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Abstract

The billions of public photos on online social media sites
contain a vast amount of latent visual information about
the world. In this paper, we study the feasibility of observ-
ing the state of the natural world by recognizing specific
types of scenes and objects in large-scale social image col-
lections. More specifically, we study whether we can recre-
ate satellite maps of snowfall by automatically recogniz-
ing snowy scenes in geo-tagged, timestamped images from
Flickr. Snow recognition turns out to be a surprisingly diffi-
cult and under-studied problem, so we test a variety of mod-
ern scene recognition techniques on this problem and intro-
duce a large-scale, realistic dataset of images with ground
truth annotations. As an additional proof-of-concept, we
test the ability of recognition algorithms to detect a partic-
ular species of flower, the California Poppy, which could be
used to give biologists a new source of data on its geospatial
distribution over time.

1. Introduction
Digital cameras and camera-enabled smartphones are

now ubiquitous, with a large fraction of the population tak-
ing photos regularly and sharing them online. These mil-
lions of people taking pictures form a massive social sensor
network that is (in aggregate) observing and capturing the
visual world across time and space. Modern phones and
cameras record metadata like geo-tags and time-stamps in
addition to the images themselves, giving (noisy) calibra-
tion information about how this ad-hoc sensor network is
arranged. Social media sites like Flickr and Facebook thus
contain a large amount of latent visual information about
the the world and how it is changing over time.

For instance, many (if not most) outdoor images contain
some information about the state of the natural world, such
as the weather conditions and the presence or absence of
plants and animals (Figure 1). The billions of images on
social media sites could be analyzed to recognize these nat-

Figure 1. Many Flickr images contain evidence about the state of
the natural world, including that there is snow on the ground at a
particular place and time, that a particular species of bird or animal
is present, and that particular species of plants are flowering.

ural objects and phenomena, creating a new source of data
to biologists and ecologists. Where are marigolds blooming
today, and how is this geospatial distribution different from
a year ago? Are honeybees less populous this year than
last year? Which day do leaves reach their peak color in
each county of the northeastern U.S.? These questions can
be addressed to some extent by traditional data collection
techniques like satellite instruments, aerial surveys, or lon-
gitudinal manual surveys of small patches of land, but none
of these techniques allows scientists to collect fine-grained
data at continental scales: satellites can monitor huge areas
of land but cannot detect fine-grained features like bloom-
ing flowers, while manual surveys can collect high-quality
and fine-grained data only in a small plot of land. Large-
scale analysis of photos on social media sites could provide
an entirely new source of data at a fraction of the cost of
launching a satellite or hiring teams of biologist observers.

The idea of using crowd-sourced data for science and
other purposes is of course not new. Citizen science projects
have trained groups of volunteers to recognize and report
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natural phenomena (like bee counts [1], bird sightings [9],
and snowfall [17]) near their homes. Data mining work has
shown that social networking sites like Twitter can moni-
tor political opinions [7, 15], predict financial markets [4],
track the spread of disease [10], detect earthquakes [28],
and monitor weather conditions [14]. However, the vast
majority of this work has used textual data from micro-
blogging sites like Twitter; very few papers have tried to do
this with images, despite the fact that images offer evidence
that is richer, less ambiguous, and much more difficult to
fabricate. This is of course because it is much easier to scan
for keywords in Twitter feeds than to automatically recog-
nize semantic content in huge collections of images.

In this paper, we test the feasibility of observing the nat-
ural world by recognizing specific types of scenes and ob-
jects in large-scale image collections from social media. We
consider a well-defined but nevertheless interesting prob-
lem: deciding whether there was snow on the ground at a
particular place and on a particular day, given the set of
publicly-available Flickr photos that were geo-tagged and
time-stamped at that place and time. This builds on our ear-
lier work in Zhang et al [34] which considered a similar
problem, but used only tag information (essentially scan-
ning for photos that had the tag “snow” with some very
simple image processing to remove obvious outliers). Here,
we explicitly test whether large-scale recognition of image
content itself could be used to do this task. Of course,
snow cover can already be monitored through satellites and
weather stations (although neither of these sources is per-
fect: weather stations are sparse in rural areas and satellites
typically cannot observe snow cover through clouds [12]),
so this is not a transformative application in and of itself. In-
stead, this application is interesting precisely because fine-
grained ground truth is available, so that accuracy of crowd-
sourced observations of the natural world can be tested at
large scale, potentially paving the way to observe other nat-
ural phenomena for which there are no other sources of data.

We initially expected snow detection to be an easy prob-
lem, in which just looking for large white regions would
work reasonably well. However, amongst the hundreds of
papers on object and scene classification in the literature,
we were surprised to find very few that have explicitly con-
sidered detecting snow. A few papers on scene classifica-
tion include snow-related categories [20,21,33], while a few
older papers on natural materials detection [6,22] consider it
along with other categories. We test a variety of recognition
techniques on this problem, using a new realistic dataset of
several thousand images from Flickr with labeled ground
truth. We find that snow detection in consumer images is
surprisingly difficult, and we hope this paper and our dataset
will help spark interest in this somewhat overlooked vision
problem.

Finally we present some preliminary results of applying

our recognition techniques on geo-tagged and time-stamped
images from Flickr, in order to estimate the geo-spatial dis-
tribution of snow. We compare these maps to ground-truth
from satellite data. We also consider an ecology application
where reliable data does not exist and Flickr image analy-
sis could be potentially quite valuable: estimating the geo-
temporal flowering distribution of the California Poppy.

2. Related work
Crowd-sourcing from social media. Several recent stud-
ies have shown the power of social media for observing the
world itself, as a special case of ‘social sensing’ [2]. This
work includes using Twitter data to measure collective emo-
tional state [11] (which, in turn, has found to be predictive
of stock moves [4]), predicting product adoption rates and
political election outcomes [15], and collecting data about
earthquakes and other natural disasters [28]. Particularly
striking examples include Ginsberg et al [10], who show
that geo-temporal properties of web search queries can pre-
dict the spread of flu, and Sadilek et al [27] who show that
Twitter feeds can predict when a given person will fall ill.

The specific application we consider here is inferring
information about the state of the natural world from so-
cial media. Existing work has analyzed textual content,
including text tags and Twitter feeds, in order to do this.
Hyvarinen and Saltikoff [14] search for images on Flickr
to validate metereological satellite observations, albeit by
hand. Zhang et al [34] take a large collection of geo-tagged
and time-stamped Flickr photos and search for snow-related
tags to produce estimates of geo-temporal snowfall distribu-
tions, and evaluate them against satellite snow maps. Singh
et al [29] visualize geospatial distributions of photos tagged
“snow” as an example of their Social Pixels framework, but
they study the database theory needed to perform this anal-
ysis and do not consider the prediction problem.

Few papers have used actual image content analysis as
we do here. Leung and Newsam [19] use scene analysis in
geo-tagged photos to infer land cover and land use types.
Murdock et al [23] analyze geo-referenced stationary we-
bcam feeds to estimate cloud cover on a day-by-day basis,
and then use these estimates to recreate satellite cloud cover
maps. Webcams offer a complimentary data source to the
social media images we consider here: on one hand, analyz-
ing webcam data is made easier by the fact that the camera
is stationary and offers dense temporal resolution; on the
other hand, their observations are restricted to where public
webcams exist, whereas photos on social media sites offer
a potentially much denser spatial sampling of the world.

We note that these applications are related to citizen sci-
ence projects where volunteers across a wide geographic
area send in observations [1,9,17]. These projects often use
social media, but require observations to be made explicitly,
whereas in our work we “passively” analyze social media



feeds generated by untrained and unwitting individuals.

Detecting snow in images. We know of only a handful of
papers that have explicitly considered snow detection in im-
ages. Perhaps the most relevant is the 2003 work of Singhal
et al [22, 30] which studies this in the context of detecting
“materials” like water, grass, sky, etc. They calculate local
color and texture features at each pixel, and then compute
a probability distribution over the materials at each pixel
using a neural network. They partition the image into seg-
ments by thresholding these belief values, and assign a label
to each segment with a probabilistic framework that consid-
ers both the beliefs and simple contextual information like
relative location. They find that sky and grass are relatively
easy to classify, while snow and water are most difficult.
Follow-up work [5,6] applied more modern techniques like
support vector machines. Barnum et al [3] detect falling
snow and rain, a complementary problem to the one we
study here of detecting fallen snow.

Papers in the scene recognition literature have consid-
ered snowy scenes amongst their scene categories; for in-
stance, Li et al [20, 21] mention snow as one possible
component of their scene parsing framework, but do not
present experimental results. The SUN database of Xiao
et al [33] includes several snow-related classes like “snow-
field,” “ski slope,” “ice shelf,” and “mountain snowy,” but
other categories like “residential neighborhood” sometimes
have snow and sometimes do not, such that detecting these
scenes alone is not sufficient for our purposes.

Recognizing flowers. There are a number of papers on de-
tecting and recognizing flowers in images, although none
have specifically considered the California Poppies we
study here. Most work on flower classification uses datasets
with close-up images of nearly-centered flowers, not the
cluttered images typical of Flickr. We use the work of
Nilsback and Zisserman [24] as the starting point for our
experiments. They perform a binary segmentation step to
separate flower from background, represent the foreground
with vocabularies of color, shape, and texture features, and
then perform recognition using nearest neighbors. Later
work [25] uses additional features like SIFT and HOG,
combines them using a multiple kernel framework, and ex-
tended the dataset to 103 classes. Other work considering
flower recognition includes the semi-automated method of
Zou and Nagy [35] and the work of Kanan and Cottrell [16],
which uses flower recognition as an application of a recog-
nition technique based on modeling visual attention.

3. Snow detection

As noted above, we are aware of very little work that
has considered the problem of detecting snow in images:
the most relevant work [30] considers snow in the context
of natural materials classification, but is over 10 years old,

uses a small and biased dataset, and does not report classi-
fication results. Recent work on scene understanding [33]
sometimes includes snow-related scenes, but none of this
work applies directly to our problem because snow can ap-
pear across a range of different scene types. Snow is really
an object, not a type of scene, but we are not aware of any
work on recognizing snow in the object detection literature.

We thus begin by assembling a large-scale realistic im-
age dataset, and test a variety of modern classification tech-
niques on the problem of snowy scene detection. We use
a labeled subset of this dataset to train classifiers and to
test their performance, and then apply these classifiers to
the problem of generating satellite-like snowfall maps using
image analysis on geo-tagged, time-stamped Flickr photos.

3.1. Dataset

We collected a large realistic dataset of Flickr images. A
subtle but important issue is how to sample these photos.
The distribution of geo-tagged Flickr photos is highly non-
uniform, with high peaks in population centers and tourist
locations. Sampling uniformly at random from Flickr pho-
tos produces a dataset that mirrors this highly non-uniform
distribution, biasing it towards cities and away from rural
areas. Since our eventual goal is to reproduce continental-
scale satellite maps, rural areas are very important. An al-
ternative is biased sampling that attempts to select more
uniformly over the globe, but has the disadvantage that it
no longer reflects the distribution of Flickr photos. Other
important considerations include how to find a variety of
snowy and non-snowy images, including relatively diffi-
cult images that may include wintry scenes with ice but not
snow, and how to prevent highly-active Flickr users from
disproportionately affecting the datasets.

We strike a compromise on these issues by combining
together datasets sampled in different ways. We begin with
a collection of about 100 million Flickr photos geo-tagged
within North America and collected using the public API
(by repeatedly querying at different times and geo-spatial
areas, similar to [13]). From this set, we considered only
photos taken before January 1, 2009 (so that we could use
later years for creating a separate test set), and selected: (1)
all photos tagged snow, snowfall, snowstorm, or snowy in
English and 10 other common languages (about 500,000
images); (2) all photos tagged winter in English and about
10 other languages (about 500,000 images); (3) a random
sample of 500,000 images. This yielded about 1.4 million
images after removing duplicates. We further sampled from
this set in two ways. First, we selected up to 20 random pho-
tos from each user, or all photos if a user had less than 20
photos, giving about 258,000 images. Second, we sampled
up to 100 random photos from each 0.1◦ × 0.1◦ latitude-
longitude bin of the earth (roughly 10km × 10km at the mid
latitudes), yielding about 300,000 images. The combination



of these two datasets has about 425,000 images after remov-
ing duplicates, creating a diverse and realistic selection of
images. We partitioned this dataset into test and training
sets on a per-user basis, so that all of any given user’s pho-
tos are in one set or the other (to reduce the potential for
duplicate images appearing in both training and test).

We then presented a subset of these images to humans
and collected annotations for each image. We asked people
to label the images into one of four categories: (1) contains
obvious snow near the camera; (2) contains a trace amount
of snow near the camera; (3) contains obvious snow but far
away from the camera (e.g. on a mountain peak); and (4)
does not contain snow. For our application of reconstructing
snowfall maps, we consider (1) and (2) to be positive classes
and (3) and (4) to be negative, since snowfall in the distance
does not give evidence of snow at the image’s geo-tagged
location. In total we labeled 10,000 images.

3.2. Snow classification

Snow is a somewhat unique visual phenomenon, and we
claim that detecting it in images is a unique recognition
task. In some cases, snow can be detected by coarse scene
recognition: ski slopes or snowy landscapes are distinctive
scenes. But snow can appear in any kind of outdoor scene,
and is thus like an object. However, unlike most objects
that have some distinctive features, snow is simply a white,
near-textureless material. (In fact, our informal observation
is that humans detect snow not by recognizing its appear-
ance, but by noticing that other expected features of a scene
are occluded; in this sense, detecting snow is less about the
features that are seen and more about the features that are
not seen. We leave this as an observation to inspire future
work.) We tested a variety of off-the-shelf visual features
for classifying whether an image contains fallen snow. We
used Support Vector Machines for classification, choosing
kernels based on the feature type. Intuitively, color is a very
important feature for detecting snow, and thus we focused
on features that use color to some degree. Our features are:

Color histograms. We begin with perhaps the simplest of
color features. We build joint histograms in CIELAB space,
with 4 bins on the lightness dimension and 14 bins along
each of the two color dimensions, for a total of 784 bins.
We experimented with other quantizations and found that
this arrangement worked best. We encode the histogram
as a 784 dimensional feature and use an SVM with a chi-
squared distance (as in [33]).

Tiny images. We subsample images to 16 × 16 pixels, giv-
ing 256 pixels per RGB color plane and yielding a 768 di-
mensional feature vector. Drastically reducing the image
dimensions yields a feature that is less sensitive to exact
alignment and more computationally feasible [31].

Spatial Moments. Tiny images capture coarse color and

spatial scene layout information, but much information is
discarded during subsampling. As an alternative approach,
we convert the image to LUV color space, divide it into 49
blocks using a 7 × 7 grid, and then compute the mean and
variance of each block in each color channel. Intuitively,
this is a low-resolution image and a very simple texture fea-
ture, respectively. We also compute maximum, minimum,
and median value within each cell, so that the final feature
vector has 735 dimensions.

Color Local Binary Pattern (LBP) with pyramid pooling.
LBP represents each 9×9 pixel neighborhood as an 8-bit bi-
nary number by thresholding the 8 outer pixels by the value
at the center. We build 256-bin histograms over these LBP
values, both on the grayscale image and on each RGB color
channel [18]. We compute these histograms in each cell of a
three-level spatial pyramid, with 1 bin at the lowest level, 4
bins in a 2×2 grid at the second level, and 16 bins in a 4×4
grid at the third level. This yields a (1 + 4+ 16)× 4× 256
= 21504 dimensional feature vector for each image.

GIST. We also apply GIST features, which capture coarse
texture and scene layout by applying a Gabor filter bank
followed by down-sampling [26]. Our variant produces
a 1536-dimensional vector and operates on color planes.
Scaling images to have square aspect ratios before comput-
ing GIST improved classification results significantly [8].

We experimented with a number of other features, and
found that they did not work well; local features like SIFT
and HOG in particular perform poorly, again because snow
does not have distinctive local visual appearance.

3.3. Results

We tested these approaches to detecting snow on our
dataset of 10,000 hand-labeled images. We split this set into
a training set of 8,000 images and a test set of 2,000 images,
sampled to have an equal proportion of snow and non-snow
images (so that the accuracy of a random baseline is 50%).
Table 1 presents the results. We observe that all of the fea-
tures perform significantly better than a random baseline.
Gist, Color Histograms and Tiny Image all give very similar
accuracies, within a half percentage point of 74%. Spatial
Moments and LBP features perform slightly better at 76.2%

Feature Kernel Accuracy
Random Baseline — 50.0%
Gist RBF 73.7%
Color χ2 74.1%
Tiny RBF 74.3%
Spatial Color Moments RBF 76.2%
Spatial pyramid LBP RBF 77.0%
All features linear 80.5%

Table 1. Performance of different features for snow detection, all
using SVMs for classification.



Figure 2. Snow classification results for different features and combinations, in terms of (left): ROC curves for the task of classifying
snow vs. non-snow images; and (right): Precision-Recall curves for the task of retrieving snow images.

and 77.0%. We also tested a combination of all features by
learning a second-level linear SVM on the output of the five
SVMs; this combination performed significantly better than
any single feature, at 80.5%.

Figure 2 shows classification performance in terms of an
ROC curve, as well as a precision-recall curve in which the
task is to retrieval photos containing snow. The precision-
recall curve shows that at about 20% recall, precision is very
near to 100%, while even at 50% recall, precision is close
to 90%. This is a nice feature because in many applications,
it may not be necessarily to correct classify all images, but
instead to find some images that most likely contain a sub-
ject of interest. To give a sense for the difficulty and failure
modes of our dataset, we show a random sample of correct
and incorrect classification results in Figure 4.

Reconstructing satellite snow maps. Finally, we tested
whether this automated photo classification run on large-
scale collections of geo-tagged, time-stamped social im-
ages could be used to approximate snow maps generated by
satellites. An advantage of considering the snow recogni-
tion task is that ground truth, in the form of daily snow cover
maps, is publicly available from NASA and others [34].
This is thus a somewhat artificial task because very good
datasets already exist for snow cover, but we use this prob-
lem here as a test case of the more general idea of using
Flickr to observe nature. (Nevertheless, satellites are also
limited because they require the ground to be visible, and
thus are not effective when there is cloud cover.)

To test this idea, we downloaded public, geo-tagged,
time-stamped Flickr photos taken in North America on
three days: March 3, April 6, and December 21 2009 (4422,
5606, and 9906 photos respectively). We ran our combined
classifiers on these images. We discretized the image geo-
tags into 1 degree by 1 degree bins, and interpreted each
snowy image as evidence of snow in that bin and each non-
snowy image as evidence against snow in that bin. We com-
bined this evidence together using the simple Bayesian ap-
proach proposed by [34]. Figure 3 shows the resulting map

Nov 30, 2009

Non-snow Snow Uncertain No data

Figure 3. Snow cover maps generated by our Flickr analysis (left),
compared with satellite maps (right), on three days in 2009: March
3 (top), April 6 (middle), and December 21 (bottom). Green indi-
cates snow, blue indicates no snow, and gray indicates uncertainty
(caused by too few photos in Flickr analysis, or by cloud cover in
satellite maps).

produced by our automated Flickr analysis, and compares it
to the corresponding snow cover map produced by NASA’s
MODIS instrument [12]. We note that the Flickr map is
much sparser than the satellite map, especially in sparsely
populated areas like northern Canada and the western U.S.
On the other hand, the Flickr maps give some observations
even when the satellite maps are missing data due to clouds.

4. Detecting California Poppies

We have also studied whether we can apply computer
vision analysis of Flickr photos to a problem of interest to
biologists: tracking the geo-temporal distribution of flow-



(a) Random true negatives (non-snow images classified as non-snow)

(b) Random true positives (snow images classified as snow)

(c) Random false negatives (snow images classified as non-snow)

(d) Random false positives (non-snow images classified as snow)

Figure 4. Snow classification results on some random images from our dataset, including (from top) true negatives, true positives, false
negatives, and false positives. These results were obtained using the combined classifier that uses all of the image features.

ering plants. Plants and animals will respond as climates
change over time, and biologists would like fine-grained,
continental scale information about how flowering and mi-
gratory patterns are changing. Unlike weather conditions,
this data is very difficult to monitor from satellites or air-
craft, so biologists currently rely mostly on traditional data
collection techniques like longitudinal studies of small plots
of land by expert biologists. Analyzing Flickr images could
provide an alternative data source for these studies.

As a step in this direction, here we consider one par-
ticular class of flower: the California Poppy. We chose
this flower both because of its distinct visual appearance (a
bright orange) and because it is of interest to biologists be-
cause it grows in a relatively small area of the western U.S.
and thus may be particularly sensitive to changes in climate.

4.1. Dataset

From our collection of about 100 million U.S. Flickr
photos, we selected all images tagged “poppy” (about 8100

images). Some of these images are of California Poppies
but most are not, since there are other species of poppies
and amateur photographers often confuse them with other
flowers. We took a random sample of about 2000 images
and asked biology students to label them into one of four
categories: (1) close-up of a California Poppy; (2) multi-
ple California Poppies (e.g. in a photo of a field perhaps
amongst other flowers); (3) no California Poppy; and (4)
special cases like drawings of poppies. We discarded im-
ages from category (4) and sampled from the remaining
dataset to have an equal proportion of the three classes. This
gave 150 training images and 450 independent test images.
Figure 5 shows a few sample images from our dataset.

4.2. Classifying poppies

We used the same features described above in Section 3.2
for classifying snow images, including tiny images, color
histograms, color-aware local binary pattern with spatial
pyramids, and GIST. For comparison, we also implemented



Figure 5. Some images from the three classes in our California
Poppy dataset: (left): close-ups of true poppies; (center): longer-
range images of true poppies; and (right): images with no poppies.

techniques based on bag-of-words vocabularies of color,
texture, and shape features that have been applied to flower
recognition in past work [24]. In particular:

Color vocabulary. We clustered the HSV color values from
all images into a 200-word vocabulary, and then represented
each image as a histogram over these visual words.

Shape vocabulary. We use SIFT features to represent lo-
cal image “shape.” We extracted SIFT features densely (on
25×25 pixel regions, at strides of 20 pixels), and again built
a vocabulary using k-means clustering with k = 200.

Texture vocabulary. We used MR8 features [32] to capture
local texture information. MR8 applies a filter bank of 8
filters (4 Gaussians and 4 Laplacians of Gaussians) at dif-
ferent scales and orientations, and then characterizes local
texture in terms of the maximal filter responses. We again
cluster these into a vocabulary with size 200.

We also define a combined feature which incorporates
all three of the above features. This feature computes the
histogram for each of the three filters, and then concatenates
these together after normalizing each vector.

4.3. Results

Table 2 shows the performance of the different features
on the problem of classifying close-up California Poppy
photos versus photos of fields and non-poppies. We observe
that the vocabulary-based features work significantly better
in combination than separately, yielding a combined accu-
racy of 65.0% versus the 33.3% baseline. The LBP and Gist
features perform better, with the best performance achieved
by the combination of features (72.1%). Figure 6 shows
ROC and Precision-Recall curves.

5. Conclusion
In this paper, we propose using photo-sharing social me-

dia sites as a means of observing the state of the natural
world, by automatically recognizing specific types of scenes
and objects in large-scale social image collections. This
work is an initial step towards a long-term goal of monitor-
ing important ecological events and trends through online

Feature Accuracy
Random Baseline 33.3%
Shape Vocabulary 45.0%
Texture Vocabulary 48.6%
Color Vocabulary 53.6%
Combination of color, shape and texture 65.0%
Tiny Image 58.8%
RGB histogram 61.3%
LBP 68.4%
GIST 68.8%
Spatial pyramid LBP 70.4%
Combined 72.1%

Table 2. Results for California Poppy classification.

social media. Our study shows that snowy scene recogni-
tion is not nearly as easy a problem as one might expect,
when applied to realistic consumer images; our best result
using modern vision techniques gives 81% accuracy. Nev-
ertheless, as a proof-of-concept we demonstrated that this
recognition accuracy still yields a reasonable map that ap-
proximates observations from satellites. We also test recog-
nition algorithms on their ability to recognize a particular
species of flower, the California Poppy. In future work,
we plan to combine evidence from tags and other meta-
data with visual features for more accurate estimates, and
to develop novel techniques for these challenging recogni-
tion problems. More generally, we hope the idea of observ-
ing nature through photo-sharing websites will help spark
renewed interest in recognizing natural and ecological phe-
nomenon in consumer images.
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