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Abstract

Most work on temporal action detection is formulated
as an offline problem, in which the start and end times of
actions are determined after the entire video is fully ob-
served. However, important real-time applications includ-
ing surveillance and driver assistance systems require iden-
tifying actions as soon as each video frame arrives, based
only on current and historical observations. In this pa-
per, we propose a novel framework, the Temporal Recurrent
Network (TRN), to model greater temporal context of each
frame by simultaneously performing online action detection
and anticipation of the immediate future. At each moment
in time, our approach makes use of both accumulated his-
torical evidence and predicted future information to better
recognize the action that is currently occurring, and inte-
grates both of these into a unified end-to-end architecture.
We evaluate our approach on two popular online action de-
tection datasets, HDD and TVSeries, as well as another
widely used dataset, THUMOS’14. The results show that
TRN significantly outperforms the state-of-the-art.

1. Introduction
As we go about our lives, we continuously monitor the

social environment around us, making inferences about the
actions of others that might affect us. Is that child running
into the road or just walking towards the sidewalk? Is that
passerby outstretching his hand for a punch or a handshake?
Is that oncoming car turning left or doing a U-turn? These
and many other actions can occur at any time, without warn-
ing. In order to be able to react to the world around us, we
must make and update our inferences in real-time, updat-
ing and refining our hypotheses moment-to-moment as we
collect additional evidence over time.

In contrast, action recognition in computer vision is of-
ten studied as an offline classification problem, in which
the goal is to identify a single action occurring in a short
video clip given all of its frames [3, 5, 9, 18, 37, 53]. This
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Figure 1: Comparison between our proposed Temporal Re-
current Network (TRN) and previous methods. Previous
methods use only historical observations and learn repre-
sentations for actions by optimizing current action estima-
tion. Our approach learns a more discriminative represen-
tation by jointly optimizing current and future action recog-
nition, and incorporates the predicted future information to
improve the performance of action detection in the present.

offline formulation simplifies the problem considerably: a
left turn can be trivially distinguished from a U-turn if the
end of the action can be observed. But emerging real-world
applications of computer vision like self-driving cars, inter-
active home virtual assistants, and collaborative robots re-
quire detecting actions online, in real-time. Several recent
papers have considered this online action detection prob-
lem [11,12,17,19,36,50], but accuracies are generally lower
than the offline case because using only current and past in-
formation makes the problem much more challenging.

Here we introduce the novel hypothesis that although fu-
ture information is not available in an online setting, explic-
itly predicting the future can help to better classify actions
in the present. We propose a new model to estimate and use
this future information, and we present experimental results
showing that predicted future information indeed improves
the performance of online action recognition. This may
seem like a surprising result because at test time, a model
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that predicts the future to infer an action in the present
observes exactly the same evidence as a model that sim-
ply infers the action directly. However, results in cogni-
tive science and neuroscience suggest that the human brain
uses prediction of the future as an important mechanism for
learning to make estimates of the present [2, 8, 15, 16]. Our
findings seem to confirm that the same applies to automatic
online action recognition, suggesting that jointly modeling
current action detection and future action anticipation dur-
ing training forces the network to learn a more discrimina-
tive representation.

In more detail, in this paper we propose a general frame-
work called Temporal Recurrent Network (TRN), in which
future information is predicted as an anticipation task and
used together with historical evidence to recognize action
in the current frame (as shown in Fig. 1). To demonstrate
the effectiveness of our method, we validate TRN on two re-
cent online action detection datasets (Honda Research Insti-
tute Driving Dataset (HDD) [33] and TVSeries [11]) and a
widely used action recognition dataset, THUMOS’14 [24].
Our model is general enough to use both visual and non-
visual sensor data, as we demonstrate for the HDD driving
dataset. Experimental results show that our approach signif-
icantly outperforms baseline methods, especially when only
a fraction of an action is observed. We also evaluate action
anticipation (predicting the next action), showing that our
method performs better than state-of-the-art methods even
though anticipation is not the focus of this work.

2. Related Work
Action and Activity Recognition. There is extensive work
in the literature on action and activity recognition for videos
of various types and applications, from consumer-style [52]
and surveillance videos [40], to first-person videos from
wearable cameras [27, 30, 31]. Early work used hand-
crafted visual features, such as HOG [28], HOF [28], and
MBH [44], and motion features, such as improved dense
trajectories [43], while most recent methods use deep con-
volutional networks. Simonyan and Zisserman [38] propose
a two-stream convolutional network that uses both RGB
frames and optical flow as inputs [45], while others in-
cluding Tran et al. [42] and Carreira et al. [4] avoid pre-
computing optical flow by learning temporal information
in an end-to-end manner using 3D convolution. Recurrent
neural networks (RNNs), such as long short-term memory
(LSTM) [23] and gated recurrent unit (GRU) [7] networks,
have also been widely adopted to capture temporal depen-
dencies [14] and motion information [49]. However, most
of these methods focus on trimmed videos and cannot be di-
rectly applied to long video sequences that contain multiple
actions and a wide diversity of backgrounds.

Offline Action Detection. Offline methods observe an en-
tire video and estimate the start and end moment of each

action. Many of these methods are inspired by region-based
deep networks from object detection [34] and segmenta-
tion [20]. Shou et al. [37] propose S-CNNs to localize ac-
tions in untrimmed videos by generating temporal action
proposals, and then classifying them and regressing their
temporal boundaries. TCN [9] performs proposal rank-
ing but explicitly incorporates local context of each pro-
posal. R-C3D [48] improves efficiency by sharing convo-
lutional features across proposal generation and classifica-
tion. SST [3] avoids dividing input videos into overlapping
clips, introducing more efficient proposal generation in a
single stream, and TURN TAP [18] builds on this architec-
ture. TAL-Net [5] improves receptive field alignment using
a multi-scale architecture that better exploits temporal con-
text for both proposal generation and action classification.
CDC [35] makes frame-level dense predictions by simulta-
neously performing spatial downsampling and temporal up-
sampling operations. But the above work assumes all video
frames can be observed, which is not possible in the online
task that we consider here.

Early Action Detection. Our work is also related to early
action detection, which tries to recognize actions after ob-
serving a fraction of the event. Hoai et al. [22] propose
a max-margin framework using structured SVMs for this
problem. Ma et al. [32] design an improved technique based
on LSTMs and modify the training loss to assume that the
score margin between correct and incorrect classes should
be non-decreasing as more observations are made.

Online Action Detection. Given a live video stream, on-
line action detection tries to detect the actions performed in
each frame as soon as it arrives, without considering fu-
ture context. De Geest et al. [11] introduced a concrete
definition and realistic dataset (TVSeries) for this prob-
lem. They later [12] proposed a two-stream feedback net-
work, with one stream focusing on input feature interpreta-
tion and the other modeling temporal dependencies between
actions. Gao et al. [17] propose a Reinforced Encoder-
Decoder (RED) network and a reinforcement loss to encour-
age recognizing actions as early as possible. RED was de-
signed for action anticipation – predicting actions a few sec-
onds into the future – but can be applied to online detection
by setting the anticipation time to 0. Shou et al. [36] identify
the start time of each action using Generative Adversarial
Networks and adaptive sampling to distinguish ambiguous
backgrounds, and explicit temporal modeling around tran-
sitions between actions for temporal consistency.

In contrast to this existing online action detection work
which only focuses on current and past observations, we
introduce a model that learns to simultaneously perform
online action detection and anticipation of the immediate
future, and uses this estimated “future information” to im-
prove the action detection performance of the present.
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Figure 2: Our proposed Temporal Recurrent Network (TRN), which sequentially processes input video frames and outputs
frame-level action class probabilities, like any RNN. But while RNNs only model historical temporal dependencies, TRN
anticipates the future via a temporal decoder, and incorporates that predicted information to improve online action detection.

3. Online Action Detection
Given a live video stream that contains one or more ac-

tions, our goal is to recognize actions of interest occur-
ring in each video frame. Unlike most prior work that as-
sumes the entire video is available at once, this online ac-
tion detection problem requires us to process each frame
as soon as it arrives, without accessing any future infor-
mation. More formally, our goal is to estimate, for each
frame It of an image sequence, a probability distribution
pt = [ p0t , p

1
t , p

2
t , · · · , pKt ] over K possible actions, given

only the past and current frames, {I1, I2, · · · , It} (where
p0t denotes the “background” probability that no action is
occurring).

3.1. Temporal Recurrent Network (TRN)

To solve this problem, we introduce a novel framework
called a Temporal Recurrent Network (TRN). The main
idea is to train a network that predicts actions several frames
into the future, and then uses that prediction to classify an
action in the present. Fig. 2 shows the architecture of TRN.
The core of the network is a powerful recurrent unit, the
TRN cell. Like a general RNN cell, at each time t a TRN
cell receives a feature vector xt corresponding to the obser-
vation at time t, which could include some combination of
evidence from the appearance or motion in frame It or even
other sensor modalities collected at time t, and the hidden
state ht−1 from the previous time step. The cell then out-
puts pt, a probability distribution estimating which action
is happening in It. The hidden state ht is then updated and
used for estimating the next time step. But while a tradi-
tional RNN cell only models prior temporal dependencies
by accumulating historical evidence of the input sequence,
a TRN cell also takes advantage of the temporal correla-

tions between current and future actions by anticipating up-
coming actions and explicitly using these estimates to help
recognize the present action.

3.2. TRN Cell

The TRN cell controls the flow of internal information
by using a temporal decoder, a future gate, and a spatiotem-
poral accumulator (STA). We use LSTMs [23] as the back-
bone for both the temporal decoder and the STA in our im-
plementation, although other temporal models such as gated
recurrent units (GRUs) [7] and temporal convolutional net-
works (TCNs) [29] could be used. The temporal decoder
learns a feature representation and predicts actions for the
future sequence. The future gate receives a vector of hidden
states from the decoder and embeds these features as the fu-
ture context. The STA captures the spatiotemporal features
from historical, current, and predicted future information,
and estimates the action occurring in the current frame.

Algorithm 1 Workflow of TRN Cell
Input: image feature xt and previous hidden state ht−1

Output: probabilities pt and current hidden state ht
1: Initialize h̃−1

t with ht−1 embedded by an FC layer
2: Initialize r̃−1

t with all zeros
3: for i = 0 : ld do
4: Update h̃it using r̃i−1

t and h̃i−1
t

5: Compute f it and p̃it using h̃it
6: Update r̃it using p̃it
7: end for
8: Compute future context features x̃t as Eq. (1)
9: Update ht with STA(ht−1, [xt, x̃t])

10: Compute pt as Eq. (2)



We now describe each component of a TRN cell in detail,
as summarized in Alg. 1.

The temporal decoder works sequentially to output the
estimates of future actions and their corresponding hidden
states {h̃0t , h̃1t , · · · , h̃

`d
t } for the next `d time steps, where

hit for i ∈ [0, `d] indicates the hidden state at the i-th time
step after t. The input to the decoder at the first time step
is all zeros. At other time steps t, we feed in the predicted
action scores r̃i−1

t , embedded by a linear transformer.

The future gate takes hidden states from the decoder and
models the feature representation of future context. For
simplicity, our default future gate is an average pooling op-
erator followed by an fully-connected (FC) layer, but other
fusion operations such as non-local (NL) blocks [46] could
be used. More formally, the future context feature x̃t is ob-
tained by averaging and embedding the hidden state vector,
h̃t, gathered from all decoder steps,

x̃t = ReLU(WT
f AvgPool(h̃t) + bf ). (1)

The spatiotemporal accumulator (STA) takes the previ-
ous hidden state ht−1 as well as the concatenation of the
image feature xt extracted from It and the predicted future
feature x̃t from the future gate, and updates its hidden states
ht. It then calculates a distribution over candidate actions,

pt = softmax(WT
c ht + bc), (2)

where Wc and bc are the parameters of the FC layer used
for action classification.

As we can see, in addition to the estimated action of the
current frame t, TRN outputs predicted actions for the next
`d time steps. In order to ensure a good future representa-
tion and jointly optimize online action detection and predic-
tion, we combine the accumulator and decoder losses dur-
ing training, i.e. the loss of one input sequence is

∑
t

(
loss(pt, lt) + α

`d∑
i=0

loss(p̃i
t, lt+i)

)
, (3)

where p̃i
t indicates the action probabilities predicted by the

decoder for step i after time t, lt represents the ground truth,
loss denotes cross-entropy loss, and α is a scale factor. We
optimize the network using offline training in which labels
of both current and future frames are used. At test time, our
model uses the predicted future information without access-
ing actual future frames, and thus is an online model.

4. Experiments
We evaluated our online action detector against multi-

ple state-of-the-art and baseline methods on three publicly-
available datasets: HDD [33], TVSeries [11], and THU-
MOS’14 [24]. We chose these datasets because they include

long, untrimmed videos from diverse perspectives and ap-
plications: HDD consists of on-road driving from a first-
person (egocentric) view recorded by a front-facing dash-
board camera, TVSeries was recorded from television and
contains a variety of everyday activities, and THUMOS’14
is a popular dataset of sports-related actions.

4.1. Datasets

HDD [33] includes nearly 104 hours of 137 driving ses-
sions in the San Francisco Bay Area. The dataset was col-
lected from a vehicle with a front-facing camera, and in-
cludes frame-level annotations of 11 goal-oriented actions
(e.g., intersection passing, left turn, right turn, etc.). The
dataset also includes readings from a variety of non-visual
sensors collected by the instrumented vehicle’s Controller
Area Network (CAN) bus. We followed prior work [33] and
used 100 sessions for training and 37 sessions for testing.

TVSeries [11] contains 27 episodes of 6 popular TV se-
ries, totaling 16 hours of video. The dataset is temporally
annotated at the frame level with 30 realistic, everyday ac-
tions (e.g., pick up, open door, drink, etc.). The dataset
is challenging with diverse actions, multiple actors, uncon-
strained viewpoints, heavy occlusions, and a large propor-
tion of non-action frames.

THUMOS’14 [24] includes over 20 hours of sports video
annotated with 20 actions. The training set contains only
trimmed videos that cannot be used to train temporal action
detection models, so we followed prior work [17] and train
on the validation set (200 untrimmed videos) and evaluate
on the test set (213 untrimmed videos).

4.2. Implementation Details

We implemented our proposed Temporal Recurrent Net-
work (TRN) in PyTorch [1], and performed all experiments
on a system with Nvidia Quadro P6000 graphics cards. To
learn the network weights, we used the Adam [26] opti-
mizer with default parameters, learning rate 0.0005, and
weight decay 0.0005. For data augmentation, we randomly
chopped off ∆ ∈ [1, `e] frames from the beginning for each
epoch, and discretized the video of lengthL into (L−∆)/`e
non-overlapping training samples, each with `e consecutive
frames. Our models were optimized in an end-to-end man-
ner using a batch size of 32, each with `e input sequence
length. The constant α in Eq. (3) was set to 1.0.

4.3. Settings

To permit fair comparisons with the state-of-the-art [11,
17, 33], we follow their experimental settings, including in-
put features and hyperparameters.

HDD. We use the same setting as in [33]. Video frames and
values from CAN bus sensors are first sampled at 3 frames
per second (fps). The outputs of the Conv2d 7b 1x1 layer



in InceptionResnet-V2 [41] pretrained on ImageNet [13] are
extracted as the visual feature for each frame. To preserve
spatial information, we apply an additional 1 × 1 convolu-
tion to reduce the extracted frame features from 8×8×1536
to 8× 8× 20, and flatten them into 1200-dimensional vec-
tors. Raw sensor values are passed into a fully-connected
layer with 20-dimensional outputs. These visual and sensor
features are then concatenated as a multimodal representa-
tion for each video frame. We follow [33] and set the input
sequence length `e to 90. The number of decoder steps `d is
treated as a hyperparameter that we cross-validate in exper-
iments. The hidden units of both the temporal decoder and
the STA are set to 2000 dimensions.

TVSeries and THUMOS’14. We use the same setting as
in [17]. We extract video frames at 24 fps and set the video
chunk size to 6. Decisions are made at the chunk level,
and thus performance is evaluated every 0.25 seconds. We
use two different feature extractors, VGG-16 [39] and two-
stream (TS) CNN [47]. VGG-16 features are extracted at
the fc6 layer from the central frame of each chunk. For the
two-stream features, the appearance features are extracted
at the Flatten 673 layer of ResNet-200 [21] from the
central frame of each chunk, and the motion features are
extracted at the global pool layer of BN-Inception [25]
from precomputed optical flow fields between 6 consecutive
frames. The appearance and motion features are then con-
catenated to construct the two-stream features. The input
sequence length `e is set to 64 due to GPU memory limi-
tations. Following the state-of-the-art [17], the number of
decoder steps `d is set to 8, corresponding to 2 seconds. As
with HDD, our experiments report results with different de-
coder steps. The hidden units of both the temporal decoder
and the STA are set to 4096 dimensions.

4.4. Evaluation Protocols

We follow most existing work and use per-frame mean
average precision (mAP) to evaluate the performance of
online action detection. We also use per-frame calibrated
average precision (cAP), which was proposed in [11] to
better evaluate online action detection on TVSeries,

cAP =

∑
k cPrec(k) ∗ I(k)

P
, (4)

where calibrated precision cPrec = TP
TP+FP/w , I(k) is 1 if

frame k is a true positive, P denotes the total number of true
positives, and w is the ratio between negative and positive
frames. The advantage of cAP is that it corrects for class
imbalance between positive and negative samples.

Another important goal of online action detection is to
recognize actions as early as possible; i.e., an approach
should be rewarded if it produces high scores for target
actions at their early stages (the earlier the better). To in-
vestigate our performance at different time stages, we fol-

Method Inputs mcAP

CNN [11]

VGG

60.8
LSTM [11] 64.1
RED [17] 71.2
Stacked LSTM [12] 71.4
2S-FN [12] 72.4
TRN 75.4

SVM [11] FV 74.3

RED [17]
TS

79.2
TRN 83.7

Table 2: Results of online action detection on TVSeries,
comparing TRN and the state-of-the-art using cAP (%).

Method mAP

Single-frame CNN [39] 34.7
Two-stream CNN [38] 36.2
C3D + LinearInterp [35] 37.0
Predictive-corrective [10] 38.9
LSTM [14] 39.3
MultiLSTM [51] 41.3
Conv & De-conv [35] 41.7
CDC [35] 44.4
RED [17] 45.3

TRN 47.2

Table 3: Results of online action detection on THUMOS’14,
comparing TRN and the state-of-the-art using mAP (%).

low [11] and compute mAP or cAP for each decile (ten-
percent interval) of the video frames separately.

4.5. Baselines

CNN baseline models [38, 39] consider online action de-
tection as a general image classification problem. These
baselines identify the action in each individual video frame
without modeling temporal information. For TVSeries
and THUMOS’14, we reprint the results of CNN-based
methods from De Geest et al. [11] and Shou et al. [35].
For HDD, we follow Ramanishka et al. [33] and use
InceptionResnet-V2 [41] pretrained on ImageNet as the
backbone and finetune the last fully-connected layer with
softmax to estimate class probabilities.

LSTM and variants have been widely used in action de-
tection [33, 51]. LSTM networks model the dependen-
cies between consecutive frames and jointly capture spa-
tial and temporal information of the video sequence. For
each frame, the LSTM receives the image features and the
previous hidden state as inputs, and outputs a probability
distribution over candidate actions.

Encoder-Decoder (ED) architectures [6] also model tem-
poral dependencies. The encoder is similar to a general
LSTM and summarizes historical visual information into a



Individual actions

Method Inputs
intersection

passing L turn R turn
L lane
change

R lane
change

L lane
branch

R lane
branch

crosswalk
passing

railroad
passing merge u-turn

Overall
mAP

CNN

Sensors

34.2 72.0 74.9 16.0 8.5 7.6 1.2 0.4 0.1 2.5 32.5 22.7
LSTM [33] 36.4 66.2 74.2 26.1 13.3 8.0 0.2 0.3 0.0 3.5 33.5 23.8
ED 43.9 73.9 75.7 31.8 15.2 15.1 2.1 0.5 0.1 4.1 39.1 27.4
TRN 46.5 75.2 77.7 35.9 19.7 18.5 3.8 0.7 0.1 2.5 40.3 29.2

CNN

InceptionResNet-V2

53.4 47.3 39.4 23.8 17.9 25.2 2.9 4.8 1.6 4.3 7.2 20.7
LSTM [33] 65.7 57.7 54.4 27.8 26.1 25.7 1.7 16.0 2.5 4.8 13.6 26.9
ED 63.1 54.2 55.1 28.3 35.9 27.6 8.5 7.1 0.3 4.2 14.6 27.2
TRN 63.5 57.0 57.3 28.4 37.8 31.8 10.5 11.0 0.5 3.5 25.4 29.7

CNN

Multimodal

73.7 73.2 73.3 25.7 24.0 27.6 4.2 4.0 2.8 4.7 30.6 31.3
LSTM [33] 76.6 76.1 77.4 41.9 23.0 25.4 1.0 11.8 3.3 4.9 17.6 32.7
ED 77.2 74.0 77.1 44.6 41.4 36.6 4.1 11.4 2.2 5.1 43.1 37.8
TRN 79.0 77.0 76.6 45.9 43.6 46.9 7.5 13.4 4.5 5.8 49.6 40.8

Table 1: Results of online action detection on HDD, comparing TRN and baselines using mAP (%).

feature vector. The decoder is also an LSTM that produces
predicted representations for the future sequence based only
on these encoded features. Since there are no published
results of ED-based methods on HDD, we implemented a
baseline with the same experimental settings as TRN, in-
cluding input features, hyperparameters, loss function, etc.

Stronger Baselines. In addition to the above basic base-
lines, we tested three types of stronger baselines that were
designed for online action detection on TVSeries and THU-
MOS’14. Convolutional-De-Convolutional (CDC) [35]
places CDC filters on top of a 3D CNN and integrates
two reverse operations, spatial downsampling and tempo-
ral upsampling, to precisely predict actions at a frame-
level. Note that CDC is an offline method, and comparing
with CDC confirms the effectiveness of our model. Two-
Stream Feedback Network (2S-FN) [12] is built on an
LSTM with two recurrent units, where one stream focuses
on the input interpretation and the other models tempo-
ral dependencies between actions. Reinforced Encoder-
Decoder (RED) [17] with a dedicated reinforcement loss is
an advanced version of ED, and currently performs the best
among all the baselines for online action detection.

4.6. Results

4.6.1 Evaluation of Online Action Detection
Table 1 presents evaluation results on HDD. TRN sig-
nificantly outperforms the state-of-the-art, Ramanishka et
al. [33], by 5.4%, 2.8%, and 8.1% in terms of mAP with
sensor data, InceptionResnet-v2, and multimodal features
as inputs, respectively. Interestingly, the performance gaps
between TRN and [33] are much larger when the input con-
tains sensor data. Driving behaviors are highly related to
CAN bus signals, such as steering angle, yaw rate, veloc-
ity, etc., and this result suggests that TRN can better take
advantage of these useful input cues. Table 2 presents com-

parisons between TRN and baselines on TVSeries. TRN
significantly outperforms the state-of-the-art using VGG
(mcAP of 3.0% over 2S-FN [12]) and two-stream input fea-
tures (mcAP of 4.5% over RED [17]). We also evaluated
TRN on THUMOS’14 in Table 3. The results show that
TRN outperforms all the baseline models (mAP of 1.9%
over RED [17] and 2.8% over CDC [35]).

Qualitative Results are shown in Fig. 3. In Fig. 3a, we vi-
sualize and compare the results of TRN, and compare with
Ramanishka et al. [33] on HDD. As shown, u-turn is diffi-
cult to classify from a first-person perspective because the
early stage is nearly indistinguishable from left turn. With
the help of the learned better representation and predicted
future information, TRN differentiates between subtle dif-
ferences and “looks ahead” to reduce this ambiguity. As
shown in Table 1, TRN beats the baseline models on most
of the actions using multimodal inputs, especially on “dif-
ficult” classes such as lane branch and u-turn. Qualita-
tive results also clearly demonstrate that TRN produces not
only the correct action label, but also better boundaries.
Fig. 3b and 3c show promising results on TVSeries and
THUMOS’14. Note that TVSeries is very challenging; for
example, the drinking action in Fig. 3b of the person in the
upper left of the background is barely visible.

4.6.2 Ablation Studies

Importance of Temporal Context. By directly compar-
ing evaluation results of TRN with CNN and LSTM base-
lines, we demonstrate the importance of explicitly model-
ing temporal context for online action detection. LSTMs
capture long- and short-term temporal patterns in the video
by receiving accumulated historical observations as input.
Comparing TRN and LSTM measures the benefit of incor-
porating predicted action features as future context. CNN-
based methods conduct online action detection by only con-
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(a) Qualitative comparison between our approach (3rd row) and [33] (4th row) on HDD dataset. U-Turn is shown in purple, Left Turn is
shown in green, and Background is shown in gray.
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(b) Qualitative result of our approach (3rd row) on TVSeries dataset. Drink is shown in pink and Background is shown in gray.
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(c) Qualitative result of our approach (3rd row) on THUMOS’14 dataset. Pole Vault is shown in yellow and Background is shown in gray.

Figure 3: Qualitative results of our approach and baselines on HDD, TVSeries, and THUMOS’14 datasets. The vertical bars
indicate the scores of the predicted class. (Best viewed in color.)

sidering the image features at each time step. Simonyan et
al. [38] build a two-stream network and incorporate mo-
tion features between adjacent video frames by using opti-
cal flow as input. Table 3 shows that this motion informa-
tion yields a 1.5% improvement. TRN-TS also takes optical
flow as input and we can clearly see a significant improve-
ment (83.7% vs. 75.4%) on TVSeries.

Future Context: An “Oracle” Study. To demonstrate the
importance of using predictions of future context, we imple-
mented an oracle baseline, RNN-offline. RNN-offline shares
the same architecture as RNN but uses the features extracted
from both the current and future frames as inputs. Note that
RNN-offline uses future information and thus is not an on-
line model; our goal is to quantify (1) the effectiveness of
incorporating future information in action detection, given
access to actual (instead of predicted) future information,
and (2) the performance gap between estimated future in-
formation of TRN and “real” future information of RNN-
offline. To permit fair comparison, the input to RNN-offline
is a concatenation of the feature from the current frame and
the average-pooled features of the next `d frames (where `d
is the same as the number of decoder steps of TRN).

The results of RNN-offline are 41.6%, 85.3%, and
47.3% on HDD, TVSeries, and THUMOS’14 datasets, re-
spectively. Comparing RNN-offline with the RNN baseline,

we see that the “ground-truth” future information signifi-
cantly improves detection performance. We also observe
that the performance of TRN and RNN-offline are compa-
rable, even though TRN uses predicted rather than actual
future information. This may be because TRN improves
its representation during learning by jointly optimizing cur-
rent and future action recognition, while RNN-offline does
not. We also evaluated TRN against ED-based networks,
by observing that ED can also improve its representation by
jointly conducting action detection and anticipation. Thus,
comparisons between TRN with ED and its advanced ver-
sion [17] measure how much benefit comes purely from ex-
plicitly incorporating anticipated future information.

Effect of Decoder Step Count. Finally, we evaluated
the effectiveness of different decoder step counts, `d =
{4, 6, 8, 10}. Table 6 shows the results, with the perfor-
mance of action anticipation averaged over the decoder
steps. The results show that a larger number of decoder
steps does not guarantee better performance. This is be-
cause anticipation accuracy usually decreases for longer fu-
ture sequences, and thus creates more noise in the input fea-
tures of STA. To be clear, we follow the state-of-the-art [17]
and set `d to 2 video seconds (6 frames in HDD, 8 frames
in TVSeries and THUMOS’14) when comparing with base-
line methods of online action detection in Tables 1, 2, and 3.



Portion of video

Method Inputs 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

CNN [11]
VGG

61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5
LSTM [11] 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.3 64.4 64.3
TRN 73.9 74.3 74.7 74.7 75.1 75.1 75.3 75.2 75.2 75.3

SVM [11] FV 67.0 68.4 69.9 71.3 73.0 74.0 75.0 76.4 76.5 76.8

TRN TS 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3

Table 4: Online action detection results when only portions of videos are considered in terms of cAP (%) on TVSeries.

Time predicted into the future (seconds)

Method 0.25s 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s Avg

ED [17] 78.5 78.0 76.3 74.6 73.7 72.7 71.7 71.0 74.5
RED [17] 79.2 78.7 77.1 75.5 74.2 73.0 72.0 71.2 75.1
TRN 79.9 78.4 77.1 75.9 74.9 73.9 73.0 72.3 75.7

(a) Results on TVSeries dataset in terms of cAP (%).

Time predicted into the future (seconds)

Method 0.25s 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s Avg

ED [17] 43.8 40.9 38.7 36.8 34.6 33.9 32.5 31.6 36.6
RED [17] 45.3 42.1 39.6 37.5 35.8 34.4 33.2 32.1 37.5
TRN 45.1 42.4 40.7 39.1 37.7 36.4 35.3 34.3 38.9

(b) Results on THUMOS’14 dataset in terms of mAP (%).

Table 5: Action anticipation results of TRN compared to
state-of-the-art methods using two-stream features.

Decoder steps (`d)

Dataset Task 4 6 8 10

HDD Online Action Detection 39.9 40.8 40.1 39.6
Action Anticipation 34.3 32.2 28.8 25.4

TVSeries Online Action Detection 83.5 83.4 83.7 83.5
Action Anticipation 77.7 76.4 75.7 74.1

THUMOS’14 Online Action Detection 46.0 45.4 47.2 46.4
Action Anticipation 42.6 39.4 38.9 35.0

Table 6: Online action detection and action anticipation re-
sults of TRN with decoder steps `d = 4, 6, 8, 10.

4.6.3 Evaluation of Different Stages of Action

We evaluated TRN when only a fraction of each action is
considered, and compared with published results [11] on
TVSeries. For example, 20%-30% means only frames in
the 20%-30% time range of action sequences were evalu-
ated. Table 4 shows that TRN significantly outperforms ex-
isting methods at every time stage. Specifically, when we
compare TRN-TS with the best baseline SVM-FV, the per-
formance gaps between these two methods are roughly in
ascending order as less and less of the actions are observed
(the gaps are 6.5%, 6.4%, 6.3%, 7.3%, 7.9%, 8.6%, 9.7%,
10.5%, 11.2% and 11.8% from actions at 100% observed
to those are 10% observed). This indicates the advantage of
our approach at earlier stages of actions.

4.6.4 Evaluation of Action Anticipation

We also evaluated TRN on predicting actions for up to 2
seconds into the future, and compare our approach with
the state-of-the-art [17] in Table 5. The results show that
TRN performs better than RED and ED baselines (mcAP
of 75.7% vs. 75.1% vs. 74.5% on TVSeries and mAP of
38.9% vs. 37.5% vs. 36.6% on THUMOS’14). The aver-
age of anticipation results over the next 2 seconds on HDD
is 32.2% in terms of per-frame mAP.

5. Conclusion
In this paper, we propose Temporal Recurrent Networks

(TRNs) to model greater temporal context, and we evaluate
them on the online action detection problem. Unlike previ-
ous methods that consider only historical temporal consis-
tencies, TRN jointly models the historical and future tempo-
ral context under the constraint of an online setting. Experi-
mental results on three popular datasets demonstrate that in-
corporating predicted future information improves learned
representation of actions and significantly outperforms the
state-of-the-art. Moreover, TRN shows greater advantage
at earlier stages of actions and in predicting future actions.
More generally, we believe that our approach of incorporat-
ing estimated future information could benefit many other
online tasks, such as video object localization and tracking,
and plan to pursue this in future work.
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