>
<td>RelationNet [28]</td>
<td>62.45 ± 0.91</td>
<td>64.25 ± 0.91</td>
</tr>
</tbody>
</table>

1. http://vision.soi.indiana.edu/maelinet/
Increasing the number of generated examples. Does our method benefit by increasing the number of examples generated by FinetuneGAN with different random noise values (Figure 5)? We tried \(n_{\text{aug}} = 1, 2, 3, 4, 5 \) on CUB and the accuracies are shown in Figure 6. Having too many augmented images seems to bias the classifier, and we conclude that the performance gain is marginal or even harmful when increasing \(n_{\text{aug}} \). This effect could be because all generated images are conditioned on the same original image, so adding many of them does not significantly increase diversity.

Comparing with other meta-learning classifiers

It is a convention in our community to compare any new technique with previous methods using the accuracies reported in the corresponding literature. The accuracies in Table 2, however, cannot be directly compared with other papers’ reported accuracies as we use ImageNet-pre-trained CNNs. While it is a natural design decision for us to use the pre-trained model because our focus is how to use ImageNet-pre-trained generators for improving fine-grained one-shot classification, which assumes ImageNet as an available resource off-the-shelf, much of the one-shot learning literature focuses on improving the one-shot algorithms themselves and thus trains from scratch. To provide a comparison, we cite a benchmark study [24] reporting accuracy of other well-known meta-learners [23, 26, 28] on the CUB dataset. To compare with these scores, we experimented with our MetaIRNet and the ProtoNet baseline using the same four-layered CNN. As shown in Table 3, our MetaIRNet performs better than the other methods with more than 2% absolute improvement. We note that this comparison is not totally fair because we use images generated from a generator pre-trained from ImageNet, so one can argue that we use more data than others. However, our contribution is not to establish a new state-of-the-art score but to present the idea of transferring an ImageNet pre-trained GAN for improving one-shot classifiers, so we believe this is still informative as it provides a reference score for future work to compare to.

Results on NAB

We also performed similar experiments on the NAB dataset, which is more than four times larger than CUB, and the results are shown in the last column of Table 2. We observe similar results as on CUB, and that our method improves classification accuracy from a ProtoNet baseline (89.19% vs. 87.91%).
One way of quantifying the diversity of an image set is to compare the distance between all possible pairs of images, and then examine the resulting distribution. We compute the Euclidean distances of all possible pairs of images in a set using pretrained CNN representations. If the distribution of the pairwise distances of a set is longer-tailed than others, then we regard the set as more diverse. Figures 9(a), (b), and (c) plot the distributions of original, generated, and fused images, respectively, using the CUB dataset. We observe that generated images (Figure 9(b)) do not increase pairwise distances from the original set (Figure 9(a)), and actually lower the mean distance from 3.50 to 1.99 and standard deviation from 0.87 to 0.67. In contrast, our fused images (Figure 9(c)) slightly diversify the original set (Figure 9(a)), and increase the mean distance from 3.50 to 3.66 and the standard deviation from 0.87 to 0.99.

6.2 Eigenvalues of PCA

We also employ a quantitative measure of the diversity of the data. For a given image set, we compute its covariance matrix and apply principal component analysis (PCA). PCA can help interpret a high dimensional space by decomposing it into orthogonal subspaces based on the variance of the data. The largest eigenvalues generated by PCA are a measure of the variance in the original dataset. We show a plot of the largest eigenvalues, sorted in decreasing order, in Figure 8. The figure confirms that the generated images have significantly lower eigenvalues than the original and fused images, and the fused images have slightly higher eigenvalues than the original (except for the highest eigenvalue). These observations indicate that the generated images are not diverse on their own, but our technique of fusing makes them at least as diverse as the originals.

6.3 Inter- and Intra-Class Diversity

Figure 9 shows the same histograms of pairwise distances, but split into image pairs that are within the same class and pairs that are in different classes. For the same type of images, it is intuitive that same-class distances are lower than different-class distances. Moreover, for both same-class and different-class, the overall trend is the same as Sec. 6.1 generated images are not as diverse as the originals, but our fused images are more diverse. However, when we compare the distribution of the original and fused images, the same-class comparison sees a greater increase in distance than the different-class comparison: the mean of different-class distances increases from 3.52 (Figure 9(d)) to 3.68 (Figure 9(f)), for a change of +0.16, while the mean of same-class distances increases from 2.60 (Figure 9(a)) to 3.13 (Figure 9(c)), for a change of +0.53. This suggests that our fused images significantly widen the manifolds per class by efficiently mixing the original and generated images.

7 Conclusion

We introduce an effective way to employ an ImageNet-pretrained image generator for the purpose of improving fine-grained one-shot classification when data is scarce. Our pilot study found that adjusting only scale and shift parameters in batch normalization can produce visually realistic images. This technique works with a single image, making the method less dependent on the number of available images. Furthermore, although naively adding the generated images into the training set does not improve performance, we show that it can improve performance if we mix generated with original images to create hybrid training exemplars. In order to learn the parameters of this mixing, we adapt a meta-learning framework. We implement this idea and demonstrate a consistent and significant improvement over
several classifiers on two fine-grained benchmark datasets. Furthermore, our analysis suggests that the increase in performance may be because the mixed images are more diverse than the original and the generated images.

References