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Reinforcing Generated Images via Meta-learning
for One-Shot Fine-Grained Visual Recognition

Satoshi Tsutsui, Yanwei Fu, David Crandall, Member, IEEE

Abstract—One-shot fine-grained visual recognition often suffers from the problem of having few training examples for new fine-grained
classes. To alleviate this problem, off-the-shelf image generation techniques based on Generative Adversarial Networks (GANs) can
potentially create additional training images. However, these GAN-generated images are often not helpful for actually improving the
accuracy of one-shot fine-grained recognition. In this paper, we propose a meta-learning framework to combine generated images with
original images, so that the resulting “hybrid” training images improve one-shot learning. Specifically, the generic image generator is
updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct
one-shot fine-grained recognition as well as image reinforcement. Our experiments demonstrate consistent improvement over
baselines on one-shot fine-grained image classification benchmarks. Furthermore, our analysis shows that the reinforced images have
more diversity compared to the original and GAN-generated images.

Index Terms—Fine-grained visual recognition, One-shot learning, Meta-learning.
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1 INTRODUCTION

The availability of vast labeled datasets has been crucial
for the recent success of deep learning. However, there
will always be learning tasks for which labeled data is
sparse. Fine-grained visual recognition is one typical exam-
ple: when images are to be classified into many very specific
categories (such as species of birds), it may be difficult to
obtain training examples for rare classes, and producing
the ground truth labels may require significant expertise
(e.g., from ornithologists). One-shot learning is thus very
desirable for fine-grained visual recognition.

A recent approach to address data scarcity is meta-
learning [1]–[4], which trains a parameterized function
called a meta-learner that maps labeled training sets to
classifiers. The meta-learner is trained by sampling small
training and test sets from a large dataset of a base class.
Such a meta-learned model can be adapted to recognize
novel categories with a single training instance per class.
Another way to address data scarcity is to synthesize addi-
tional training examples, for example by using Generative
Adversarial Networks (GANs) [5], [6]. However, classifiers
trained from GAN-generated images are typically inferior
to those trained with real images, possibly because the
distribution of generated images is biased towards frequent
patterns (modes) of the original image distribution [7]. This
is especially true in one-shot fine-grained recognition where
a tiny difference (e.g., beak of a bird) can make a large
difference in class.

In this paper, we develop an approach to apply off-the-
shelf generative models to synthesize training data in a way
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Fig. 1. Our Meta Image Reinforcing Network (MetaIRNet) consists
of an image fusion network and a one-shot classifier. The image fusion
network reinforces generated images to make them more beneficial for
the one-shot classifier by diversifying the images (Figure 2), while the
one-shot classifier learns representations that are suitable to classify
unseen examples with few examples. Both networks are trained end-to-
end, so the loss back-propagates from classifier to the fusion network.
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Fig. 2. Distribution of pairwise distances for (a) original set, (b) generated
set, and (c) fused set. Our fused images have greater diversity, while
generated images are not as diverse as the originals.

that improves one-shot fine-grained classifiers. We begin by
conducting a pilot study in which we investigate using a
generator pre-trained on ImageNet in a one-shot scenario.
We show that the generated images can indeed improve
the performance of a one-shot classifier when used with a
manually designed rule to combine the generated images
with the originals using the weights of a 3× 3 block matrix
(like Fig. 3 (g)). These preliminary results lead us to consider
optimizing these block matrices in a data-driven manner.
Thus, we propose a meta-learning approach to learn these
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block matrices to reinforce the generated images effectively
for few-shot classification.

Our approach has two steps. First, an off-the-shelf
generator trained from ImageNet is updated towards the
domain of novel classes by using only a single image
(Sec. 4.1). Second, since previous work and our pilot study
(Sec. 3) suggest that simply adding synthesized images to
the training data may not improve one-shot learning, the
synthesized images are “mixed” with the original images in
order to bridge the domain gap between the two (Sec. 4.2).
The effective mixing strategy is learned by a meta-learner,
which essentially boosts the performance of fine-grained
categorization with a single training instance per class.
We experimentally validate that our approach can achieve
improved performance over baselines on fine-grained classi-
fication datasets in one-shot situations (Sec. 5). Moreover, we
empirically analyze the mixed images and investigate how
our learned mixing strategy reinforces the original images
(Sec. 6). As highlighted in Figure 2, we show that while
the GAN-generated images lack diversity compared to the
original, our mixed images effectively introduce additional
diversity.

Contributions of this paper are that we: 1) Introduce
a method to transfer a pre-trained generator with a single
image; 2) Propose a meta-learning method to learn to com-
plement real images with synthetic images in a way that
benefits one-shot classifiers; 3) Demonstrate that these meth-
ods improve one-shot classification accuracy on fine-grained
visual recognition benchmarks; and 4) Analyze our resulting
mixed images and empirically show that our method can
help diversify the dataset. A preliminary version of this
paper appeared in NeurIPS [8].

2 RELATED WORK

Our paper relates to three main lines of work: GAN-
synthesized images for training, few-shot meta-learning,
and data augmentation to diversify training examples.

2.1 Image Generation by GANs
Learning to generate realistic images is challenging be-
cause it is difficult to define a loss function that accurately
measures perceptual photo realism. Generative Adversarial
Networks (GANs) [5] address this issue by learning not
only a generator but also a loss function — the discrim-
inator — that helps the generator to synthesize images
indistinguishable from real ones. This adversarial learning is
intuitive but is often unstable in practice [9]. Recent progress
includes better CNN architectures [6], [10], training stabi-
lization [9], [11]–[13], and exciting applications (e.g. [14],
[15]). BigGAN [6] trained on ImageNet has shown visually-
impressive generated images with stable performance on
generic image generation tasks. Several studies [16], [17]
have explored generating images from few examples, but
their focus has not been on one shot classification. Several
papers [16], [18], [19] also use the idea of adjusting batch
normalization layers, which helped to inspire our work.
Finally, work has investigated using GANs to help image
classification [7], [20]–[23]; ours differs in that we apply an
off-the-shelf generator pre-trained from a large and generic
dataset.

2.2 Few-shot Meta-learning

Few shot classification [24] with meta-learning has received
much attention after the introduction of MetaDataset [25].
The task is to train a classifier with only a few examples
per class. Unlike the typical classification setup, the classes
in the training and test sets have no overlap, and the
model is trained and evaluated by sampling many few-
shot tasks (or episodes). For example, when training a dog
breed classifier, an episode might train to recognize five
dog species with only a single training image per class
— a 5-way-1-shot setting. A meta-learning method trains
a meta-model by sampling many episodes from training
classes and is evaluated by sampling many episodes from
other unseen classes. With this episodic training, we can
choose several possible approaches to “learn to learn.” For
example, “learning to compare” methods learn a metric
space (e.g., [26]–[29]), while other approaches learn to fine-
tune (e.g., [3], [30]–[32]) or learn to augment data (e.g., [23],
[33]–[36]). Our approach also explores data augmentation
by mixing the original images with synthesized images pro-
duced by a fine-tuned generator, but we find that the naive
approach of simply adding GAN-generated images to the
training dataset does not improve performance. However,
by carefully combining generated images with the original
images, we find that we can synthesize examples that do
increase the performance. Thus we employ meta-learning to
learn the proper combination strategy.

2.3 Data Augmentation

Data augmentation is often an integral part of training deep
CNNs; in fact, AlexNet [37] describes data augmentation
as one of “the two primary ways in which we combat
overfitting.” Since then, data augmentation strategies have
been explored [38], but they are manually designed and
thus not scalable for many domain-specific tasks. Recent
work uses automated approaches to search for the optimal
augmentation policy using reinforcement learning [39] or
by directly optimizing the augmentation policy by making
it differentiable [40]. Moreover, some researchers perform
empirical analysis on data augmentation as a distributional
shift [41], or develop a theoretical framework of data aug-
mentation as a Markov process [42]. Our work is most
closely related to augmentation based on mixing images.
For example, Mixup [43] linearly mixes two random images
with a random weight. Manifold Mixup performs a similar
operation to the CNN representation of the images [44].
CutMix [45] overlays randomly-cropped images onto other
images at random locations. While these methods randomly
mix images while ignoring the content of them, our method
learns to adjust the mixing technique for given images
via meta-learning that optimizes the parameterized mixing
strategy to help one-shot learning.

3 PILOT STUDY

To explain how we arrived at our approach, we describe the
initial experimentation which motivated our methods.



3

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Samples described in Sec. 3. (a) Original image. (b) Result of
tuning noise only. (c) Result of tuning the whole network. (d) Result of
tuning batch norm only. (e) Result of tuning batch norm with perceptual
loss. (f) Result of slightly disturbing noise from (e). (g) a 3 × 3 block
weight matrix w. (g) Result of mixing (a) and (f) as w×(f) + (1−w)×(a).

TABLE 1
CUB 5-way-1-shot classification accuracy (%) using ImageNet features.
Simply adding generated images to the training set does not help, but

adding hybrid images, as in Fig. 3 (h), can.

Nearest Logistic Softmax
Training Data Neighbor Regression Regression

Original 70.72± 0.51 75.39± 0.47 74.61± 0.48
Original + Generated 70.84± 0.51 74.08± 0.48 73.55± 0.48
Original + Mixed 71.50± 0.50 76.07± 0.47 75.40± 0.47

3.1 How to transfer knowledge from pre-trained GANs?

We aim to quickly generate training images for few-shot
classification. Performing adversarial learning (i.e., training
a generator and discriminator initialized with pre-trained
weights) is not practical when we only have one or two
examples per class. Instead, we want to develop a method
that does not depend on the number of images at all; in fact,
we consider the extreme case where only a single image is
available, and want to generate variants of the image using
a pre-trained GAN. We tried fixing the generator weights
and optimizing the noise so that it generates the target
image, under the assumption that sightly modifying the
optimized noise would produce a variant of the original.
However, naively implementing this idea with BigGAN did
not reconstruct the image well, as shown in the example
in Fig. 3(b). We then tried also fine-tuning the generator
weights, but this produced even worse images stuck in a
local minimum, as shown in Fig 3(c).

We speculate that the best approach may be somewhere
in between the two extremes of tuning noise only and tuning
both noise and weights. Inspired by previous work [16], [18],
[19], we propose to fine-tune only scale and shift parameters
in the batch normalization layers. This strategy produces
better images, as shown in Fig. 3(d). Finally, again inspired
by previous work [16], we not only minimize the pixel-level
distance but also the distance of a pre-trained CNN repre-
sentation (perceptual loss [46]), yielding slightly improved
results (Fig. 3(e)). We can generate slightly different versions
by adding random perturbations to the tuned noise (e.g.,
the “fattened” version of the same bird in Fig. 3(f)). The
entire training process requires fewer than 500 iterations and

takes less than 20 seconds on an NVidia Titan Xp GPU. We
explain the generation strategy that we developed based on
this pilot study in Sec. 4.

3.2 Do generated images help few-shot learning?

Our goal is not to generate images, but to augment the
training data for few shot learning. A naive way to do
this is to apply the above generation technique for each
training image, in order to double the training set. We tested
this idea on a validation set (split the same as [24]) from
the Caltech-UCSD bird dataset [47] and computed mean
accuracy and 95% confidence intervals on 2000 episodes of
5-way-1-shot classification. We used pre-trained ImageNet
features from ResNet18 [48] with nearest neighbor, one-
vs-all logistic regression, and softmax regression (or multi-
class logistic regression). As shown in Table 1, the accuracy
actually drops for two of the three classifiers when we
double the size of our training set by generating synthetic
training images, suggesting that the generated images are
harmful for training classifiers.

3.3 How to synthesize images for few-shot learning?

Given that the synthetic images appear meaningful to hu-
mans, we conjecture that they can benefit few shot classifi-
cation when properly mixed with originals to create hybrid
images. To empirically test this hypothesis, we devised a
random 3× 3 grid to combine the images, which is inspired
by 3 × 3 visual jigsaw pretraining [49]. As shown in Fig.
3(h), images (a) and (f) were combined by taking a linear
combination within each cell of the grid shown in (g).
Finally, we added mixed images like (h) into the training
data, and discovered that this produced a modest increase in
accuracy (last row of Table 1). While the increase is marginal,
these mixing weights were binary and manually selected,
and thus likely not optimal. In Sec. 4.2, we show how to
learn this mixing strategy in an end-to-end manner using a
meta-learning framework.

4 METHOD

The results of the pilot study in the last section suggested
that producing synthetic images could be useful for few-
shot fine-grained recognition, but only if done in a careful
way. In this section, we use these findings to propose a novel
technique that does this effectively. We propose a GAN fine-
tuning method that works with a single image (Sec. 4.1), and
a meta-learning method to not only learn to classify with
few examples, but also to learn to reinforce the generated
images (Sec. 4.2).

4.1 FinetuneGAN: Fine-tuning Pre-trained Generator
for Target Images

GANs typically have a generator G and a discriminator D.
Given an input signal z ∼ N (0, 1), a well-trained generator
synthesizes an imageG(z). In our tasks, we adapt an off-the-
shelf GAN generator G that is pre-trained on the ImageNet-
2012 dataset in order to generate more images in a target,
data-scarce domain. Note that we do not use the discrimina-
tor, since adversarial training with a few images is unstable
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and may lead to model collapse. Formally, we fine-tune z
and the generator G such that G generates an image Iz
from an input vector z by minimizing the distance between
G(z) and Iz , where the vector z is randomly initialized.
Inspired by previous work [11], [16], [46], we minimize a
loss function LG with L1 distance and perceptual loss Lperc
with earth mover regularization LEM ,

LG (G, Iz, z) = L1 (G(z), Iz) + λpLperc (G(z), Iz)
+λzLEM (z, r) , (1)

where λp and λz are coefficients of each term. The first term
is the L1 distance of G(z) and Iz using pixels. The second
term is basically L2 distance of G(z) and Iz but using,
instead of pixels, the intermediate feature maps from all con-
volution layers of ImageNet-trained VGG16 [50]. The last
term is the earth mover distance [11] of z and r ∼ N (0, 1)
(random noise sampled from the normal distribution).

Since only a few training images are available in the
target domain, only scale and shift parameters of the batch
normalization ofG are updated in practice. Specifically, only
the γ and β of each batch normalization layer are updated
in each layer,

γ

(
x− E(x)√
Var(x) + ε

)
+ β, (2)

where x is the input feature from the previous layer, and
E and Var indicate the mean and variance functions, re-
spectively. Intuitively and in principle, updating γ and β
only is equivalent to adjusting the activation of each neuron
in a layer. Once updated, the G(z) would be synthesized
to reconstruct the image Iz . Empirically, a small random
perturbation ε is added to z as G (z + ε). Examples of Iz ,
G(z) and G (z + ε) are illustrated in in Fig. 3 (a), (e), and (f),
respectively.

4.2 Meta-Reinforced Synthetic Data

4.2.1 One-shot Learning Defined
One-shot classification is a meta-learning problem that di-
vides a dataset into two sets: meta-training (or base) set and
meta-testing (or novel) set. The classes in the base and novel
sets are disjoint. In other words,

Dbase = {(Ii, yi) , yi ∈ Cbase} , (3)
Dnovel = {(Ii, yi) , yi ∈ Cnovel} , (4)

where Cbase ∪ Cnovel = ∅.
The task is to train a classifier on Dbase that can quickly

generalize to unseen classes in Cnovel with one or few
examples. To do this, a meta-learning algorithm performs
meta-training by sampling many one-shot tasks from Dbase,
and is evaluated by sampling many similar tasks from
Dnovel. Each sampled task (called an episode) is an n-way-
m-shot classification problem with q queries, meaning that
we sample n classes with m training and q test examples
for each class. In other words, an episode has a support (or
training) set S and a query (or test) setQ, where |S| = n×m
and |Q| = n × q. One-shot learning means m = 1. The
notation Sc means the support examples only belong to the
class c, so |Sc| = m.

4.2.2 Meta Image Reinforcing Network (MetaIRNet).
We propose a Meta Image Reinforcing Network (MetaIR-
Net), which not only learns a few-shot classifier, but also
learns to reinforce generated images by combining real and
generated images. MetaIRNet is composed of two modules:
an image fusion network F , and a one-shot classifier C .

Image Fusion Network F combines a real image I and
a corresponding generated image Ig into a new image
Isyn = F (I, Ig), which will be added into the support set,
which means the size of the support set will be doubled.
Note that for each real image (regardless of whether it is a
positive or negative example) in the support set, we use a
single image generated by FinetuneGAN for mixing. While
there could be many possible ways to mix the two images
(i.e., the design decision of F ), we were inspired by 3 × 3
visual jigsaw pretraining [49] and its data augmentation
applications [4]. Thus, as shown in Figure 3(g), we divide
the images into a 3 × 3 grid and linearly combine the cells
with the weights w produced by a CNN conditioned on the
two images,

Isyn = w � I+ (1−w)� Ig, (5)

where � is element-wise multiplication, and w is resized
to the image size keeping the block structure. The CNN
that produces w extracts the feature vectors of I and Ig ,
concatenates them, and uses a fully-connected layer to pro-
duce a weight corresponding to each of the nine cells in the
3 × 3 grid. Finally, for each real image Ii, we generate naug
synthetic images, and assign the same class label yi to each
synthesized image Ii,jsyn to obtain an augmented support set,

S̃ =
{(

Ii, yi
)
,
{(
Ii,jsyn, y

i
)}naug

j=1

}n×m
i=1

. (6)

One-Shot Classifier C maps an input image I into feature
maps C (I), and performs one-shot classification. Although
any one-shot classifier can be used, we choose the non-
parametric prototype classifier of Snell et al. [27] due to its
superior performance and simplicity. During each episode,
given the sampled S and Q, the image fusion network pro-
duces an augmented support set S̃. This classifier computes
the prototype vector pc for each class c in S̃ as an average
feature vector,

pc =
1

|S̃c|

∑
(Ii,yi)∈S̃c

C (Ii) . (7)

For a query image Ii ∈ Q, the probability of belonging
to a class c is estimated as,

P (yi = c|Ii) =
exp (−‖C (Ii)− pc‖)∑n
k=1 exp (−‖C (Ii)− pk‖)

, (8)

where ‖ · ‖ is the Euclidean distance. Then, for a query
image, the class with the highest probability becomes the
final prediction of the one-shot classifier.

Training. In the meta-training phase, we jointly train F and
C end-to-end, minimizing a cross-entropy loss,

min
θF ,θC

1

|Q|
∑

(Ii,yi)∈Q

−logP (yi | Ii) , (9)

where θF and θC are the learnable parameters of F and C .
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TABLE 2
5-way-1-shot accuracy (%) on CUB and NAB datasets with ImageNet

pre-trained ResNet18.

Method (+Data Augmentation) CUB Acc. NAB Acc.

Nearest Neighbor 79.00± 0.62 80.58± 0.59
Logistic Regression 81.17± 0.60 82.70± 0.57
Softmax Regression 80.77± 0.60 82.38± 0.57

ProtoNet 81.73± 0.63 87.91± 0.52
ProtoNet (+Flip) 82.66± 0.61 88.55± 0.50
ProtoNet (+FinetuneGAN) 79.40± 0.69 85.40± 0.59
ProtoNet (+Gaussian) 81.75± 0.63 87.90± 0.52
ProtoNet (+Mixup) 82.65± 0.59 88.12± 0.52
ProtoNet (+Manifold Mixup) 81.78± 0.58 85.31± 0.51
ProtoNet (+CutMix) 80.81± 0.71 86.12± 0.53

MetaIRNet (+FreezeDGAN) 81.93± 0.62 88.26± 0.57
MetaIRNet (+Jitter) 82.69± 0.63 88.31± 0.55

Ours: MetaIRNet (+FinetuneGAN) 84.13± 0.58 89.19± 0.51
Ours: MetaIRNet (+FinetuneGAN, Flip) 84.80± 0.56 89.57± 0.49

TABLE 3
5-way-1-shot accuracy (%) on CUB dataset with Conv4 and without

ImageNet pre-training.

MetaIRNet ProtoNet [27] MatchingNet [26] MAML [3] RelationNet [28]
65.86 ± 0.72 63.50 ± 0.70 61.16 ± 0.89 55.92 ± 0.95 62.45 ± 0.98

5 EXPERIMENTS

To investigate the effectiveness of our approach, we per-
form 1-shot-5-way classification following the meta-learning
experimental setup described in Sec. 4.2. We perform 1000
episodes in meta-testing, with 16 query images per class per
episode, and report average classification accuracy and 95%
confidence intervals. We use the fine-grained classification
dataset of Caltech UCSD Birds (CUB) [47] for our main
experiments, and another fine-grained dataset, North Amer-
ican Birds (NAB) [51], for secondary experiments. CUB has
11,788 images with 200 classes, and NAB has 48,527 images
with 555 classes.

5.1 Implementation Details

While our fine-tuning method introduced in Sec. 4.1 can
generate images for each step in meta-training and meta-
testing, it takes around 20 seconds per image, so we ap-
ply the generation method ahead of time to make our
experiments more efficient. This means that the generator
is trained independently. We use a BigGAN pre-trained
on ImageNet, using the publicly-available weights. We set
λp = 0.1 and λz = 0.1, and perform 500 gradient descent
updates with the Adam [52] optimizer with learning rate
0.01 for z and 0.0005 for the fully connected layers, to pro-
duce scale and shift parameters of the batch normalization
layers. We manually chose these hyper-parameters by trying
random values from 0.1 to 0.0001 and visually checking the
quality of a few generated images. We only train once for
each image, generate 10 random images by perturbing z,
and randomly use one of them for each episode (naug = 1).
For image classification, we use ResNet18 [48] pre-trained
on ImageNet for the two CNNs in F and one in C . Note
that we do not share weights among the three CNNs, which
means that our model has three ResNets inside. We train
F and C with Adam with a default learning rate of 0.001.

We select the best model based on the validation accuracy,
and then compute the final accuracy on the test set. We use
the same train/val/test split used in previous studies [8],
[24] for CUB and NAB, respectively. Further implementation
details are available as supplemental source code.1

5.2 Baselines

Non-meta learning classifiers. We directly train the same
ImageNet pre-trained CNN used in F to classify images
in Dbase, and use it as a feature extractor for Dnovel. We
then use the following off-the-shelf classifiers: (1) Nearest
Neighbor; (2) Logistic Regression (one-vs-all classifier); (3)
Softmax Regression (also called multi-class logistic regres-
sion).

Meta-learning classifiers. We try the meta-learning method
of prototypical network (ProtoNet [27]). ProtoNet computes
an average prototype vector for each class and performs
nearest neighbor with the prototypes. We note that our
MetaIRNet adapts ProtoNet as a choice of F so this is
an ablative version of our model (MetaIRNet without the
image fusion module).

Data augmentation. We compare against simply using the
generated images as data augmentation, as well as applying
typical data augmentations. Moreover, because our MetaIR-
Net uses meta-learning to find the best way to mix the
original and GAN-generated images, we compare against
several alternative ways of mixing them: (1) Flip horizon-
tally flips the images; (2) Gaussian adds Gaussian noise
with standard deviation 0.01 into the CNN features; (3)
FinetuneGAN (introduced in Sec. 4.1) generates augmented
images by fine-tuning the ImageNet-pretrained BigGAN
with each support set; (4) Mixup [43] mixes two images
with a randomly sampled weight; (5) Manifold Mixup [44]
does mixup in the CNN representation of images; and (6)
CutMix [45] mixes the two images with randomly sampled
locations. We do these augmentations in the meta-testing
stage to increase the support set. For fair comparison, we
use ProtoNet as the base classifier of all these baselines.

Mix with other images. To evaluate the utility of our gener-
ated images, we use our meta-learning technique (MetaIR-
Net) to mix with images that are not from our FinetuneGAN:
(1) FreezeDGAN [53] fine-tunes GANs by performing ad-
versarial training using a stabilization technique of freezing
the discriminator; and (2) Jitter produces data-augmented
images by randomly jittering the original images.

5.3 Results
As shown in Table 2, our MetaIRNet is superior to all
baselines including the meta-learning classifier of ProtoNet
(84.13% vs. 81.73%) on the CUB dataset. It is notable that
while ProtoNet has worse accuracy when simply using the
generated images as data augmentation, our method shows
an accuracy increase from ProtoNet, which is equivalent to
MetaIRNet without the image fusion module. This indicates
that our image fusion module can effectively complement
the original images while removing harmful elements from

1. http://vision.soic.indiana.edu/metairnet/
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Original Generated Fused Weight

Fig. 4. Samples of original image, generated image, fused image, and
mixing weight w. Higher weight (red) means more of the original image
was used, and lower weight (blue) means more generated image.

generated ones. Interestingly, horizontal flip augmentation
yields nearly a 1% accuracy increase for ProtoNet. Because
flipping cannot be learned directly by our method, we
conjectured that our method could also benefit from it. The
final row of the table shows an additional experiment with
our MetaIRNet combined with random flip augmentation,
showing an additional accuracy increase from 84.13% to
84.80%. This suggests that our method provides an improve-
ment that is orthogonal to flip augmentation.

Lastly, while most of our experiments focus on the 1-
shot cases, we also tested 5-shot and obtained an accuracy of
93.09± 0.30%, which is higher than baselines. More details
are in Supplementary Material.

Case Studies. We show some sample visualizations in Fig. 4.
We observe that image generation often works well but
sometimes completely fails. An advantage of our technique
is that even in these failure cases, our fused images often
maintain some of the object’s shape, even if the images
themselves do not look realistic. In order to investigate the
quality of generated images in more detail, we randomly
pick two classes, sample 100 images for each class, and
show a t-SNE visualization of real images (•), generated
images (N), and augmented fused images (+) in Fig. 7,
with classes shown in red and blue. It is reasonable that
the generated images are closer to the real ones, because
our loss function in Equation (1) encourages this to be so.
Interestingly, perhaps due to artifacts of 3 × 3 patches, the
fused images are distinctive from the real and generated
images, which extends the decision boundary.

Increasing the number of generated examples. Does our

Fig. 5. By fluctuating the input
noise, FinetuneGAN can obtain
slightly different variants of the
original image, which we show in
Figure 3(a).

1 2 3 4 5
#(Generated Images) 
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Fig. 6. MetaIRNet can in theory
increase the number of fused im-
ages by using images generated
by FinetuneGAN with different ran-
dom noise values. However, this
does not increase accuracy, pre-
sumably because they are con-
ditioned on the same image so
adding many of them does not in-
crease diversity.

method benefit by increasing the number of examples gen-
erated by FinetuneGAN with different random noise values
(Figure 5)? We tried naug = 1, 2, 3, 4, 5 on CUB and the accu-
racies are shown in Figure 6. Having too many augmented
images seems to bias the classifier, and we conclude that the
performance gain is marginal or even harmful when increas-
ing naug . This effect could be because all generated images
are conditioned on the same original image, so adding many
of them does not significantly increase diversity.

Comparing with other meta-learning classifiers. It is a
convention in our community to compare any new tech-
nique with previous methods using the accuracies reported
in the corresponding literature. The accuracies in Table 2,
however, cannot be directly compared with other papers’
reported accuracies as we use ImageNet-pre-trained CNNs.
While it is a natural design decision for us to use the
pretrained model because our focus is how to use ImageNet
pre-trained generators for improving fine-grained one-shot
classification, which assumes ImageNet as an available re-
source off-the-shelf, much of the one-shot learning literature
focuses on improving the one-shot algorithms themselves
and thus trains from scratch. To provide a comparison, we
cite a benchmark study [24] reporting accuracy of other
well-known meta-learners [3], [26], [28] on the CUB dataset.
To compare with these scores, we experimented with our
MetaIRNet and the ProtoNet baseline using the same four-
layered CNN. As shown in Table 3, our MetaIRNet performs
better than the other methods with more than 2% absolute
improvement. We note that this comparison is not totally
fair because we use images generated from a generator
pre-trained from ImageNet, so one can argue that we use
more data than others. However, our contribution is not to
establish a new state-of-the-art score but to present the idea
of transferring an ImageNet pre-trained GAN for improving
one shot classifiers, so we believe this is still informative as
it provides a reference score for future work to compare to.

Results on NAB. We also performed similar experiments on
the NAB dataset, which is more than four times larger than
CUB, and the results are shown in the last column of Table 2.
We observe similar results as on CUB, and that our method
improves classification accuracy from a ProtoNet baseline
(89.19% vs. 87.91%).
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Fig. 7. t-SNE plot of two random
classes. We use colors (red and
blue) to represent the classes, and
use different markers for the three
types of images – real images (•),
generated images (N), and aug-
mented fused images (+)
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Fig. 8. The sorted eigenvalues
of principal component analysis
(PCA) for each set. The higher
eigenvalues mean that the man-
ifold in the the feature space is
wider, which suggests greater di-
versity. Our fused images are at
least as diverse as original.
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Fig. 9. Distribution of pairwise distances divided by intra-class (same-
class) pairwise comparisons and inter-class (different-class) pairwise
comparisons. Similar to Figure 2, our fused images have a wider pair-
wise distribution while generated images are not as diverse as originals,
but the amount of increase from the original is more on the same-class
comparisons.

6 ANALYSIS

Our proposed technique for reinforcing images generated
from fine-tuned GANs improved the few-shot recognition
accuracy, but what causes this performance improvement?
We hypothesized that the images generated by GANs are
not diverse enough on their own, and our learned technique
that mixes them with original images helps to diversify
the dataset. To validate this hypothesis, we perform sev-
eral studies investigating the diversity of three image sets:
original images, images generated by GANs, and images
fused by our method. To measure diversity, we use pairwise
distance distributions and principal component analysis
(PCA).

6.1 Pairwise distance distribution
One way of quantifying the diversity of an image set is to
compute the distance between all possible pairs of images,
and then examine the resulting distribution. We compute
the Euclidean distances of all possible pairs of images in a
set using pretrained CNN representations. If the distribution
of the pairwise distances of a set is longer-tailed than others,
then we regard the set as more diverse. Figures 2(a), (b), and
(c) plot the distributions of original, generated, and fused
images, respectively, using the CUB dataset. We observe

that generated images (Figure 2(b)) do not increase pairwise
distances from the original set (Figure 2(a)), and actually
lower the mean distance from 3.50 to 1.99 and standard
deviation from 0.87 to 0.67. In contrast, our fused images
(Figure 2(c)) slightly diversify the original set (Figure 2(a)),
and increase the mean distance from 3.50 to 3.66 and the
standard deviation from 0.87 to 0.99.

6.2 Eigenvalues of PCA
We also employ a quantitative measure of the diversity of
the data. For a given image set, we compute its covariance
matrix and apply principal component analysis (PCA). PCA
can help interpret a high dimensional space by decompos-
ing it into orthogonal subspaces based on the variance of
the data. The largest eigenvalues generated by PCA are a
measure of the variance in the original dataset. We show a
plot of the largest eigenvalues, sorted in decreasing order, in
Figure 8. The figure confirms that the generated images have
significantly lower eigenvalues than the original and fused
images, and the fused images have slightly higher eigen-
values than the original (except for the highest eigenvalue).
These observations indicate that the generated images are
not diverse on their own, but our technique of fusing makes
them at least as diverse as the originals.

6.3 Inter- and Intra-Class Diversity
Figure 9 shows the same histograms of pairwise distances,
but split into image pairs that are within the same class
and pairs that are in different classes. For the same type
of images, it is intuitive that same-class distances are lower
than different-class distances. Moreover, for both same-class
and different-class, the overall trend is the same as Sec. 6.1:
generated images are not as diverse as the originals, but
our fused images are more diverse. However, when we
compare the distribution of the original and fused images,
the same-class comparison sees a greater increase in distance
than the different-class comparison: the mean of different-
class distances increases from 3.52 (Figure 9(d)) to 3.68
(Figure 9(f)), for a change of +0.16, while the mean of
same-class distances increases from 2.60 (Figure 9(a)) to 3.12
(Figure 9(c)), for a change of +0.53. This suggests that our
fused images significantly widen the manifolds per class by
efficiently mixing the original and generated images.

7 CONCLUSION

We introduce an effective way to employ an ImageNet-pre-
trained image generator for the purpose of improving fine-
grained one-shot classification when data is scarce. Our pilot
study found that adjusting only scale and shift parameters
in batch normalization can produce visually realistic images.
This technique works with a single image, making the
method less dependent on the number of available images.
Furthermore, although naively adding the generated images
into the training set does not improve performance, we
show that it can improve performance if we mix generated
with original images to create hybrid training exemplars.
In order to learn the parameters of this mixing, we adapt
a meta-learning framework. We implement this idea and
demonstrate a consistent and significant improvement over
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several classifiers on two fine-grained benchmark datasets.
Furthermore, our analysis suggests that the increase in
performance may be because the mixed images are more
diverse than the original and the generated images.
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