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Abstract

We present a first step towards developing an interactive
piano tutoring system that can observe a student playing the
piano and give feedback about hand movements and musi-
cal accuracy. In particular, we have two primary aims: (1)
to determine which notes on a piano are being played at any
moment in time, (2) to identify which finger is pressing each
note. We introduce a novel two-stream convolutional neural
network that takes video and audio inputs together for de-
tecting pressed notes and fingerings. We formulate our two
problems in terms of multi-task learning and extend a state-
of-the-art object detection model to incorporate both audio
and visual features. We also introduce a technique for iden-
tifying fingerings if pressed piano keys are already known.
We evaluate our techniques on a new dataset of multiple
people playing several pieces of different difficulties on an
ordinary piano.

1. Introduction
Learning to play a musical instrument is a common life-

long goal for many people. Unfortunately, it can also be
out of reach: traditional music pedagogy involves regular,
one-on-one interaction with a skilled teacher, which can
be expensive or impossible for those who live with a lim-
ited budget or in rural areas. While online learning plat-
forms such as Coursera [1] deliver high-quality courses,
they have proven most effective for subjects like introduc-
tory computer science and mathematics, which are tradi-
tionally taught in lectures that can be readily captured on
video and delivered to a large number of students.

Effective automated or online music education, in con-
trast, requires interactive systems that can observe a stu-
dent’s performances and give feedback on how to improve.
While systems for music tutoring have been studied for
some time [4, 6, 14, 14, 23], most of these require special
electronic instruments that can record the notes that a stu-
dent plays, for example through MIDI (Musical Instrument

Digital Interface). Not only do these electronic instruments
require an up-front investment, but they are also limited in
the type of feedback they can provide: learning to play the
piano, for example, requires not just hitting the right notes,
but also using proper technique including posture and fin-
gering. Learning improper technique may prevent a stu-
dent from advancing properly and may cause injury, and
bad habits can be very difficult to un-learn [10].

To make music instruction more affordable for more peo-
ple, we want to develop automated systems that can ob-
serve a student playing any piano — perhaps a second-
hand acoustic piano, for example, or one available in a lo-
cal church or community center — and give feedback on
both technique and musical accuracy, using only common
computer hardware such as a laptop. As a starting point, in
this paper we try to estimate, based on both video and audio
data: (1) which piano keys the student is pressing at any mo-
ment in time, and (2) which fingers they are using to press
those keys. A music tutoring system could then collect these
observations over time to reconstruct the sequence of notes
they play, including both pitches and durations, and how
their fingering compared to those recommended by course
materials.

The first of these problems — keypress detection —
could be easily collected by the MIDI interface of a dig-
ital piano, but we want to handle acoustic instruments as
well. This could also be addressed through analyzing audio
with Automatic Music Transcription (AMT) [5,7,9,33], but
much of this work considers only monophonic instruments,
since recognizing multiple notes sounding simultaneously
(as is common with piano) is a challenge. The second of
these problems is even more difficult. We could require pi-
anists to wear gloves with joint sensors, but these are expen-
sive and would restrict natural hand motion. Depth cameras
could help detect hand pose, but are also additional hard-
ware that would need to be purchased by the student.

In this paper, we explore the idea of using audio and
video data collected from an ordinary consumer laptop to
observe both the notes a pianist plays and the fingerings they



use to play them. We consider two approaches in particular.
We first introduce a novel two-stream Convolutional Neu-
ral Network that takes video and audio inputs together for
detecting pressed notes and fingerings. We formulate these
two problems as object detection with multi-task learning
rather than standard image classification, because it reduces
the search space for detecting pressed notes and identifying
fingers. In particular, we extend the Single Shot MultiBox
Detector (SSD) [20] to consider both audio signals and im-
age frames to resolve ambiguities caused by finger or key
occlusions, and design the model to focus on a single oc-
tave and hand to reduce the search space. Second, we apply
an existing deep pose detector [28] to the fingering detec-
tion problem, assuming that note presses have been accu-
rately identified. These two techniques offer complimen-
tary strengths and weaknesses: the first is trained end to
end, based on raw video and audio data, while the latter
uses a hand-designed pipeline, but benefits from the addi-
tional data used to train the pose detector. We report ex-
periments measuring recognition accuracy on a dataset of
several pieces of varying difficulty played by multiple pi-
anists, and demonstrate that our approaches are able to de-
tect pressed piano keys and the piano player’s fingerings
with an accuracy higher than baselines.

2. Related Work
2.1. Intelligent Musical Instrument Tutoring

There is a growing body of literature that applies ar-
tificial intelligence technology to teaching musical instru-
ments, including guitar [4], piano [6], and violin [34]. The
purpose of these systems is to help students learn to play
an instrument by guiding them through series of lessons,
and then testing the student’s comprehension by evaluating
how well they can play new pieces of music. Much of the
current literature on intelligent music tutoring pays partic-
ular attention to audio processing for analyzing the user’s
performance [8, 23], although many of these systems re-
quire specifically designed instruments and controllers [8].
Recent developments in Automatic Music Transcription
(AMT) open the possibility that notes played by an acoustic
instrument could be detected based on audio [5,33], but we
believe that an effective tutoring system must also be able to
observe and give feedback on technique, such as fingering
and hand positioning.

2.2. Computer Vision in Music Analysis

Computer vision can play an important role in provid-
ing proper feedback about a student’s technique in play-
ing an instrument. It also can help resolve ambiguities in
the audio signals caused by complex interacting harmon-
ics of polyphonic instruments like the piano. Akbari et
al. created a four-stage image processing pipeline based

on Hough transforms [15] for piano keypress detection [2].
Takegawa et al. attached color markers to the pianist’s fin-
gernails, and then applied a simple color-based technique
with some musical rules for analyzing the pianist’s finger
movements [32]. Johnson et al. used a depth camera with
Histograms of Oriented Gradients (HOG) features for de-
tecting pianist hand posture [16]. However, there have been
few attempts at integrating computer vision with audio sig-
nals to complement the limitations of each feature. Al-
though a few studies have investigated multimodal fusion
for music analysis [24, 35], their approaches are difficult to
generalize to other musical instruments due to hardware re-
quirements [35] or application-specific system design [24].

2.3. Deep Learning in Music Analysis

Deep learning has emerged as a powerful tool for many
AI applications, for everything from object detection [20,
25] to learning motor control policies for robotic applica-
tions [17]. It also has become popular in Music Informa-
tion Retrieval (MIR) research, and many researchers have
applied deep learning for various applications such as auto-
matic music transcriptions of drum [33], piano [12,27], and
chords [36], as well as for music recommendation [19]. Li
et al. [18] used a CNN followed by Long Short-Term Mem-
ory (LSTM) units to “convert” audio into animations of how
a simulated musician might play that music on their instru-
ment. Shlizerman et al. [26] also produced body posture for
piano and violin with LSTM units. Most deep learning ap-
proaches in the field of music analysis, however, have only
focused on audio signals, and only a few deal with multi-
modal fusion for music analysis [22].

3. Approach

Our objective is to detect, at any moment in time, which
piano keys are pressed and to identify which finger is press-
ing each of these keys. We consider these two problems in
sequence.

3.1. Detecting Piano Keypresses

We could formulate the pressed key detection problem
as image classification, with the task of assigning (to each
video frame) a label indicating which notes are pressed
among the 88 piano keys. We could then use a state-of-
the-art image classification network (e.g. [37]), and train on
a dataset of people playing piano with labeled ground truth.
Such an approach could eventually achieve reasonable per-
formance, but would likely require a very large amount of
training data to see all reasonable combinations of keypress
events. Moreover, such a formulation would not exploit
other major sources of evidence like audio signals and hand
movements, both of which can provide information about
which notes are being played.
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Figure 1. Outline of our two-stream architecture. The top row is the original SSD model with the different base network to handle visual
stream input. We simply replace the VGG16 [29] with the Inception V3 [31] for getting more elaborate feature maps. The bottom row is
a four-layer CNN to handle audio stream. We employ MFCC for audio feature extraction, and take a late fusion approach to integrate the
audio and visual feature vectors. Since the audio features do not have the same spatial information as the visual features, we concatenate
them along the depth axis for each multi-resolution feature map after reshaping the audio features, and do not use the audio features to
compute localization loss. Our model is designed to focus on the piano key movements in single octaves, thus reducing the label space
from 88 keys to 12 keys.

3.1.1 Architecture

Instead of simply applying a standard image classification
model, we thus formulate the problem as multi-task learn-
ing with audio-visual data fusion. Our model focuses on the
movements of piano keys in a single octave (which contains
12 notes, 7 white and 5 black) and uses audio signals cor-
responding to the current image frame to boost the perfor-
mance of the classifier. Some important principles behind
our approach are the following: (1) Each complete octave
on the piano looks identical, differing only in its location
with respect to the piano as a whole; (2) audio signals help
resolve visual ambiguity caused by finger or key occlusions;
and (3) visual features help resolve aural ambiguities caused
by the interaction of complex harmonics.

Figure 1 shows the overall architecture of our model for
analyzing pianist accuracy and form. We extend the state-
of-the-art convolutional object detection network (SSD
[20]) for multi-task learning by adding an audio stream. We
define three tasks to identify key presses: (1) localization to
delimit octave segments of the piano, (2) pressed piano note

classification to identify played keys within a single octave,
and (3) octave classification to identify which octaves are
played at any given moment. Our model takes two inputs:
an image frame of a person playing the piano (taken from
above the keyboard), and a feature map representing the au-
dio signal corresponding to the image frame.

The audio feature map is constructed from 20-
dimensional Mel-Frequency Cepstral Coefficients
(MFCCs) features [21] for 100 millisecond segments
of video (which correspond to 6 consecutive frames of
video recorded at 60 frames per second). We obtain 9
temporal feature sets with 100 ms for the window size, and
then compute the first and second order derivatives of the
MFCC features to construct three channels analogous to
those of an RGB image. Each constructed audio feature
map thus has dimensionality 9 × 20 × 3. The videos are
recorded at a resolution of 1920 × 1080 from a camera
directly above the piano keyboard, but we resize the
original image frames to 300× 300 in preprocessing.

To integrate both visual and audio features, we take a late
fusion approach which concatenates two feature vectors im-



mediately before the final score functions. We extract audio
features from the 3rd and 4th layers of the audio net, and
then concatenate audio features along the depth axis of the
multi-resolution image feature maps by reshaping them to
have the same size and dimensionality. We do this because
the proposed model separately predicts the confidences for
each default box in SSD, and the audio features should be
the same for all image subregions (since audio is related to
the entire image, not just a subset). Once audio-visual data
are concatenated, we employ 1 × 1 convolution to incorpo-
rate all features into the final decision.

We also employ audio-visual data fusion for octave clas-
sification. Since octave classification is not related to the
size of bounding boxes, we only use the last map from each
data stream’s multi-resolution feature maps to predict one
octave category at a time. We do not use audio features for
localization within single octaves, as these are more difficult
to reliably associate with a given octave.

3.1.2 Training

We extend the original objective function in SSD for han-
dling multi-task learning. The extended objective function
consists of three loss functions: (1) localization loss (Lloc),
(2) pressed piano note classification loss (Lkey), and (3) oc-
tave classification loss (Loct). The overall objective func-
tion is a weighted sum of these losses:

L(x, y, ckey, coct, l, g) =

1

N
(Lkey(x, ckey) + αLloc(x, l, g)) + βLoct(y, coct)

(1)

where N is the number of matched bounding boxes, x is
a binary indicator (0 or 1) for matching the default box to
the ground truth box of the ground truth pressed piano note
classification label of category p within a single octave, y is
a binary indicator for matching the input image frame with
the ground truth octave classification label of category q,
ckey and coct indicate confidence scores of pressed piano
note classification in single octave and octave classification
respectively, and l and g represent the locations of the pre-
dicted box and the ground truth box. We now define these
three losses in detail.

The keypress classification loss is a sigmoid function (in-
stead of the softmax of the original SSD) for multi-class,
multi-label classification,

Lkey(x, ckey) = −
N∑

i∈Pos

xpij log(ĉ
p
i )−

∑
i∈Neg

log(ĉ0i )

where ĉpi =
1

1 + exp(−cpi )
. (2)

Here, i and j represent the box number (i-th and j-th) of the
default box and the ground truth box respectively.

For the octave loss, we likewise use a sigmoid function
with cross-entropy loss,

Lcls oct(y, coct) = −yq log(ĉq)− (1− yq) log(1− ĉq)

where ĉq =
1

1 + exp(−cq)
. (3)

For the localization loss, we use the original localization
loss, which is a Smooth L1 function, to regress location pa-
rameters of the predicted bounding boxes,

Lloc(x, l, g) =

N∑
i∈Pos

∑
m∈{cx,cy,w,h}

xkijsmoothL1(l
m
i − ĝmi )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − dcyi )/dhi

ĝwj = log

(
gwj
dwh

)
ĝhj = log

(
ghj
dhi

)
, (4)

(cx, cy) indicates the offsets for the center of the default
bounding box d, and w and h represent its width and height.

We set the weight terms α and β to 1 by cross validation.

3.2. Fingering Identification

3.2.1 Architecture

To identify which finger is pressing each note on the key-
board, we frame the problem as object detection and em-
ploy the same architecture as above, except without octave
classification or the audio stream (since audio signals pro-
vide no information about fingering). This problem is more
challenging because the fingers move rapidly and are com-
paratively small objects to detect. Furthermore, the appear-
ance of a given finger may be subject to variation caused by
hand posture changes and occlusion.

We propose to use the output of the first network—the
“key-pressed” information—to reduce the search space for
detecting fingers. We assume that the input videos are
recorded from a similar camera angle, and then use the key
pressed information to crop the input image frames based
on a rough locations of the pressed key on the piano. For
example, we can remove the very left and right sides of the
input image if our network estimates that middle C is being
played. In this paper, we crop out about 30% of the original
input image as a preprocessing phase, and then feed the re-
sulting cropped images to the network to identify fingering.

3.2.2 Training

One problem with the object detection formulation is that
it requires more expensive annotations because the net-
work needs bounding boxes during training. In order to



Video

MIDI

Extract Audio

Extract Image

Extract MFCCs

Hand detection

Music score

AV sync &
assign annotations

Training

pressed notes

finger numbers

Figure 2. The pipeline to create our dataset of Hanon Exercises.

reduce this annotation cost, we first train our network on
the publicly-available dataset of Bambach et al. [3], which
contains hundreds of hand instances with pixel-level ground
truth annotations in a variety of environments (albeit none
including pianos). We then apply that trained model on our
piano data to produce our own dataset for finger identifi-
cation. We assume that hands are located nearby in adja-
cent image frames, and thus use the bounding box from the
previous frame when the network trained on the EgoHands
dataset fails to detect hands in any given frame. We then
manually labeled each bounding box with the finger num-
ber(s) that are currently pressing keys, and train the pro-
posed network on this dataset.

3.2.3 Using Key Pressed Information

The above technique can be trained end-to-end from video
given ground truth finger labels, but this annotated data can
still be costly to collect. We thus also explored an alterna-
tive technique. If we assume that we know exactly which
keys are being pressed on the piano, either through MIDI or
a computer vision technique such as that described above,
we can then localize the coordinates of each key on the key-
board and each finger tip of the hand, and then estimate
which fingers are pressing which keys by calculating the
nearest fingertip (in image coordinate space) to each pressed
key. In more detail, first we obtain the coordinates of each
key based on a Hough transform of Sobel edges [30], us-
ing the approximate width of each key (which can be es-
timated based on the width of the keyboard). To infer the
positions of the finger tips, we use Simon et al.’s hand key-
point detector [28] which estimates the positions of 21 joints
of the hand. We then finally select the nearest finger to each
pressed key as our estimate of which finger is pressing it.

4. Experimental Results
We conducted two sets of experiments to evaluate the

proposed architecture and to compare to various baselines.
In the first set of experiments, we focus on testing the accu-
racy of our model for pressed piano notes detection. In the
second set of experiments, we evaluate the accuracy of our
approach for identifying fingers used to press notes.

camera

MIDI

Figure 3. Our piano room with an experimental setup and a sam-
ple Hanon exercise. We recorded MIDI files while a person was
playing the piano and then aligned them with music scores for an-
notating our dataset.

4.1. Datasets

We created new datasets of people playing the piano for
training and testing our techniques. Figure 2 shows the
pipeline that we used for generating our dataset given three
different input files recorded while people played the piano:
videos, MIDI files, and music scores. First, we extracted
image frames and audio from the input video, and then ap-
plied the pre-trained hand detector on image frames to ob-
tain bounding boxes of fingers. For the audio stream, we
extracted MFCC features with 100 ms windows, and con-
verted these into multi-channel images based on the first
and second order derivatives, as described above. We ex-
tracted keypress information from MIDI synchronized with
the video to create keypress ground truth labels. Finally, we
manually annotated finger numbers.

We collected two datasets, one consisting of piano exer-
cises and the other consisting of real pieces. For the former,
we used several Hanon Exercises [11], which have a long
history as technique-building exercises. Hanon exercises do
not present music of great artistic interest, but they cover a
wide range of the keyboard and systematically uses the en-
tire hand with frequently repeating patterns, yielding natu-
rally balanced and diverse data. Hanon is beneficial for fin-
ger identification ground truth collection for a similar rea-
son, since the exercises all have finger numbers denoted in
the score and are designed to exercise all five fingers evenly.
Figure 3 shows our experimental setup, as well as the first
few bars of Hanon Exercise number 1.

In particular, we collected two types of data with Hanon.
One Hand Hanon contains a total of 10 videos of a per-
son playing Hanon exercises 1 through 5 with one hand,
and each video clip ranges from 50 to 120 seconds. The
pianist played each exercise twice, once with the left hand
and once with the right. In total, we collected 35,332 frames
with ground-truth annotations. We split this dataset into five
sets according to the exercise number, trained our model
on exercises 1 to 3 (23,555 frames), and used the remain-
ing exercises 4 and 5 (11,777 frames) for evaluation. Two
Hand Hanon contains a total of 5 videos of a person play-



Method Accuracy

Using a Single Sensory Input:

Video Only (Inception V3 [31]) 56.43%

Audio Only (Audio Net) 41.10%

Video and Audio Data Fusion:

Two-stream w/o Multi-Task (Inception V3 + Audio Net) 75.05%

Multi-Task Learning to focus on a Single Octave:

Video Only w/ Multi-Task (Inception V3 + Focusing a Single Octave) 82.37%

Two-stream w/ Multi-Task (Ours, Inception V3 + Audio Net + Focusing a Single Octave) 85.69%

Table 1. Pressed key detection accuracy on One Hand Hanon.

ing the same Hanon exercises 1 through 5 with both hands,
and each video clip ranges from 50 to 240 seconds. In total,
we collected 51,596 frames with ground-truth annotations.
Similar to the One Hand dataset, we split this dataset into
five sets with regard to the exercise number, and trained our
model on exercises 2 to 4 (36,115 frames) and evaluated
on exercises 1 and 5 (15,481 frames). Note that this is a
multi-label dataset for octave classification since the Hanon
Exercises have both hands playing at the same time, but in
different octaves.

Our second, more difficult dataset consists of six real
pieces often played by new pianists, at six different lev-
els of difficulty: Minuet by Alexander Reinagle, Minuet by
Johann Sebastian Bach, Russian Polka by Michael Glinka,
Melodie by Robert Schumann (Album für die Jugend Op.68
No.1), and Robert Volkmann Op.27 No.9. We had five pi-
anists record the pieces, including two professionals, two
with medium skill, and one beginner. We collected 65 min-
utes of video also at 60 fps, and annotated them frame by
frame for both notes and fingering using a combination of
MIDI and manual labeling.

4.2. Evaluation

4.2.1 Pressed Key Detection

We first evaluated the accuracy of the proposed architec-
ture for pressed key detection. We compared our pro-
posed multi-task video-audio fusion model with four differ-
ent baselines. (i) Video Only uses video frames as input; it
thus formulates the problem as a standard image classifica-
tion problem using Inception V3 [31]. (ii) Audio Only uses
just audio signals without image frames, using our Audio
Net which is a four layer CNN described in Figure 1. (iii)
Two-stream w/o Multi-Task uses audio-visual data fusion
without our multi-task formulation which is designed to fo-
cus on the key movements in a single octave. This baseline
uses Inception V3 and the Audio Net to handle each sen-
sory input separately, and then takes a late-fusion approach
for integrating both inputs. (iv) Video Only w/ Multi-Task
uses our multi-task formulation, but only uses video for de-
tecting the pressed keys.

We first measured classification accuracy, which is a
percentage of correctly classified images among all image

Method Accuracy

Using a Single Sensory Input:

Video Only (Inception V3 [31]) 46.33%

Audio Only (Audio Net) 39.63%

Video and Audio Data Fusion:

Two-stream w/o Multi-Task (Inception V3 + Audio Net) 65.33%

Multi-Task Learning to focus on a Single Octave:

Video Only w/ Multi-Task (Inception V3 + Focusing a Single Octave) 65.82%

Two-stream w/ Multi-Task (Ours, Inception V3 + Audio Net + Focusing a Single Octave) 75.37%

Table 2. Pressed key detection accuracy on Two Hands Hanon.
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Figure 5. The accuracy of the proposed approach to identify fin-
gers used to press piano notes. We evaluated the performance of
two approaches (with key pressed information vs. without key
pressed information) in terms of average precision. The x-axis
shows finger names and (l) and (r) indicate the left and right hand
respectively.

frames of the test set. Since our approach and the Video
Only w/ Multi-Task baseline can produce more than one
output at a time with different bounding boxes, we picked
the single predicted box that had the highest confidence
score in each image, and then assigned its predicted class
(pressed note) to the image for both approaches. In addi-
tion, we only accepted the image as a true positive when the
image was correctly classified in terms of both octave and
note within the octave. We trained our model using RM-
SProp [13] for 50k iterations with learning rate 10−4, 0.9
momentum, 0.9 decay, and batch size 32.

Table 1 shows the pressed key detection accuracy on the
One Hand Hanon dataset. We observe that our two-stream
approach with multi-task learning outperforms all baselines
in terms of accuracy. Our model yielded 85.69% pressed
key detection accuracy, and the experimental results con-
firm that our multi-task formulation and additional audio
stream are able to boost the performance of the classifier.

We next measured classification accuracy on the Two
Hands Hanon dataset. We used the same baselines, training
strategies, and hyperparameters for this experiment. How-
ever, we replaced the final softmax function of all baseline
approaches with the sigmoid function since the Two Hands
dataset requires multi-label classification (because it con-
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Figure 4. Examples of our pressed piano note detection and fingering identification results. Top: Pressed notes detection on our One Hand
Hanon dataset. Middle: Fingering identification on our One Hand Hanon dataset. Bottom: Pressed notes detection on our Two Hands
Hanon dataset. The small bounding boxes in the bottom images show a single octave of piano keys. The green border images indicate the
correct predictions, whereas the red border images show the failure cases. The frames were captured every 100 milliseconds.

tains two labels for each image). We picked the top two
predicted boxes based on the confidence scores, then as-
signed each image their predicted classes. Table 2 shows the
pressed notes detection results on this Two Hands Hanon
dataset. Once more, the results confirm that our approaches
outperform the performance of the baselines in terms of
classification accuracy. This suggests that our multi-task
formulation with audio-visual data fusion helped resolve
ambiguities that can be caused when using a single stream
only.

4.2.2 Fingering Identification

Our second set of experiments evaluated the accuracy of
identifying fingers used to press piano keys. For these
experiments, we trained our object detector on the One
Hand Hanon for detecting fingers, with and without a pre-
processing stage to crop the input image frame based on key
pressed information. We then measured used finger detec-
tion accuracy in terms of average precision.

Figure 5 presents finger detection accuracy of the two
approaches, showing that pressed note information is bene-
ficial. The network achieved better accuracy for all fingers
in terms of average precision when it used key pressed in-
formation. The model with the pre-processing step yielded
0.929 for mean average precison (mAP), significantly more
accurate than the model without key pressed information
(0.856 in mAP). Figure 4 shows some qualitative results for
both note detection and finger identication in Hanon exer-
cise #5. Most false detections arise during the transition
from one key to another.

Finally, we tried using our model trained on Hanon to de-

tect fingering on a completely different style of music, Cha-
conne by Yiruma, to see how it responds to new finger pos-
tures. The results of our fingering identification are shown
in Figure 6. The performance decreases, of course, due to
several challenges including black keys (whereas the Hanon
Exercises are only on white keys) and some large chords
which require very different hand postures from those found
in Hanon.

4.2.3 Fingering Identification with Hand Pose

Our third set of experiments evaluated the accuracy of iden-
tifying fingers with a stand-alone hand pose estimator [28],
as opposed to a network trained end-to-end, under the as-
sumption that we know exactly which keys are being played
at any moment in time.

We first applied this technique to our Hanon dataset,
and achieved 99% and 97% accuracy for one hand and two
hands Hanon, respectively. We then applied this technique
to our second dataset of six real piano pieces of different
difficulties played by multiple players, and achieved greater
than 90% accuracy. Table 3 presents detailed results in
terms of precision, recall, and f-measure, showing that the
system has the lowest accuracy in the fourth finger (ring fin-
ger). The confusion matrix in the Figure 7 shows that most
confusion for the system happens between adjacent fingers,
and especially between the third and fourth fingers. Fig-
ure 8(a) presents a sample failure case, where the third and
the fourth finger are very close to each other. Crossovers
also can confuse the system, for example when the index
finger crosses over (and thus occludes) the thumb in order
to play a note. Figure 8(b) shows an example of this.
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Figure 6. The accuracy of our fingering identification on a completely different style of music. In this case, our network often fails to
identify fingers used to press keys since the training dataset is played only on white keys and does not contain large chords.

Finger Precision Recall F1 Score

Thumb 0.939 0.943 0.941

Index 0.958 0.928 0.943

Middle 0.964 0.843 0.899

Ring 0.708 0.850 0.773

Little 0.916 0.941 0.929

Table 3. Precision, Recall and F1 score of finger identification with
hand pose.
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Figure 7. Confusion matrix of finger detection.

(a) (b)
Figure 8. Two failure cases in detecting the fingering. (a) Confu-
sion between middle and ring finger because of vicinity of fingers.
(b) Confusion between thumb and index finger due to a crossover
and resulting occlusion.

5. Conclusion

In this paper, we proposed a novel two-stream convolu-
tional neural network to determine which notes on a piano
are being played at any moment in time, and to identify the

fingers used to press those notes. We formulated this prob-
lem as multi-task learning with audio-visual fusion, and
characterized the accuracy of various variants of the tech-
nique.

The methods used for this study may be applied to other
musical instruments for building an interactive musical in-
strument tutoring system. Our current approach does not
utilize temporal information, which may help resolve am-
biguities and remove other errors. Moreover, we trained
our network separately on different datasets for each task
(pressed piano key detection and fingering identification);
building a unified model for both tasks and utilizing tem-
poral information to improve perception accuracy would be
a natural progression of this study as future work. Further-
more, research is also needed to provide interactive real-
time feedback to the student.
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