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Abstract—The safety and integrity of complex electronic de-
vices depends on their electronic components, many of which
traverse a complex global supply chain before reaching the device
manufacturer. Ensuring that these components are correct and
legitimate is a significant challenge, especially given the billions of
electronic devices that we depend upon. One possible approach is
to use computer vision algorithms to analyze images of electronic
components — either installed on printed circuit boards or in
isolation — to try to automatically spot incorrect or suspicious
parts or other potential problems. Such an automatic approach
could be especially helpful for large-scale collections of devices,
for which manual inspection would be prohibitively expensive. In
this paper, we consider two specific problems in this challenging
area of microelectronic device inspection: i) electronic component
detection, and ii) electronic component verification. First, we
introduce a technique for locating integrated circuits (ICs) on
printed circuit boards (PCBs). We apply modern computer vision
algorithms, specifically deep learning with convolutional neural
networks, to this problem, but find that the small and cluttered
nature of electronic components is a significant challenge. We
introduce techniques to help overcome this challenge. Second,
we consider the problem of component verification: given a pair
of IC images, we try to determine if they are the same part
or not, ignoring variations caused both by imaging conditions
and by expected manufacturing variations across legitimate
instances of the same part. We learn a deep feature representation
automatically for this problem by showing the algorithm pairs
of known similar parts and different parts during training. We
evaluate these techniques on large-scale datasets of PCB and IC
images we collected from the web.

I. INTRODUCTION

Electronic devices form the foundation of modern soci-
ety, and thus ensuring that they operate safely, securely,
and reliably is of utmost importance. While most work in
computer security focuses on software vulnerabilities, recent
reports have highlighted potential hardware vulnerabilities of
the microelectronic components of these devices [1]: a single
incorrect part could make a large electronic system insecure,
unreliable, or unstable. Such unauthorized parts could be
introduced at numerous points in the complex global electronic
supply chain, and could be a result of a range of motivations
from manufacturer error, to a supplier substituting an inappro-
prate part in order to save money, to a nefarious actor trying
to purposely compromise a critical system.

A possible solution to this problem is to inspect microelec-
tronic components automatically before they are installed in

critical systems. While various approaches have been proposed
for doing this, from automated electronic testing to smart
fingerprinting techniques that can help ensure devices have not
been compromised, many of these solutions are costly, require
cooperation of component manufacturers, cannot be deployed
at scale, or have other limitations [2].

In this paper, we consider using automated visual inspec-
tion for identifying incorrect or suspicious integrated circuits
(ICs) on Printed Circuit Boards (PCBs). As a first step, we
address two specific (but nevertheless important) problems:
(1) detecting and localizing ICs in PCBs, and (2) performing
fine-grained matching between two IC images (e.g., a known
reference image and an unknown sample) to determine if
they are the same part or not. In doing this, we leverage
recent exciting progress in object detection and fine-grained
object recognition that has been achieved over the last few
years, largely through the use of deep neural networks. While
these techniques have been tested extensively on datasets
of consumer-style photographs from the web (such as Im-
ageNet [3] and COCO [4]), performance on other types of
images is less well understood. For example, we assumed
that IC detection from PCBs would be an easy problem —
detecting black rectangles seems much easier than, say, cars
or people in cluttered consumer images! Much to our surprise,
an off-the-shelf Faster R-CNN [5] trained on this problem
delivered Mean Average Precision (MAP) very close to 0!

Thus while detecting and recognizing small, densely dis-
tributed objects may not seem to be a very difficult problem
compared to other general detection tasks, our experiments
show that the domain of microelectronics has unique chal-
lenges for compter vision. The small objects themselves do not
include many distinctive visual features, and their extremely
dense distribution makes the detection of them even harder.
Even worse is the fact that the objects are extremely cluttered
with many other electrical components that share many of
the same features as ICs. We propose several solutions to
help address these problems. The primary contribution of our
detection algorithm is a module called Loss Boosting (LB)
that is specifically designed for solving the imbalance issue
between easy samples and hard examples within a single
image.

For the verification problem — determining if two images



are of the same IC part or not — the main challenge is that
differences between two distinct parts may be quite subtle,
especially in the case of a counterfeit part: the difference may
be just a slightly imperfect manufacturer logo, or otherwise
somewhat different package markings. Meanwhile, two images
of different instances of the same legitimate IC may appear
very different due to variations in illumination, scale, rotation,
etc. A critical task of IC matching is thus to develop compar-
ison metrics that ignore the image features that do not matter,
while cueing on those that do. Towards this end, we develop
a deep neural network based solution for the verification of
these IC components, that automatically learns the important
visual features based on observing pairs of known similar and
dissimilar images. We apply and evaluate our deep network
on a large collection of IC images.

II. RELATED WORK

Here we review recent work related to our goal of ap-
plying computer vision to analyze images of printed circuit
boards and integrated circuit packages. For a comprehensive
introduction to counterfeit electronic components and various
techniques for detecting and preventing them, please refer
to [2]. As a very brief summary, counterfeit or incorrect parts
can enter the supply chain in many places and for many
reasons. Many of these cases may be due to simple error,
such as a few unrelated parts accidentally included in a large
lot of otherwise correct parts. Deliberate causes of incorrect
components typically involve saving or making money: parts
may be presented as new but actually recycled from discarded
devices, or re-labeled as if they were made to a higher
specification (e.g. military grade) than they actually were. It
is also possible that counterfeit parts could be introduced in
order to purposely damage or compromise the devices they
will be used in.

While a variety of countermeasures have been explored,
none is perfect [2]. For example, electrical tests can identify
obviously incorrect parts but not those that work correctly
but may fail early or have other subtle problems. Manual
visual inspection is often used to spot counterfeit or incorrect
parts, by checking that the device packages and markings are
as expected. Our goal here is to help automate this visual
inspection process.

Our task of detecting and recognizing ICs in printed circuit
boards is simply a special case of the general object detection
problem. Most work in object detection — identifying the
objects in the image and locating where they are — falls into
one of two categories: classification-based detectors such as
R-CNNs [6] and its many variants (Fast R-CNNs [7], Faster
R-CNNs [5], Small R-CNN [8], Mask CNN [9], etc.), and
regression-based detectors including YOLO [10], SSD [11],
focal loss [12], etc.

Classification-based detectors are accurate but relatively
slow; for example, Mask-RCNN [9] is currently the most
accurate detection method on PASCAL VOC, COCO, and
ILSVRC datasets. These detectors “convert” localization into
a classification problem by identifying image regions that may

correspond to target objects, typically using a class-agnostic
segmentation algorithm, and then classifying each region indi-
vidually. For example, R-CNNs consist of the following steps:
(1) region proposals are obtained according to objectness,
which is evaluated by algorithms like selective search [13] and
Region Proposal Networks (RPN) [5]; (2) a neural network
is used to extract features from these object proposals; and
(3) a classifier is used to evaluate all these proposals. Fast-
RCNNs [7] and Faster-RCNNs [5] are modified versions of
RCNNs that improve speed but share the same logic. Mask-
RCNN [9], the newest member of the RCNN family, includes
an extra task of predicting object segmentation masks based on
Faster-RCNN, which helps make the technique less sensitive
to overfitting.

On the other hand, regression-based detectors, such as
YOLO [14], train a neural network to map image pixels
to coordinates of bounding boxes directly. Compared to
classification-based detectors, regression-based detectors are
more efficient in terms of both speed and memory. In fact, by
avoiding the need for extracting and classifying hundreds of
proposal windows, these techniques can even run on video in
real-time. However, regression-based models do not perform
as well as classification-based models, due in part to the
foreground-background class imbalance problem [12]. Class
imbalance is a classic problem in machine learning, which is
usually solved by techniques like oversampling [15]. In object
detection, this problem is caused by the fact that a typical
detector considers thousands of candidate bounding boxes,
but only a small percentage of them contain real objects.
One solution is hard negative mining, which keeps difficult
examples based on the current model and ignores the easy
ones [6], [16], although this is time-consuming. Redmon et
al. [10], [14] alleviate this problem by setting tiny weights
to the background samples, but these weights must be set
manually. Lin et al. [12] propose a much simpler solution
called “Focal Loss” which dynamically sets different weights
for different samples based on how hard they are for the
current detector.

Another problem with many current detectors is hard-easy
sample imbalance, which refers to the fact that detectors learn
to concentrate on easy object instances while ignoring the
difficult ones. This imbalance can can cause both recall and
precision to decrease. Although class imbalance is handled
well by [12], the problem of hard-easy example imbalance
is largely ignored by most standard detectors. One possible
reason is that the imbalance problem is not severe for standard
datasets, which contain only a limited number of objects.
But in highly cluttered scenes with many objects of differing
size and difficulty, such as the printed circuit boards we
consider here, training may avoid learning to recognize these
instances because of their small size and rarity. Furthermore,
although current detectors achieve impressive performance on
the prominent objects typical of most popular image datasets,
performance is poor for small ones [8]. The most straight-
forward reason is that small objects usually contain far less
evidence than bigger ones, and typical deep networks contain



multiple pooling layers that tend to further obscure this weak
evidence.

Identification of integrated circuits requires fine-grained
identification of visual features. Related problems in computer
vision include face recognition, for which deep representation
learning has been shown to be effective. Yi et al. [17] learned
a representation for the task of face identification and veri-
fication, for example. In face recognition, Schroff et al. [18]
learned a distance metric using a Siamese Triplet network.
The work of Bell et al. [19] learned visual similarity between
images of two different domains of the same product with
a convolutional neural network (CNN). In microelectronics
domain, the work of Wu et al. [20] addresses the task of
microelectronic component detection in a printed circuit board
(PCB) using a graph embedding network.

III. METHODS

Microelectronic image analysis is a relatively new problem
with many challenges to be solved. In this paper, we present
techniques for two specific tasks: component detection, and
component verification.

In the component detection task, we aim to detect integrated
circuits on printed circuit boards. A typical PCB may have
dozens of Integrated Circuit (IC) of varying size, and many
of them may be quite small. We developed a object detection
algorithm to detect the these small IC components with a novel
“Loss Boosting (LB)” technique, which is specially designed
for solving the imbalance issue between easy samples and
hard examples within an image. Solving this detection problem
allows us to identify the components that might be present in
a PCB image.

In the component verification task, the goal is to identify
whether two images (e.g., a detected IC on a PCB and a
known reference sample) actually correspond to the same part
or not. PCBs might contain erroneous or even counterfeit
components, which could cause the device to malfunction, fail
early, or open security vulnerabilities. system. This component
verification task is thus crucial for ensuring the security and
reliability of the microelectronic devices. Towards this end,
we learn a deep neural network-based representation from
a large collection of IC images, enabling our verification
algorithm to verify the identity of a pair of IC images. The
key idea is to present the network with pairs of IC images
that are known to be different and other pairs that are known
to be the same, so that the network can learn which visual
features are important for distinguishing ICs (e.g., different
silkscreening appearance), and which should be ignored (e.g.,
minor differences in image alignment).

In the following sections, we describe the details of our
detection and verification method.

A. Microelectronic Components Detection

While IC component detection is simply a specific case
of general object detection, ICs present unique challenges
compared to most of the detection problems that have been
studied in the literature. Unlike most objects in consumer

images like cars, people, airplanes, etc., ICs are often densely
packed, quite small, and do not have distinctive visual features.
We want to use deep neural networks to take advantage
of their powerful approximation ability. However, very deep
networks also lose information about small objects, because
of the repeated pooling and subsampling layers. To address
this problem, we combine two major ideas: loss boosting
to help ensure that small and infrequent object instances
are not ignored, and a pre-processing step to help identify
boundaries of small and featureless objects. We now describe
two techniques in detail.

1) Loss Boosting: We found that many bounding boxes de-
tected by traditional detectors like Faster R-CNN [5], YOLO-
v2 [10], and SSD [11] are not accurate on datasets with
small, densely distributed objects. One reason is that small
objects are more sensitive to bounding box boundaries. The
metric typically used to judge whether a bounding box is
correct or not is intersection-over-union (IoU): the area of
the intersection of the estimated bounding box and ground
truth bounding box, over the area of the union of these two
boxes. For small objects, small offsets can have a catastrophic
effect on the intersection-over-union score. The other problem
is the unbalanced relationship between the easy examples and
hard examples within a single image: easy object instances
often dominate the total loss at the expense of the loss from
harder objects. In other words, the loss from the easy objects
keeps decreasing while the loss from the hard ones becomes
stagnant. This problem is not severe for many datasets with
prominent objects since the IoU threshold is relatively small
(IoU=0.5), and is not as much of a problem for consumer
image applications where precise object localizations are often
not needed. However, for the scenario of application in the
industrial world, both high precision high recall matter are
important.

We thus propose Loss Boosting (LB) to solve this issue.
Specifically, for each training sample, we split all the objects
into two groups, easy and hard, according to their IoU in the
current iteration of training. Then we increase the loss of hard
objects and decrease the loss of the easy objects. The weight
of each object is dynamic during the training, depending on
its current relative contribution to the loss function against
all other objects’ loss contributions in the same image (as
Equation 2). Loss Boosting is an idea that can be embedded
within any type of detector including Faster R-CNN [5],
YOLO-v2 [10], or SSD [11]. The final stage of all three types
of detectors can be categorized as bounding box regressors.
Here we take the regressor of YOLO-v2 [10] as an example.
After grouping, the loss function becomes

loss = e+
n∑
i=1

(lossobj + losscoord + lossclass)

+e−
m−n∑
i=1

(lossobj + losscoord + lossclass),

(1)

where e+/e− represents an additional coefficient that is larger
or smaller than 1. The total number of objects in an image is



m, while the number of predicted boxes whose IoU is smaller
than a given threshold (for example, TH < 0.5) is n. lossobj ,
losscoord, and lossclass represent the loss of objectness, loss
of coordinates, and loss of classification respectively (please
refer to YOLO [14] for more details). For each image in each
iteration, we calculate e+, e− as,

e+/− =

{
(mn )

α (IoU <= TH)
( nm )α (IoU > 1− TH).

(2)

Note that α is a parameter whose value is smaller than 1.
We see from equation (2) that the final loss of an object

depends on its relative importance compared to all other
objects in the same image. Imagine a typical circumstance:
early in the training process, most objects’ corresponding IoUs
are smaller than TH, so their losses are unchanged, meaning
that they are equally important. After thousands of training
epochs, some easy objects will achieve an IoU that is greater
than (1-TH), so their loss will be decreased. At the same time,
the hard objects whose IoUs are smaller than TH have their
loss increased. Finally, when the model approaches the optimal
minimum, most exemplars should have an IoU which is larger
than 1-TH, and their loss stays unchanged just like in the early
training period – i.e., they become equally important again.

Although LB is used to address the issue of easy-hard
imbalance in a single image, it can also be generalized to
balance different types of loss across the whole dataset. For
example, we can use LB to balance different types of loss
(objectness loss, coordinate loss, and classification loss). We
can think of the loss weights of different loss types as model-
level balancing and the loss weights of different objects (LB)
as image-wise balancing.

2) Data Pre-processing: In this step, we extract 9 over-
lapping patches from the positions of top-left, top-center,
top-right, middle-left, the center, middle-right, bottom-left,
bottom-center, bottom-right in a single image. Each patch is
resized to the input size. Then we use an encoder-decoder
structure (as Figure 1 shows) to reconstruct the boundaries
of each object. Note that we add some short-cut connections
between some symmetric layers. We make convolutional lay-
ers or deconvolutional layers behave like filters and amplifiers
through pixel-level labels and pixel-level weights. Note that
the “weights” here refer to the relative importance of a label
in terms of pixel values. The “label” here is the ground truth
boundaries. The loss function is calculated by the Euclidean
distance between the labels and the predicted features. Finally,
the loss is multiplied by weights for each pixel.

This step is similar to multi-scale training, which helps
make an algorithm more robust to scale since it forces the
algorithm to “see” multiple scales of input at training time.
However, here we use this step to obtain clearer boundaries
for the objects. Intuitively, this is like what humans do when
they try to find a small object: they take a “closer look” at the
image. We benefit from this process not only through using
more input images but also by the complementary relationship
among patches. In testing, we just need to assemble the results
by location and average.

B. Identity Verification of Microelectronic Components
Another key task to ensure the reliability and integrity

of devices is to verify that their electronic components are
the ones that were expected. Towards this goal, we envision
developing a method to verify that the appearance of a given
microelectronic component (in an image) is consistent with the
image of a reference part. Of course, the two images will never
be identical because of variations in part alignment, lighting,
scale, etc., as well as the fact that the two parts are typically
different physical instances and there may be small variations
due to manufacturing variations, etc. The goal is thus to learn
feature representations that can spot visual differences that
may indicate an incorrect or counterfeit part, while ignoring
the visual differences that are caused by harmless factors like
lightning or minor manufacturing variations.

Ideally we would test our approach using a real dataset of
counterfeit electronic parts. Unfortunately, obtaining images of
known counterfeits is quite difficult, and the datasets that are
publicly available [21] are not large enough for training deep
neural networks. We thus study a proxy problem: verifying if
two IC images have the same manufacturer (AMD, Intel, etc).
This is still a challenging recognition problem, and the system
must still automatically learn how to distinguish between the
logos and other visual features that are specific to the different
companies.

In more detail, we learn this representation from a col-
lection of IC images using deep neural networks. We use a
Siamese Network architecture that takes pairs of images as
training examples and then learns a distance metric in a high-
dimensional feature space. For our verification module, we
want to learn a distance metric that clusters together images
of similar identities while images of dissimilar identities are
pushed further apart. Towards this goal, we learn a distance
metric with our Siamese network with a joint combination
of Contrastive and Classification losses. Since our goal is
to separate ICs by manufacturer, we used the manufacturing
company label in the classification loss of our joint loss
function.

1) Network architecture: A Siamese network contains two
copies of the same deep neural network with shared weights
between them. During training, pairs of input images are fed
into the network at a time, along with a label indicating
whether the two images correspond to the same class (manu-
facturer) or not. Each copy of the shared network thus takes
one of the two images as input. Assume that two input images,
denoted by Xa and Xb, are fed into the Siamese network
and their feature representations in the final layer (before loss
layer) are a and b, respectively. A Siamese network can be
trained from a batch of N images to learn a distance metric
using a contrastive loss function,

losscontr =
∑
i∈N

zi||ai − bi||2+

+(1− zi)max(0, β − ||ai − bi||)2,
(3)

where zi is an indicator that denotes whether the two images
are of the same or different class. The margin hyper-parameter



(a) (b)

Fig. 1. Neural network architecture for microelectronic components detection and parameters used for pre-processing.

is denoted by β. We also incorporated two other classification
loss terms for the two input images in addition to the con-
trastive loss, encouraging each branch to correctly identify the
class (manufacturer) of its individual input image.

At test time, learned features can be extracted from an
image by passing it through a single copy of the network, and
then extracting the output of the final layer (before the loss
layer). This representation is simply a vector that hopefully
captures the important visual properties of the image for
the given recognition class (manufacturer detection), while
ignoring distracting or irrelevant visual features.

IV. EXPERIMENTS

We have evaluated our techniques through extensive experi-
mentation on several realistic datasets. We briefly describe our
dataset and then discuss the experiments for each module in
the following sections.

A. Microelectronic Component Detection Experiments
1) IC Detection Dataset: We applied our detection algo-

rithm for detecting integrated circuits on complex printed
circuit boards (PCBs). To our knowledge, there are no existing
publicly-available PCB datasets that are suitable for realistic,
large-scale training and testing on this task. For example,
Pramerdorfer and Kampel [22] collected a dataset of 165 PCB
images, but only a subset are labeled and many of the small
ICs are ignored. We thus used our own dataset of 1,500 images
of PCBs collected from Internet sources (e.g., Google Image
Search) by searching for various relevant keywords and image
queries [23]. Images of low resolution, poor quality, or noisy
appearance, etc. were discarded by hand. Four researchers
annotated 483 images by hand, with bounding boxes and
IC ID labels, yielding around 5,000 labeled IC instances,
using a customized version of the LabelMe [24] web-based
user interface. The data was partitioned into a total of 417
training images and 66 testing images. The PCB images and
the annotated is available at http://homes.soic.indiana.edu/IU-
PCB-Dataset.

Some examples of the dataset are shown in Figure 2. This
task is important in industrial quality control scenarios where,
for example, a manufacturer may wish to verify that all ICs
have been properly placed on a circuit board that was produced
by a third-party supplier.

2) Data Preprocessing: We use the network structure
shown in Figure 1. The inputs are raw images, along with
ground truth segmentation maps in the form of a binary image,
with a pixel value within each ground truth bounding box
of 1.0 and the background pixels set to 0 (since these maps
can be thought of as probabilities). We set the learning rate
to 1e−6, the momentum to 0.9, and the maximum iteration
to 80000. We conducted the experiments using the Caffe
framework [25].

3) Loss boosting: After estimating clear boundaries, we use
the regression model of YOLO-v2 [10] with loss boosting to
predict final bounding boxes. We set TH=0.1, α=0.1, and we
have two classes: IC and background. During training, we
vary the input image sizes from 480×480 to 800×800 ran-
domly, but we only use 800×800 during testing. Other meta-
parameters are: learning rate 1e−3 (reduced by multiplying a
factor of 0.1 at iteration 40000 and 60000), maximum iteration
80000, momentum 0.9, and decay 0.0005. As baselines, we
also applied SSD [11] using the TensorFlow object detection
API [26]. We use the default parameters except that the input
size is modified to 600 × 600 and the learning rate is set
to 0.01. We also tried Faster-RCNN [5] on the same dataset,
but the results were very poor (a precision and recall close to
0). We obtained this same result from both the Faster R-CNN
implementation provided by the TensorFlow object detection
API [26] and the official code provided by the authors [5].
We believe the problem is that Faster R-CNN was simply not
designed for small, relatively featureless objects such as ICs.

Some detection examples are shown in Figure 2. Most
of the time, the objects are detected accurately. Table I
shows quantitative accuracy measurements for two different
Intersection over Union (IoU) thresholds (0.8 and 0.9; higher
thresholds require bounding boxes to agree more precisely
with the ground truth boxes for them to be considered correct).
For example, for an IoU of 0.9, we see that the combina-
tion of our techniques, including the pre-processing step and
loss boosting, achieves an average IoU of 89.84%, recall of
66.45%, and precision of 47.06%, which is much better than
corresponding measurements achieved by YOLO-v2 (75.57%,
3.11%, and 2.04%). The avgIoU refers to the average IoU
of all the true positives. Similarly, our model also performs
favorably compared to SSD [11], which achieves 78.95%,

http://homes.sice.indiana.edu/chen478/annotationTools/html/labeling_instructions.html
http://homes.sice.indiana.edu/chen478/annotationTools/html/labeling_instructions.html


Fig. 2. Top left: a sample input image with ground truth bounding boxes. Top right: the corresponding image with predicted boundaries after pre-processing.
Bottom left: another input image with ground truth bounding boxes. Bottom right: the corresponding detection result.

Recall Precision
Method Anchors Backbone Avg IoU IoU=0.9 IoU=0.8 IoU=0.9 IoU=0.8

SSD Yes Inception-v2 78.95% 14.79% 32.54% 9.72% 21.37%
YOLO-v2 Yes YOLO-v2 75.57% 3.11% 47.28% 2.04% 18.30%

YOLO-v2+* Yes YOLO-v2 89.49% 62.44% 91.32% 45.77% 66.95%
YOLO-v2+* No YOLO-v2 88.93% 59.84% 89.12% 52.98% 78.90%

YOLO-v2+*+LB Yes YOLO-v2 89.84% 66.45% 92.88% 47.06% 65.78%
YOLO-v2+*+LB No YOLO-v2 89.11% 59.84% 91.84% 52.92% 81.21%

TABLE I
RESULTS ON PCB DATASET. ‘*’ MEANS THE PRE-PROCESSING STEP IS APPLIED. ‘ANCHORS’ HERE MEANS A FEW PRE-DEFINED BOUNDING BOXES TO

TAKE ADVANTAGE OF THE PRIOR KNOWLEDGE OF THE TRAINING SET (PLEASE CHECK THE DETAILS IN [10]).

14.79%, and 9.72%, respectively.
We also observed failure cases from our detection method.

We were often able to categorize them into one of two types.
First, some small ICs are simply not found by our model.

These ICs are particularly challenging, and could be detected
if we assign more weight to these samples in loss boosting,
but this could cause a drop in accuracy for easy samples.
One possible solution to circumvent this problem would be to
detect the larger and smaller samples separately. Small object
detection, in general, is a difficult problem. The primary reason
for this difficulty could be attributed to the phenomenon that
small objects contain less information compared to larger ones.

We consider these small objects as difficult objects and detect
them by balancing the loss between easy objects and difficult
ones. Our experiments show that the detection accuracy is
improved after the balanced loss is introduced. However, there
are some small objects that can not be detected at all. One
possible reason is the generalization gap – the performance
difference between the training set and testing set – and this
issue could be further softened by incorporating more training
images, or enforcing the model to focus more on only small
objects.

The second type of failure corresponds to false positives
for components that have very similar appearance to real ICs,



Fig. 3. Test images containing multiple instances of IC images. A random pair was used as positive examples in our verification experiment. Top row (from
left to right) shows sample images from amd, broadcom, dallas, mitsubishi manufacturing companies respectively. Similarly, in bottom row, sample images
are from intel, philips, sharp, texas-instruments manufacturers.

such as rectangular transformers or connectors. A possible
solution to this problem is to train on more samples, or to
build classification models for these parts so that they are less
likely to be detected as ICs.

B. Microelectronic Component Verification Experiments

1) Integrated Circuit Dataset: While the IC detection algo-
rithm could be evaluated on the PCB dataset above, for verifi-
cation we needed a larger dataset of cropped IC images with
more annotations. As mentioned above, while the technique we
develop for IC matching could in principle be used to learn
visual properties appropriate to any task, such as verifying if
a part is counterfeit or legitimate, here we study the specific
proxy problem of checking whether the manufacturers of two
given IC images are the same.

We thus collected a large repository of IC images from the
Internet using various sources including Google Image Search,
eBay product photos, electronics manufacturer websites, etc.
We collected about 10,000 images from more than 30 IC man-
ufacturers. We then manually cropped the IC from the source
image, applying a perspective transformation (a homography)
if needed to rectify the image so that the angles of the IC
were 90 degrees. We removed images that were especially
low quality, yielding a total collection of 6,387 IC images
from 27 manufacturers. The number of ICs per manufacturer
varied from about 650 to 50, and the manufacturers were
(listed in decreasing order of frequency): NEC, TI, Toshiba,
AMD, Sanyo, Hitachi, Fujitsu, Motorola, Intel, Mitsubishi,
Philips, Siemens, Dallas, Apple, Oki, Infineon, Qualcom,
Via, Nuvoton, Sharp, Yamaha, Panasonic, Sony, Broadcom,
Mediatek, Atheros, and AT&T.

We used over 8000 pairs of IC images from this dataset to
train our Siamese networks to learn the features. A set of 286

Fig. 4. Accuracies of pairs of IC images against different thresholds. Each
curve shows the accuracy of one of our different Siamese network models.
The best performance was achieved (shown in Cyan) by our VN-Siamesev2
network containing the backbone of VGG16 architecture.

images containing multiple instances of a same IC chip were
selected. We utilized a random pair of two images from these
source images for our verification experiment. Figure 3 shows
a few sample images used in the verification test.

2) Siamese Network Training: We trained four different
Siamese network architectures from the literature to learn
our deep embedding from the dataset of IC images. As is
common, we used networks that were pre-trained on the
ImageNet [3] large-scale dataset of millions of images. Even
though ImageNet consists of consumer images having nothing
to do with ICs, much work in transfer learning has shown that
this initialization can be helpful when the dataset in the target



Fig. 5. A sample test image (left) containing multiple instances of ICs. We extract two ICs randomly (middle and right) and then mark the pair as a positive
example in our verification experiment.

domain is relatively small. In particular, we tried for variations
of the architecture:

• AN-Siamesev1: AlexNet [27] is used as the backbone
network and only the fully connected layers are fine-tuned
with IC images.

• AN-Siamesev2: AlexNet [27] is used as the backbone
network and all layers are fine-tuned with IC images.

• VN-Siamesev1: VGG16 [28] is used as the backbone
network and only the fully connected layers are fine-tuned
with IC images.

• VN-Siamesev2: VGG16 [28] is used as the backbone
network and all layers are fine-tuned with IC images.

The networks were trained in PyTorch framework for at most
200 epochs using a learning rate of 10−6.

3) Verification Experiment: Given a pair of IC images,
our goal at test time is to determine if the two are similar
according to the task that the network was trained on. In the
proxy problem in this paper, this task is to determine if the
two ICs were made by the same manufacturer. From the 286
images that were held out from training as test images (a few
examples as shown in Figure 3), we randomly cropped two
instances of the same IC from a source image and created a
pair. This pair was labeled as positive since they were from the
same manufacturer. Figure 5 shows an instance of this cropped
pair of IC images along with the source image from which it
was cropped. We also applied perspective transformation after
cropping. Emphasis was given during cropping to preserve the
visual characteristics of a chip such as shape, aspect-ratio, logo
of the manufacturer, chip identification number etc. The total
number of positive pairs of IC images in the test set was 286.
We also included the same number of negative pairs of IC
images into our test experiment. For each of the IC images in
a positive pair, we randomly selected another IC image from
a pair of a different manufacturer. In total our test set contains
572 pairs of positive and negative images.

Each image from a pair was passed through our trained
network to extract a 1024 dimensional feature vector from
the last fully connected layer. As a measure of similarity
between two features, we compute the cosine distance between
these two 1024 dimensional vectors (which should be small if
the two images are similar according to the learned distance
metric). Based on the distance value between the feature
representations, we predict if a pair of images are from the
same or different manufacturer by comparing to a threshold.

We compute the accuracy of all the 572 pairs of IC images as
quantitative evaluation.

Table II presents the results. The best accuracy of 92.31%
was achieved using our VN-Siamesev2 network, which was
trained by learning all the layers from the IC images. VN-
Siamesev2 contains the VGG16 backbone, which is a few
layers deeper than AN-Siamesev1 or AN-Siamesev2 (which
both use AlexNet as their backbones). The best performing
model using AlexNet as a backbone was AN-Siamesev2, with
an accuracy of 89.51%. We also report the threshold used to
obtain these best accuracy next to each row in Table II. For
a more comprehensive understanding of the accuracy versus
threshold trade-off, we visualized the evolution of accuracy in
Figure 4. We varied the threshold from 0 to 1 with a step size
of 0.01. Each curve in Figure 4 denotes the accuracy of one
of the Siamese network models. For example, the Cyan curve
(best viewed in color) denotes the accuracy trade-off when
running the experiment with the VN-Siamesev2 architecture.
This model performs better than the rest of the models across
all the threshold, and has an accuracy of 64% even at a
very high thresholds. AN-Siamesev1’s performance quickly
diminishes as the threshold increases, suggesting that it failed
to compute a larger distance between images of dissimilar IC
chips.

V. CONCLUSION

We proposed two computer vision techniques to analyze
microelectronic imagery. With a novel loss boosting mod-
ule, our detection method allows for the identification and
localization of different components in a printed circuit board
image. We also developed a Siamese network module for the
identity verification of the microelectronic component images.
We demonstrated the effectiveness of both of our methods with
an extensive evaluation on a large corpus of images collected
from the web.
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Method Backbone Trained FC layers Only Best Accuracy Best Threshold
AN-Siamesev1 AlexNet Yes 89.16% 0.07
AN-Siamesev2 AlexNet No 89.51% 0.12
VN-Siamesev1 VGG16 Yes 86.71% 0.14
VN-Siamesev2 VGG16 No 92.31% 0.20

TABLE II
VERIFICATION ACCURACY OF DIFFERENT ARCHITECTURES. THE BEST ACCURACY IS SHOWN IN THIS TABLE. ACCURACY VS THRESHOLD TRADE-OFF IS

SHOWN IN FIGURE 4.
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