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Abstract

Object part segmentation is an important problem for
many applications, but generating the annotations to train
a part segmentation model is typically quite labor-intensive.
Recently, Fang et al. [6] augmented object part segmenta-
tion datasets by using keypoint locations as weak supervi-
sion to transfer a source object instance’s part annotations
to an unlabeled target object. We show that while their ap-
proach works well when the source and target objects have
clearly visible keypoints, it often fails for severely articu-
lated poses. Also, their model does not generalize well
across multiple object classes, even if they are very simi-
lar. In this paper, we propose and evaluate a new model for
transferring part segmentations using keypoints, even for
complex object poses and across different object classes.

1. Introduction
While much work has studied segmenting objects from

image backgrounds, the more challenging problem of fine-
grained object part segmentation would benefit many appli-
cations from fine-grained object classification [22], to pose
estimation [3, 18], to object re-identification [4], etc. The
goal of part segmentation is to produce pixel-level semantic
annotations that indicate individual object parts.

Recent work using deep learning has shown impressive
performance on object part segmentation for both rigid and
non-rigid objects [7, 8, 12, 15]. Most of these papers re-
quire large quantities of annotated training images with
fine-grained, pixel-wise part segmentation masks, which
can be extremely labor-intensive to produce.

Recently, Fang et al. [6] showed that it is possible to gen-
erate pixel-level part annotations for an unlabeled target ob-
ject instance by using keypoints to propagate part segmen-
tations from a labeled source object instance of the same
class. This significantly accelerates creating pixel-wise part
segmentation masks, since manually annotating keypoint
locations is significantly less labor-intensive. While the idea
is promising, their work requires that the source and tar-
get objects have clearly visible keypoints and very similar

poses. Such constraints restrict the usage of their model
for many scenarios, e.g., when there are very few anno-
tated source objects and the target objects have very dif-
ferent poses from the source objects.

We thus propose a new model which first directly gener-
ates a pseudo-part segmentation only from the object key-
points, and then later combines it with appearance infor-
mation for improved object part segmentation. In contrast
to [6], which requires the source and target instances to have
the same number of visible keypoints, our approach can
use instances with varying numbers of visible keypoints.
Also, as our model directly learns a pose-to-part genera-
tion model, it can better generalize to novel poses in the
target dataset. Moreover, we also use the fact that many ob-
ject classes share similar semantic parts, even if their over-
all appearances are quite different, and thus can be used to
augment the annotated dataset for improved performance.
For example, while different quadruped (four-legged) an-
imals have widely different sizes and appearances, many
share similar body parts and body structures. Thus we can
augment the annotated dataset of individual quadruped ani-
mal part segmentations by considering different quadruped
animals, such as dogs, cats, horses, sheep, etc., as a single
class (i.e. quadruped) and improve the part segmentation
performance for all of them.

In summary, we propose a new approach for transferring
object part annotations from source objects to target objects
using keypoint guidance. Through extensive experiments,
we show that our approach can handle large variations in the
source and target objects, and produce better-quality part
segmentation results than existing approaches.

2. Related Work
Part Segmentation With Pose. The strong spatial rela-

tionship between object keypoints and parts is used in sev-
eral papers to improve the accuracy of both pose and part
predictions. Xia et al. [20] combined intermediate semantic
part score maps with pose estimates to refine part segmen-
tation results. Nie et al. [13] proposed a mutual feature-
sharing mechanism between two separate pose and part pre-
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Figure 1: Pipeline of our approach. The Pose-to-Part mod-
ule first takes the keypoint heatmaps Ki of the current ob-
ject as input to generate estimated initial part segmentationsePi. Then ePi and Ki are concatenated and passed to the Vi-
sual Evidence module, which uses both the input image Ii

and structural information in the initial part segmentations
to produce the final segmentation result.

diction networks to improve each others’ accuracy. The
most relevant work to ours is that of Fang et al. [6] showing
that part segmentation of one object can be transferred to
another object of the same class using pose guidance.

Weakly Supervised Semantic Segmentation. Using
weak supervision for semantic segmentation is a highly
studied topic. Class labels [1, 5, 23], point supervision [2],
scribbles [11], and bounding boxes [9, 10] are among the
most common weak supervisory cues for semantic segmen-
tation. Recently Yang et al. [21] proposed an iterative re-
finement approach to transform pose-based part priors to
full human body part segmentations. However, there is lit-
tle work that explores using keypoints for generalized multi-
class object part segmentation.

3. Our Approach

Our task is to segment parts of an object instance, given
only the image and 2D keypoint locations of that instance at
inference time. During training, we are given images with
both keypoint and part annotations. Assume all training and
test objects share a maximum of p body parts and k key-
points. Denote a training instance as si = fIi;Ki; Pig,
i = 1:::N , where Ii 2 Rh×w×3 is an input image, Ki 2
Rh×w×k is the heatmap generated from the set of k 2D
keypoint annotations, and Pi 2 Rh×w×p is the correspond-
ing pixel-level part segmentation map. Let N be the to-
tal number of training images. Consider a test instance as
x = fI;Kg. Our goal is to use the provided keypoint an-
notations to transfer part segmentation labels from the fully
annotated training set to a weakly labeled test set.

Our model consists of two main parts: the Pose-to-Part
module and the Visual Evidence module. The Pose-to-Part
module learns to convert the keypoints Ki of a training in-
stance si to an estimated pseudo part segmentation as sim-
ilar as possible to the actual part annotation Pi of that in-

stance. The Visual Evidence module takes the target image
as input and combines the image features with the pseudo
part segmentation and the target keypoints Ki to generate
the final part segmentation result. An overview of the com-
plete approach is in Figure 1.

3.1. Pose-to-Part Module
The goal of this module is to estimate part segmentations

of unseen objects using keypoint annotations only. Key-
points provide useful structural information that can be di-
rectly used to estimate part segmentation. Considering that
a test object can have quite different shape and number of
visible keypoints than the training objects, learning such a
model can help to produce generalized part annotations of
test objects using their poses. This avoids the constraint
of [6] that requires strictly similar poses for the source and
target objects.

Pose-to-Part is a U-Net-like [14] network consisting of a
fully convolutional encoder-decoder network with skip con-
nections. The encoder reduces the spatial dimensions of
the input so that the network can understand the relative lo-
cations of the keypoints and the decoder then generates a
higher-resolution version of the part annotations.

3.2. Visual Evidence Module
While the Pose-to-Part module can estimate part anno-

tations for the target object, these estimates may be inac-
curate due to occlusion, different sizes of the parts, very
sparse keypoints, etc. Thus we incorporate visual evidence
in addition to the structural evidence from the Pose-to-Part
module, by introducing a Visual Evidence network which
takes three inputs: (1) the input Image, Ii, (2) the keypoint
heatmap, Ki, and (3) the pseudo part annotation output, ePi,
from the Pose-to-Part module.

The Visual Evidence network is also a fully-
convolutional encoder-decoder network with skip con-
nections. The network first encodes Ii as a convolutional
feature map and then passes it through a series of learnable
deconvolution layers to predict the final part segmentation
output. We also generate multi-scale channel-wise concate-
nated maps Ki and ePi, and then concatenate them with the
visual features at each stage of the decoder module. This
allows both the visual and structural features to refine each
other and produce a better joint part segmentation result
than either could do alone.

3.3. Training
The network is trained end-to-end using two loss func-

tions. The first loss is calculated between the final output of
the Pose-to-Part network ePi and the ground truth part seg-
mentation,

Ltrans =
X

i

X
j

e[P̃i(j); Pi(j)]; (1)



where j is the pixel index. Pi(j) is the ground truth part
annotation for target i, and e indicates the per-pixel cross
entropy loss.

The second loss Lseg is used at the end of the Visual
Evidence module to calculate the loss for the final part seg-
mentation result,

Lseg =
X

i

X
j

e[V j(Ii;Ki; ePi; �); Pi(j)]; (2)

where V is the Visual Evidence module, and Ii and Ki are
the image and keypoint heatmaps of the i-th target. The
final loss combines both of these,

L = �trans � Ltrans + �seg � Lseg; (3)

where �trans and �seg are weights.

4. Experiments
We present findings from extensive experiments to eval-

uate the effectiveness of the proposed method.

4.1. Dataset
Pascal Part [19] is a part segmentation dataset with

pixel-wise object part annotations, keypoint locations, and
bounding box annotations. The dataset includes five
quadruped animals, Cat, Cow, Dog, Horse, and Sheep.
We use the subset of images having at least one of these
objects. We use the bounding box labels to crop the ob-
jects, discarding bounding boxes where there is overlap
with another bounding box with an IoU of more than 0.05.
We also discard bounding boxes that have any side smaller
than 32 pixels or for which the object has less than 5 key-
points. After applying this filter, we get in total 2872 im-
ages of quadrupeds from these five classes (245 Sheep,
404 Horse, 233 Cow, 1097 Dog, 893 Cat images). While
the dataset contains more detailed part annotations, we fol-
low the previous work [6] and only consider four parts for
each animal: head, torso, legs, and tail.

4.2. Implementation Details
For the Pose-to-Part network, we first convert the key-

point annotations into heatmaps using a Gaussian function
with � = 7. The encoder of the Pose-to-Part network has
5 downsampling residual blocks and the decoder has 5 up-
sampling residual blocks. The upsampling blocks use Pix-
elShuffle layers [16] for the upsample operations. For the
Visual Evidence module, we use the encoder-decoder net-
work with skip-connections from [17]. The encoder con-
sists of an ImageNet-pretrained VGG-16 network, and the
decoder consists of a series of 5 upsampling blocks with
learnable deconvolution layers. All the layers in the image
evidence are learned during training. We train the full net-
work end-to-end and use �trans = 0:01 and �seg = 1. We
use batch size 24 and resize the input images and the ground
truth part segmentations to 256� 256 during training.

4.3. Baselines
RefineNet is the affine transformation-based approach

proposed by Fang et al. [6]. It requires nearest neighbors
based on pose similarity to perform the morphing for body
part parsing. We follow their settings to train the model.

Transform is our Pose-to-Part module. For this base-
line, we disable the Visual Evidence module and considergPtc′ as our final output.

TernausNet [17] is the basic encoder-decoder network
used as our Visual Evidence module. We only consider the
image as input without keypoint locations for this baseline.

4.4. Evaluation on Pascal Part Dataset
We first train on one animal class and test on the same

animal class, as in [6]. We randomly choose 80% of the
images for training and 20% for testing on each class. All
experiments use 5-fold cross-validation. Figure 2 presents
the results using intersection-over-union (IoU) as the eval-
uation metric. The figure shows that across all animal
classes, our model outperforms most baselines on particular
body parts, and outperforms all baselines averaged across
all body parts. This confirms that the Pose-to-Part module
is indeed adding useful information to the network.

We find that RefineNet [6] has the worst performance
among all the baselines. RefineNet can achieve 39.80%,
36.85%, 32.38%, 31.09%, 28.23%, 17.27% on Sheep,
Horse, Cow, Dog, and Cat respectively, in terms of
IoU averaged across all parts. In contrast, our full model
achieves 49.83%, 60.16%, 51.48%, 59.50%, and 58.84%
on Sheep, Horse, Cow, Dog, and Cat. From qualitative
results we observe that RefineNet often struggles to predict
accurate pixel labels (Figure 3a). Since it heavily relies on
source and target objects having similar poses, it fails to
make accurate predictions if the same keypoints are not vis-
ible in the source and target objects. These results suggest
that our model performs better because it can better utilize
keypoint annotations than RefineNet.

Transform, our second baseline, performs slightly bet-
ter than RefineNet but still fails to segment the small parts
(such as tail). It always performs much better than Re-
fineNet for head, probably because the head has more key-
point annotations than the other parts. Dense keypoints re-
sult in better pseudo-part annotation generation from the
Pose-to-Part module. This indicates that more keypoint an-
notations can help to improve the performance of this mod-
ule. Our full model performs much better than the Trans-
form baseline, indicating that both the Pose-to-Part module
and Visual Evidence modules play crucial roles in produc-
ing high-quality part segmentation results.

TernausNet [17], our third baseline, performs much bet-
ter than RefineNet and Transform, suggesting that appear-
ance is highly important for recognizing object parts. Al-
though our model sometimes performs similarly or only




