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Abstract

Photo-sharing websites have become very popular in the
last few years, leading to huge collections of online images.
In addition to image data, these websites collect a variety
of multimodal metadata about photos including text tags,
captions, GPS coordinates, camera metadata, user profiles,
etc. However, this metadata is not well constrained and is
often noisy, sparse, or missing altogether. In this paper, we
propose a framework to model these “loosely organized”
multimodal datasets, and show how to perform loosely-
supervised learning using a novel latent Conditional Ran-
dom Field framework. We learn parameters of the LCRF
automatically from a small set of validation data, using In-
formation Theoretic Metric Learning (ITML) to learn dis-
tance functions and a structural SVM formulation to learn
the potential functions. We apply our framework on four
datasets of images from Flickr, evaluating both qualitatively
and quantitatively against several baselines.

1. Introduction
Online photo-sharing has become very popular in the last

few years, generating huge collections of images on sites
like Flickr, Picasa, and Instagram. As these datasets grow
ever larger, a key challenge is how to organize them to al-
low for efficient navigation and browsing. For instance, we
may want to discover the structure of photo collections by
clustering images into coherent groups with similar objects,
scenes, events, etc. in an automatic or semi-automatic way.

While image clustering has been studied exten-
sively (e.g. [3, 21, 23] among many others), photo collec-
tions on modern photo-sharing sites introduce new opportu-
nities and challenges. In addition to the images themselves,
photos on these sites often include rich metadata that pro-
vide additional cues to the semantic content of the images,
including text tags, timestamps, camera EXIF data, GPS co-
ordinates, captions, and comments from other users. This
metadata allows us to find connections between photos that
are not obviously similar: a photo of the crowd at a candi-
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Figure 1: Latent Conditional Random Field model for two
feature types. The primary features here are text tags, which
are encoded as unary potentials, while visual features are
the constraints (encoded in the pairwise potentials). Miss-
ing text tags yield uniform unary potentials.

date’s political rally is clearly related to a photo of his or
her campaign logo, but these photos exhibit almost no vi-
sual similarity. In such cases, similarities in the non-visual
metadata may help: image tags and captions often contain
useful keywords related to the content, activities, and con-
text of the scene, while GPS coordinates and timestamps
can be used to find photos taken nearby in space and time.

Of course, metadata alone is not enough: two random
photos tagged canon d50 are probably not related, while
photos tagged with identical GPS and timestamps may be
unrelated if taken on different floors of a large building.
Moreover, metadata is typically not well constrained, and
thus often missing, incomplete, ambiguous, or erroneous.
For instance, some photos include detailed text tags, while
others are tagged with unhelpful or noisy labels or are not
tagged at all; even the most fastidious of photographers can-
not list all possible tags that are relevant to an image. GPS
coordinates are only collected by select devices like smart-
phones and are often hidden due to privacy concerns, so
geo-tags typically appear on a small subset of images.

Here we present an approach for clustering large datasets



with multimodal visual and non-visual features, and apply
it to social photo collections. We are particularly interested
in the incomplete and noisy nature of non-visual metadata:
can modality features that are very sparse be used in a prin-
cipled way to improve clustering performance? To solve
this novel problem, we propose a generalization of the K-
means algorithm using latent CRFs. Our method can be
used in a fully unsupervised setting, or can use labeled train-
ing data if available, in contrast to supervised methods like
SVMs that require significantly more training data. Our
method is designed for cases where obtaining large labeled
datasets is not possible, but annotating a small amount of
training data is feasible. For example, in a large scale photo
collection with millions of images, if the categories of in-
terest are known in advance, one can manually annotate a
few hundred instances, and apply our approach using this
loosely-supervised information for organizing the rest.

As in traditional clustering (like K-means), we wish to
assign each instance to a cluster, but the cluster identities
(e.g. centroids) are themselves unknown and must also be
inferred. We pose this problem using a Latent Conditional
Random Field, in which each node in the graph corresponds
to an image, and our goal is to mark each node with a cluster
label. We pick one type of feature to be the primary feature
and use it to define the CRF’s unary potentials, which are
functions of the distances from an image’s primary feature
to each latent cluster center. The other feature channels are
considered to be constraints and appear as pairwise poten-
tials in the CRF. These constraints tie together images with
similar secondary features, encouraging them to be assigned
to the same cluster. Incomplete, noisy, and heterogeneous
features can thus be naturally incorporated into this model
through these soft constraints. To perform clustering, we
alternately solve for cluster assignments and cluster centers
in a manner similar to K-means and EM, except that the E-
step is much more involved, requiring inference on a CRF.

A challenge in clustering with noisy, multimodal fea-
tures is how to define sensible distance metrics for the het-
erogeneous feature types, and how to weight them relative
to one another. We address this problem by learning the dis-
tance and potential functions on a small amount of labeled
training data we obtain from each category. In particular,
we use Information Theoretic Metric Learning (ITML) [4]
to learn the parameters of the distance metrics for constraint
features, and use structural SVMs with the same training
exemplars to learn the potential functions of the CRF. Our
approach can still work for unsupervised cases, when ob-
taining labeled images is not feasible or no prior knowledge
about the categories of interest is known; in this case, we
can use a standard metric like L2 distance, or a distance
function learned on a different but similar dataset.

Finally, we evaluate our approach on three datasets from
Flickr, with labeled ground truth and different types of fea-

tures including visual, text, and GPS tags, and compare
against baseline methods. We also test on a large unlabeled
dataset, showing that our technique can find coherent events
and activities in a completely unsupervised manner.

To summarize, the contributions of this paper are: (1) to
propose a general framework for loosely-supervised clus-
tering for multimodal data with missing features; (2) to ap-
ply metric learning and formulate a structural SVM problem
for learning the structure of the latent CRF; and (3) to show
that the approach can be used for unsupervised clustering
on large-scale online image datasets.

2. Related Work

There is a vast literature on unsupervised and semi-
supervised learning in the data mining community, and
these techniques have been applied to organizing photos in a
variety of contexts [5,6,11,12,21–23]. Two research threads
are most closely related to this paper: multimodal modeling
in image collections, and constrained clustering.
Multimodal modeling. McAuley and Leskovec [13] use re-
lational image metadata (social connections between pho-
tographers) to model pairwise relations between images,
and they apply a structural learning framework to solve the
resulting labeling problem. While similar to our work in
spirit, their formulation does not allow for missing meta-
data, and does not incorporate multimodal features (and
does not use visual features at all). Rohrbach et al [15] pro-
pose a framework to recognize human activities in videos
using both visual and detailed textual descriptions. Guillau-
min et al [7] use a semi-supervised classifier on visual and
text features for image classification; they allow missing
class labels on training images, but do not allow for sparse
features (they assume that all training images have text
tags). In contrast, our model allows missing features in any
modality channel, and learns the concepts in a loosely su-
pervised manner (using just a small labeled training dataset
to learn the parameters of our CRF).

Bekkerman and Jeon [3] perform unsupervised multi-
modal learning for visual features and text, but similarly do
not attempt to handle sparse or missing features. Perhaps
most relevant to our work is that of Srivastava and Salakhut-
dinov [16], who propose a multimodal learning method us-
ing deep belief networks. Their work allows for missing
modalities on training instances by a sampling approach,
but their technique can be expensive because it requires
many different layers and also a lot of parameters. On the
other hand, we propose a lightweight unsupervised learning
framework which discovers clusters automatically, but that
can still be used to build discriminative classifiers to predict
missing modalities on new unseen images.
Constrained clustering. Several papers incorporate con-
straints into classical clustering algorithms like K-means.



Our approach can be thought of as constrained clustering,
similar to HMRF-Kmeans [2] and related work [11,12,18],
but there are key differences in motivation and formula-
tion. We explicitly deal with missing features (which are
quite common in web images) while these existing meth-
ods do not consider this problem. Intuitively, our frame-
work only performs K-means updates (the “M-step”) for
one feature channel; when this type of feature is missing on
some instances, K-means updates are calculated based on
a subset of the network. Our work is related to Wagstaff et
al [19] and Basu et al [2] who add “hard” constraints to the
standard K-means framework, including “must-link” and
“cannot-link” constraints between data points. In our ap-
plication, where metadata is noisy and often inaccurate or
ambiguous, such hard constraints are too strong; we instead
use “soft” constraints that encourage instances to link to-
gether without introducing rigid requirements. Our models
also allow different feature types in the pairwise constraints
(e.g. some constraints may be defined in terms of tag rela-
tions, while others are defined using GPS, etc).

3. Loosely Supervised Multimodal Learning

We now present our approach for loosely supervised
clustering in datasets with multimodal, sparse features. We
assume that there are multiple feature types that are not
comparable with one another, and observed values for some
of these features on each instance in our dataset. For exam-
ple, for online photos we may have visual features, text tags,
and geotags, for a total of three feature modalities, and vi-
sual features are observable in all images but the others are
available on just a subset. Our goal is to jointly consider all
of this sparse and heterogeneous evidence when clustering.

3.1. Constrained Clustering Framework

We can think of our approach as a generalization of the
classic K-means clustering algorithm. In K-means, we are
given a dataset of instances X = {x1, ..., xN}, where each
instance is a point in a d-dimensional space, xi ∈ Rd. Our
goal is to assign one of K labels to each instance, i.e. to
choose yi ∈ [1, ...,K] for each instance xi, and to esti-
mateK cluster centers µ = {µ1, ..., µK}, so as to minimize
an objective function measuring the total distance of points
from assigned centroids,

min
µ,y

N∑
i=1

K∑
k=1

1(yi = k) ‖xi − µk‖2, (1)

where y = (y1, ..., yN ) and 1(·) is an indicator function
that is 1 if the given condition is true and 0 otherwise. Note
that this formulation implicitly assumes that each instance
can be represented by a point in a d-dimensional space, and
that Euclidean distances in this space are meaningful.

In our approach, we assume that we have M differ-
ent types of features, only a subset of which are observ-
able in any given instance. Our dataset thus consists of a
set of N instances, X = {x1, ..., xN}, where each xi =
(x1i , ..., x

M
i ), and a given xmi is either a feature vector or ∅

to indicate a missing value. We treat one of these as the pri-
mary feature (we discuss how to choose the primary feature
below) and consider the others as soft constraints, which tie
together instances having similar values. We assume with-
out loss of generality that the primary features have index
m = 1. Any of these feature types (including primary) may
be missing on a given instance. An illustration of our ap-
proach is shown in Figure 2. Now we can generalize the
K-means energy function in equation (1) as,

min
µ,y

E({yi}|{xi}), (2)

with

E({yi}|{xi}) =

N∑
i=1

K∑
k=1

1(yi = k) · α(x1i , µk) (3)

+

M∑
m=2

N∑
i=1

N∑
j=1

βm(xmi , x
m
j ) · 1(yi 6= yj),

and where α(·, ·) is a distance function that defaults to 0 if
a primary feature is missing,

α(x1i , µk) = 1(x1i 6= ∅) · ‖x1i − µk‖2,

and βm(·, ·) is a function that measures the similarity be-
tween the m-th (non-primary) feature of two instances (de-
scribed below), or is 0 if one or both of the features are
missing. Intuitively, the first summation of this objective
function is identical to that of the objective function of K-
means in equation (1), penalizing distance from the primary
features to the cluster centroids. If a primary feature is miss-
ing in a given instance, it does not contribute to the objective
function (since any assigned label has equal cost). In the
special case that there is exactly one feature type and it is
always observable, equation (3) is equivalent to simple K-
means in equation (1). The non-primary features add soft
constraints through the second set of summations in equa-
tion (3), penalizing pairs of instances from being assigned
to different clusters if they have similar features.

The objective function in equation (3) is a Latent Con-
ditional Random Field model. Each instance (image) is a
node in the CRF, and the goal is to label each node with a
cluster identifier. The primary features define unary poten-
tials, which give a cost for assigning a given node to each
centroid, or a uniform distribution if the primary feature is
missing. As in K-means, the cluster centroids are latent
variables that must be estimated from data. Edges connect
together pairs of instances where non-primary feature are



(a) Standard K-means (b) Adding pairwise constraints (c) Constrained K-means

Figure 2: Illustration of our constrained clustering framework. (a) Standard K-means has only one feature type; (b) we add
more feature types, which induce pairwise soft constraints between instances; (c) CRF inference balances evidence from all
features in performing the clustering.

available, with pairwise potentials given by the β functions.
To perform clustering in this framework, we must perform
inference on the latent CRF. This is an optimization prob-
lem with two sets of unknown variables: the cluster centers
µ and the cluster assignments y. We use an EM-like coor-
dinate descent algorithm to solve this problem, iteratively
applying the following steps:

1. In the E-step, we fix µ and (approximately) solve for y
by performing discrete optimization on the CRF using
tree-reweighted message passing (TRW-S) [8].

2. In the M-step, we fix y, and solve for each µk with
simple maximum-likelihood estimation.

Note that these two steps are the familiar algorithm used in
K-means, except that the E-step here involves jointly as-
signing cluster labels to the instances by performing infer-
ence on a CRF (instead of simply assigning each instance
to the nearest cluster center as in K-means). The M-step
is identical to that of K-means, except that here we ignore
instances with missing primary features.

We can use this framework in different ways, depend-
ing on the amount of information available in a given appli-
cation. In a weakly supervised setting, we assume that for
some pairs of instances (in a held-out set), we know whether
each pair belongs to the same class or a different class. We
use these labels to learn the pairwise potentials as described
in Section 3.2. We can learn a distance metric even when
the constraint features are available but the primary feature
is missing, or when the labeled set is in a different domain
than the clustering application at hand. In a loosely super-
vised setting, we make the stronger assumption that a small
subset of instances have ground-truth class labels, such that
we can estimate the centroids using the small subset, and fix
the centroid labels in that subset while solving for the rest.

3.2. Learning Pairwise Potentials

The clustering framework in Section 3.1 requires pair-
wise potential functions βm(·, ·) to evaluate the similar-

ity between two instances according to each feature type.
These functions are critically important to clustering per-
formance and thus we learn their parameters automatically.
We define the pairwise potentials for each feature type m to
have the following parametric form,

βm(xmi , x
m
j )=1(xmi 6=∅∧xmj 6=∅) ·(wm ·dm(xmi , x

m
j )+b),

(4)
where dm(·, ·) is a (learned) distance function for the given
feature type, wm and b are scalar weight and bias terms,
and the indicator function ensures βm(·, ·) is clamped to 0
if either feature is missing. Learning the potential functions
now involves estimating the distance function dm(·, ·) for
each feature type, and the weight and bias terms wm and b;
we estimate these in two separate steps.
Learning the distance functions. We assume that the dis-
tance functions are Mahalanobis distances,

dm(xmi , x
m
j ) = (xmi − xmj )TAm(xmi − xmj ),

and thus we need only to estimate the matrices Am. To
do this, we use Information Theoretic Metric Learning
(ITML) [4] to learn these matrices from pairwise supervi-
sion on the small labeled training data. For increased ro-
bustness to noise, we used diagonal Mahalanobis matrices.
Learning the potential function parameters. We wish
to jointly estimate the M − 1 feature weight parameters
w = (w2, ..., wM ) and the bias term b in equation (4). We
formulate this as a standard margin-rescaled structural SVM
learning problem [17]. Let yi and ỹi be the ground truth and
predicted label of xi, E({yi}|{xi}) be the energy when the
labelings are {yi} (in equation (3)); we minimize,

min
λ,w,b

λ‖w‖2 + ξ,

such that,

E({ỹi}|{xi})− E({yi}|{xi}) ≥ ∆({ỹi}, {yi})− ξ,

∀{ỹi} 6= {yi}, w ≥ 0, ξ ≥ 0.



We define our loss function using number of incorrect pairs,

∆({ỹi}, {yi}) =

N∑
i=1

N∑
j=1

1ỹi=ỹj∧yi 6=yj∨ỹi 6=ỹj∧yi=yj ;

in other words, for each pair of instances in the dataset, we
count how many of them were incorrectly assigned to differ-
ent clusters and how many were incorrectly assigned to the
same cluster. This definition of loss is the Rand Index [14],
a popular evaluation metric in the clustering literature. We
chose to use this metric (as opposed to other popular met-
rics like purity) because it allows the loss function to de-
couple into independent optimizations over each data point.
We can then perform loss-augmented inference using the
TRW-S algorithm [8] at training time, allowing for efficient
inference in the inner loop of structured SVM training.

4. Experiments
We demonstrate our clustering method on four datasets

collected from Flickr, three of which have ground-truth to
allow for quantitative evaluation. In the fourth dataset, we
show how our technique can be used to discover structure in
large collections of images for which no ground truth exists.

4.1. Applications and datasets

We use four datasets of images from Flickr collected us-
ing the public API. To test the robustness of our approach in
different settings, each of these datasets targets a different
application of unsupervised clustering, and uses different
feature types and ground truth collected in varying ways.
Landmarks. Our first dataset contains images from the ten
most-photographed landmarks on Flickr, using the dataset
from [10]. That paper clusters geo-tags to find highly-
photographed places and learns discriminative classifiers
for each of these landmarks. Here we test if our method can
separate the landmarks in a less supervised manner, which
could be useful in organizing large tourist photo collections
around travel destinations. In this dataset we use only image
features and text tags; we do not use GPS features because
they were used to define the ground truth classes. We hide
the ground truth, apply our clustering framework on image
and tag features, and then compare the clustered results with
the ideal clustering induced by the class labels. This Land-
marks dataset includes 8,814 images.
Groups. Sites like Flickr let users contribute their photos
to groups about user-defined topics. These groups have rich
and varied themes, and the ability to categorize photos into
groups automatically could be useful to help users organize
their photos. We collected 1,000 images from each of 10
Flickr groups related to the following topics: aquarium,
boat, bonsai, cars, Christmas, fireworks, food, penguins,
skyscrapers, and sunsets. (These are the topics shown in
Fig. 1 of [20]; unfortunately those authors could not share

their dataset, so we found Flickr groups corresponding to
the same topics and gathered our own images). We use vi-
sual, text, and geo-tag features in this Groups dataset.
Activities. We are also interested in clustering images ac-
cording to human activities like attending a game, going to
a museum, taking a hike, etc. Since these activities cor-
respond to higher level semantics than simple actions like
walking, running, etc., they are difficult to classify using vi-
sual features alone. (For instance, a picture of cars could be
“car racing” if the cars are moving or “car show” if they are
stationary, but the difference in visual appearance is sub-
tle.) We thus use our multimodal clustering algorithm to
incorporate visual, textual, and GPS features into this orga-
nization process. We collected two activity-related datasets.
Sport consists of 10,000 images related to sporting events,
which we collected by crawling 10 types of Flickr groups
(American football, baseball, basketball, hockey, horse rac-
ing, marathons, NASCAR, football (soccer), swimming,
tennis). These group labels give ground truth for evaluation.
Activity includes about 30,000 random images from Flickr,
which we use to qualitatively test our approach’s ability to
discover activities in unlabeled data. Here we use a large
number of clusters (K = 1000) so that we can find coher-
ent clusters despite the large number of outlier images.

In collecting the above datasets, we were careful to pre-
vent “leaks” between class labels and the features used for
clustering. For example, we did not use text features to de-
fine class labels, instead relying on geo-tags and group as-
signments. We also prevented any single photographer from
dominating the datasets by sampling at most 5 photos from
any single user. In general, about 80% of images have at
least one text tag and about 10% of images have a geo-tag.

4.2. Features

On Landmarks, Groups, and Sport, we represent each
image using histograms of visual words (using SIFT de-
scriptors and a visual vocabulary of 500 words built using
K-means). For the text features, we apply PCA on the bi-
nary tag occurrence vectors to reduce the dimensionality to
200. We learn a Mahalanobis distance for the text features
using the method in Section 3.2 on the lower-dimensional
space. For geo-tags, we use chord lengths on the sphere
as the distance between two GPS coordinates. On the Ac-
tivity dataset, we compute high-level features using object
bank [9], and use image captions as the text features. Stop
words are removed, the remaining words are stemmed, and
we represent the text using binary occurrence vectors and
again apply PCA to reduce the dimensionality to 200.

4.3. Results

As mentioned in Section 3.1, our framework can be ap-
plied in different ways depending on the type of ground
truth available. We first evaluate under weak supervision,



Purity:
Visual features Text features Visual+Text Proposed (V+T) Proposed (V+T+G)

Landmarks 0.1677± 0.0134 0.3224± 0.0335 0.3449± 0.0383 0.4060 ± 0.0279 —
Groups 0.2508± 0.0097 0.3696± 0.0263 0.3955± 0.0341 0.4395± 0.0389 0.4450 ±0.0353
Sport 0.1483± 0.0101 0.3454± 0.0386 0.3524± 0.0387 0.3713± 0.0309 0.3965 ±0.0182
Inverse purity:
Landmarks 0.3163± 0.0180 0.4907± 0.0344 0.5297± 0.0227 0.5611 ± 0.0210 —
Groups 0.4066± 0.0448 0.5893± 0.0275 0.5971± 0.0310 0.6010± 0.0322 0.6336 ±0.0152
Sport 0.3707± 0.0411 0.6593± 0.0244 0.6789± 0.0175 0.6931± 0.0173 0.7062 ±0.0190

Table 1: Purity (top) and Inverse Purity (bottom) on three datasets with K = 10 clusters. Means and standard deviations are
over 5 trials. (GPS information is not available for Landmarks.) Our multimodal approach significantly outperforms single
modality baselines and combined feature baselines, both in terms of purity and inverse purity.

which assumes that we have pairs of exemplars which we
know belong to either the same or different classes, and
we use these to learn the pairwise distances and potential
functions. We also evaluate under loose supervision, which
makes the stronger assumption that we have some exem-
plars with ground-truth class labels, so that the primary fea-
ture centroids can also be initialized.

Weak supervision. Table 1 presents quantitative results for
three datasets under weak supervision, using purity and in-
verse purity [1] as the evaluation metrics. For example, to
compute purity, we calculate the percentage of instances
within each estimated cluster that agree with the major-
ity ground truth label of those instances. These numbers
are averaged across all clusters to compute a final purity
score. The table compares our method against several base-
lines: Visual features runsK-means on visual features only,
Text features performs K-means using text features only,
Visual+Text concatenates both features and performs K-
means. Photos without tags are assigned random tags. Pro-
posed (V+T) uses our approach with visual and text fea-
tures, and Proposed (V+T+G) uses our approach with vi-
sual, text and GPS features. In each case we run 5 trials
and report means and standard deviations, since results are
non-deterministic due to the random initialization.

As shown in the table, our proposed method to incorpo-
rate (weak, sparse, noisy) multimodal data outperforms the
baselines significantly. Visual features alone work relatively
poorly (e.g. purity of about 0.17 for Landmarks), while
text features are much more informative (0.32). Combin-
ing text and visual features together by simply appending
the feature vectors and running K-means improves results
slightly (0.34), while combining visual and text features in
our framework significantly outperforms all of these base-
lines (0.41). Much of this improvement may come from our
technique’s ability to better handle photos that do not have
text tags (about 20% of photos): when we exclude photos
having no tags, the text-only K-means baseline increases
to 0.3705 for Landmarks and 0.4567 for Groups. Finally,
adding GPS features results in a modest additional gain.

We use text as the primary feature in the above exper-

iments. We have found that the choice of primary feature
is important, due to the different roles that the unary and
pairwise potentials play in the constrained clustering frame-
work. Intuitively, the pairwise constraints only depend on
whether the labelings of two neighbors are the same, while
the unary potentials encourage each node to explicitly se-
lect one of the K labels. It is thus easier for a labeling of
the nodes to minimize the pairwise cost than the unary cost.
To understand this better, we tested each of the two fea-
ture types (visual and text) in isolation as unary or pairwise
constraints. Results of using only a unary term were al-
ready presented above, in the first two columns of Table 1;
we tested the pairwise potentials in isolation by fixing the
unary potentials to be uninformative uniform distributions.
On Landmarks, switching visual features from primary to
pairwise features causes purity to change from 0.1677 to
0.1462, a drop of 13%, while switching text features from
primary to pairwise drops the purity by 31% from 0.3224
to 0.2223. This result suggests that we should select the
“strongest,” most informative feature as the primary.

Figure 3 studies how sparsity of primary and secondary
and text and visual features affects results, by hiding fea-
tures of varying numbers of images. For each dataset, the
left plot compares results of using a subset of text features
as the primary and no constraint features (red), with using
all visual features as primary and subsets of text features
as constraints (blue). The red line is thus the same as sim-
ple K-means, where images without text features are ran-
domly assigned to a cluster. The right plot shows a similar
comparison but with the roles of the text and visual fea-
tures swapped. We see of course that more observations
lead to better performance, with best results when using
all available text as primary features and all visual features
as constraints. But the results also highlight the flexibility
of our approach, showing that multi-modal features (blue
lines) significantly improve performance over a single fea-
ture type (red lines), even when only a small percentage of
photos have the feature.

Loose supervision. We used small labeled subsets of dif-
ferent sizes to evaluate the loosely supervised paradigm,
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Figure 3: Clustering performance as a function of number of images with different types of features. Red lines use primary
features for only a subset of images and do not use constraints (i.e. as in classic K-means). Blue lines use our multimodal
clustering framework, incorporating primary features for all images and a subset of images with constraint features. For each
dataset, purity in the left plot is calculated using all images, while in the right plot it is calculated using images having tags.
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Figure 4: Classification performance comparisons with loose supervision on training sets of increasing sizes, using Land-
marks (left), Groups (middle), and Sport (right). Linear SVM baseline is trained on concatenated visual and text features.

and evaluate using classification accuracy. We used linear
SVMs trained on visual and text features as baseline meth-
ods, with the classifier parameters chosen according to 5-
fold cross validation on the training data. Figure 4 shows
that our proposed loosely supervised method outperforms
SVM classifiers given the same amount of supervision, es-
pecially when the available training data is only a small per-
centage of the entire dataset. For instance, on Landmarks,
our technique can achieve about 54% classification accu-
racy (relative to 10% random baseline) with 1,000 labeled
exemplars, versus just 33% for a trained SVM using the
same features and training set.

Qualitative results. Figure 5 presents sample clustering re-
sults for the Landmarks, where in each group we show the
images closest to the cluster centroid and the most frequent
tags in the cluster. Figure 6 presents sample clusters from
our Activity dataset of 30,000 images, showing that the al-
gorithm has discovered intuitively meaningful activity and
event clusters like car shows, wildlife, festivals, beaches,
etc. Since we do not have labeled ground truth for this
dataset, we simply used the learned parameters from Sport.

5. Summary and Conclusion

We proposed a multimodal image clustering framework
that incorporates both visual features and sparse, noisy
metadata typical of web images. Our approach is loosely

supervised, and is reminiscent of the standard K-means al-
gorithm: one feature is used as the primary feature in K-
means-style updates, while other features are incorporated
as pairwise constraints. The proposed approach is flexible
and can be applied under different degrees of supervision,
including when no training data is available at all, and when
features are missing. In future work, we plan to incorporate
other types of constraints in the graphical model, and to ap-
ply our approach to various applications (e.g. automatic im-
age annotation and recommendation).
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strained k-means clustering with background knowledge. In
ICML, 2001. 3

[20] G. Wang, D. Hoiem, and D. A. Forsyth. Learning image sim-
ilarity from Flickr groups using fast kernel machines. PAMI,
pages 2177–2188, 2012. 5

[21] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang. Image cluster-
ing using local discriminant models and global integration.
IEEE Trans. Image Proc., pages 2761–2773, 2010. 1, 2

[22] J. Yu, M. Wang, and D. Tao. Semisupervised multiview dis-
tance metric learning for cartoon synthesis. IEEE Trans. Im-
age Process., pages 4636–4648, 2012. 2

[23] X. Zheng, D. Cai, X. He, W. Ma, and X. Lin. Locality pre-
serving clustering for image database. In MM, 2004. 1, 2


