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Stepwise Goal-Driven Networks for
Trajectory Prediction

Chuhua Wang , Yuchen Wang, Mingze Xu, and David J. Crandall

Abstract—We propose to predict the future trajectories of ob-
served agents (e.g., pedestrians or vehicles) by estimating and using
their goals at multiple time scales. We argue that the goal of a
moving agent may change over time, and modeling goals continu-
ously provides more accurate and detailed information for future
trajectory estimation. To this end, we present a recurrent network
for trajectory prediction, called Stepwise Goal-Driven Network
(SGNet). Unlike prior work that models only a single, long-term
goal, SGNet estimates and uses goals at multiple temporal scales.
In particular, it incorporates an encoder that captures historical
information, a stepwise goal estimator that predicts successive goals
into the future, and a decoder that predicts future trajectory. We
evaluate our model on three first-person traffic datasets (HEV-I,
JAAD, and PIE) as well as on three bird’s eye view datasets
(NuScenes, ETH, and UCY), and show that our model achieves
state-of-the-art results on all datasets. Code has been made avail-
able at: https://github.com/ChuhuaW/SGNet.pytorch.

Index Terms—Autonomous vehicle navigation, autonomous
agents, trajectory prediction.

I. INTRODUCTION

PREDICTING the future behavior of other agents is crucial
in the real world [1]: safe driving requires predicting future

movements of other cars and pedestrians, for example, while
effective social interactions require anticipating the actions of
social partners. However, predicting another agent’s future ac-
tions is challenging because such actions depend on numerous
factors including the environment and the other agent’s internal
state (e.g., its intentions and goals). Recent work [2]–[5] has
explored goal-driven methods for trajectory prediction, which
explicitly try to estimate the other agent’s long-term goal to
help predict its future behavior. While these models make a
significant step forward, they adopt the simplistic assumption
that an agent’s intentions are exclusively represented by a single
long-term goal.
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However, work in psychology and cognitive science suggests
that people base their actions not on a single long-term goal, but
instead on a series of goals at different time scales. Some litera-
ture [6], [7] uses the term intention to refer to a representation of
planned actions and the term goal to stress the end result of an
action. This suggests that a series of goals may better represent an
intention than using a single, long-term goal. Besides, people’s
intentions build up progressively, and each decision made in
the past may have an impact on how the future is determined.
For example, a pedestrian plans a trajectory before crossing the
street; when he or she takes a step forward, the prior planned
trajectory and the actual situation are both taken into account
to update a new set of stepwise goals. We show that estimating
stepwise goals at the initial time step and carrying them over
to subsequent time steps results in a more precise model of
intention and better guidance for future trajectory.

We present Stepwise Goal-Driven Network (SGNet) to ad-
dress the trajectory prediction problem. SGNet consists of three
main components: (1) A stepwise goal estimator (SGE) that
predicts coarse future goals at multiple temporal scales to encode
a comprehensive representation of the intention. To determine
the significance of each stepwise goal, a lightweight module with
an attention mechanism is used. (2) An encoder that records past
data in conjunction with predicted stepwise goals, to incorporate
a richer hidden representation that aids in predicting the future
and in creating new stepwise goals for the next time step. (3)
A decoder that takes advantage of stepwise goals to predict
future trajectories. We show how stepwise goals evolve and aid
in predicting future trajectory in Fig. 1.

We evaluate our model on multiple first- and third-person
datasets, including both vehicles and pedestrians, and compare
to an extensive range of existing work ranging from deterministic
to stochastic approaches. We surpass or match the state-of-the-
art performance on multiple benchmarks, including different
viewpoints (i.e., first- and third-person) and agents (i.e., cars
and pedestrians).

The contributions of this letter are three-fold. First, our work
highlights a new direction for goal-driven trajectory prediction
by modeling goals at multiple time scales. SGE is a versatile
module that may be applied to a wide range of architectures.
Second, we show how to effectively incorporate each series
of stepwise goals into an encoder and decoder. By integrating
stepwise objectives into the decoder, we can direct the trajectory
prediction in the current step, and by embedding stepwise goals
into encoder, we can generate more accurate future goals for the
next time step. Finally, our goal aggregator employs an attention
mechanism to adaptively learn the relative relevance of each
stepwise goal, thereby improving performance even further.
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Fig. 1. Illustration of stepwise goals (clockwise from top left). Panes (T+0),
(T+1), and (T+2) show the initial, second, and third time step, respectively,
where yellow indicates observed trajectory, red indicates ground truth future
trajectory, green indicates stepwise goals, and cyan indicates prediction. As
the model accumulates historical data, goals build up progressively and become
more accurate, creating better representations of intention. The goals help predict
future trajectory in Pane (T+3). Goals are represented as feature vectors, but we
map them to locations for visualization purposes.

II. RELATED WORK

Trajectory prediction from first-person views jointly mod-
els the motion of observed objects and the ego-camera. Bhat-
tacharyya et al. [8] propose the Bayesian LSTMs to model
observation uncertainty and predict the distribution of future
locations. Yagi et al. [9] use multi-modal data, such as hu-
man pose, scale, and ego-motion, as cues in a convolution-
deconvolution (Conv1D) framework to predict future pedestrian
locations. Yao et al. [10] introduce a multi-stream encoder-
decoder that separately captures both object location and appear-
ance. Makansi et al. [11] estimate a reachability prior for objects
from the semantic map and propagate them into the future.

Trajectory prediction from a bird’s eye view simplifies
the problem by removing the ego-motion. Alahi et al. [12]
propose Social-LSTM to model pedestrians’ trajectories and
interactions. Their social pooling module was improved by [13]
to capture global context. SoPhie [14] applies generative models
to model the uncertainty of future paths. Lee et al. [15] use RNNs
with conditional variational autoencoders (CVAEs) to generate
multi-modal predictions. Recent work [16]–[18] also proposes
graph-based recurrent models, simultaneously predicting poten-
tial trajectories of multiple objects, while [19] exploits more dy-
namic and heterogeneous inputs. PLOP [20] and Argoverse [21]
use the ego trajectory in a bird’s eye view map. Simaug and
SMARTS [22], [23] take advantage of simulation data to train the
prediction model. Others [24]–[29] have explored multimodal
inputs, such as Lidar [30]–[33], to aid in trajectory prediction.

Goal-driven trajectory prediction incorporates estimated
future goals. Rhinehart et al. [2] anticipate multi-modal semantic
actions as the goal and conduct conditional forecasting using
imitative models. Deo et al. [34] estimate goal states and fuse
the results with past trajectories using maximum entropy inverse
reinforcement learning. PECNet [3] infers distant destinations to
improve long-range trajectory prediction. TNT [4] decomposes
the prediction task into three stages: predicting potential target
states, generating trajectory state sequences, and estimating
trajectory likelihoods. BiTraP [5] uses a bi-directional decoder
on the predicted goal to improve long-term trajectory prediction.

In contrast to the above methods that only estimate and use
the final goal (i.e., the destination), our model predicts goals at

multiple temporal scales and incorporates them into our encoder-
decoder framework using attentive mechanisms.

III. STEPWISE GOAL-DRIVEN NETWORK (SGNET)

At time step t, given an object’s observed trajectory in
the last �e steps, Xt = {xt−�e+1,xt−�e+2, . . . ,xt}, where xt

includes its bounding box (i.e., centroid position and width
and height in pixels) and motion (e.g., optical flow, velocity,
and acceleration), our goal is to predict its future positions
Yt = {yt+1,yt+2, . . . ,yt+�d} in the next �d frames.

A. Overview

Because a person’s intentions are a representation of planned
actions, employing a single long-term goal to portray it is quite
limited. To give a more comprehensive intention representation
and improve the quality of trajectory prediction, we propose
estimating numerous smaller goals along the way and explicitly
including them at each decoder time step. Furthermore, people
regularly adjust and optimize their intentions, and previous
intentions can impact how they perceive the present, as well
as aid in the development of new future plans. Thus historical
goals can be treated as additional information in the encoder
for embedding the present representation and to forecast future
stepwise goals. One simple way to merge the stepwise goals is
through average pooling as in [35]. However, we believe that at
each time step, each individual goal has a different impact on
the prediction. Average pooling smooths out the goal features
and hence the important goal features may not be identified.
Therefore, we use an aggregator that adaptively learns the im-
portance of each stepwise goal with an attention mechanism. We
propose a new recurrent encoder-decoder architecture, Stepwise
Goal-Driven Network (SGNet), which predicts goals step-by-
step to provide guidance during trajectory prediction as well as
supplementary features to help predict new goals at the next time
step.

Fig. 2 presents an overview of SGNet. In particular, the
stepwise goal estimator (SGE) predicts an object’s future lo-
cations from t+ 1 to t+ �d as stepwise goals, and embeds
them as input to the decoder in an incremental manner to ensure
trajectory prediction is guided without receiving any redundant
information. SGE also fuses and feeds all predicted goals into
the encoder for the next time step, which, as our experiments
will show, helps encode a better representation of the current
information, and help predicting new stepwise goals for the next
time step.

B. Encoder

The encoder captures an agent’s movement behavior as a
latent vector by embedding its historical trajectory Xt using a
single fully-connected layer. If additional motion features (e.g.,
optical flow) are available, they are also embedded using a sep-
arate fully-connected layer and concatenated with the trajectory
representations. The input feature xe

t is then concatenated with
the aggregated goal information x̃e

t from the previous time step
t− 1, and then the new hidden state he

t is updated through a
recurrent cell. Hidden state he

t+1 and goals x̃e
t+1 are both set to

zero for the first time step. We next discuss how to obtain the
aggregated goal input.
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Fig. 2. Visualization of SGNet. Arrows in red, yellow, and black indicate connections during training, inference, and both training and inference, respectively.
Encoder time evolves vertically, from time t to t+ 1, while decoder time flows horizontally, predicting the trajectory at t+ 1 to t+ ld. For deterministic results,
we replace CVAE with a non-linear embedding.

C. Stepwise Goal Estimator (SGE)

The main idea of SGE is to generate coarse stepwise goals
to assist trajectory prediction in a coarse-to-fine manner. These
goals also help the network to create a new stepwise goal for
the next step. Consequently, we design SGE to predict and
convey the predicted coarse stepwise goals to both encoder
and decoder. For encoder, at each time step t, a set of step-
wise goals from t− 1 is concatenated with the input to serve
as supplementary features, helping the encoder learn a more
discriminative representation of the sequence. Since inaccurate
future goals may mislead the prediction, we use a goal aggregator
that adaptively learns the importance of each stepwise goal by
using an attention mechanism. Meanwhile, for decoder, at each
time step t+ i (i ∈ [1, �d]), a subset of stepwise goals ht+i:

serves as coarse guidance to help trajectory prediction, and a
goal aggregator again gathers the selected goals.

We define a generic SGE module fSGE as,

hg
t+1: = fSGE(ReLU(WT

γ h
e
t + bγ)) (1)

where hg
t+1: is a sequence of stepwise goals, and hg

t+1: =
{hg

t+1, h
g
t+2, . . . , h

g
t+�d

}. he
t is the encoder hidden state at time

t. We found that SGE is open to different implementations
including recurrent, convolution, and fully-connected layers, as
will be described in Sec. IV-D. To regularize SGE to generate
goals that contain precise future information, we regress the
goal position Ŷg

t using the same regressor defined in Sec. III-E
to minimize the distance between goal position and the ground
truth.
Goal Aggregator for Encoder and Decoder. We design goal
aggregators for both the encoder and decoder, in order to com-
bine and compress multiple goals into a single representation
with attention. We define the goal aggregator,

w = Softmax(WT Tanh(hg
t+i:) + b) (2)

x̃t+i = fattn(h
g
t+i:) =

�d∑
s=t+i

wsh
g
s , (3)

where w is an attention vector corresponding to the probability
distribution over a subset of estimated goals, andws is the weight

Fig. 3. Detailed structure of Goal Aggregator. It receives a set of stepwise
goals as inputs and calculates the attention weights adaptively. The re-weighted
goal features are fed into encoder or decoder.

for each individual goal hg
s . The overall structure is shown in

Fig. 3.
For the encoder, we hypothesize that the anticipation dif-

fers at each time step, and people’s anticipation in the past
may influence their perception of the present and future.
As a result, at time t, the encoder receives stepwise goalshg

t+1: =
{hg

t+1, h
g
t+2, . . ., h

g
t+�d

}. For the decoder, at time step t+ i, the
decoder receives goals hg

t+i: = {hg
t+i, h

g
t+i+1, . . ., h

g
t+�d

}, and
the goals before t+ i are ignored, because these are redundant
and have been encoded in the historical information.

D. Conditional Variational Autoencoder (CVAE)

A Conditional Variational Autoencoder (CVAE) framework
is applied to learn the distribution of future trajectory Yt con-
ditioned on the observed trajectory Xt by introducing a latent
variable z. Following prior work [3], [5], [8], our CVAE con-
sists of three components: recognition network Qφ(z|Xt, Yt),
prior network Pν(z|Xt), and generation network Pθ(h

d
t |Xt, z),

where φ, ν, θ denote the parameters of these three networks,
and hd

t is the trajectory encoded by the generation network.
Recognition, prior, and generation networks are implemented
with fully-connected layers.

During training, the ground truth future trajectory Yt is
fed into the target encoder to output the hidden state hYt

. To
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capture the dependencies between observed and ground truth
trajectories, the recognition network takes hidden states he

t and
hYt

and predicts the distribution meanμq
z and standard deviation

σq
z . The prior network takes he

t only and predicts μp
z and σp

z . We
sample z from N(μq

z, σ
q
z) and concatenate it with he

t to generate
hd
t with the generation network. During testing, the ground

truth future trajectory is not available. The generation network
concatenates z, which is sampled from N(μp

z, σ
p
z ) with he

t and
produces hd

t .

E. Decoder

Our recurrent decoder outputs the final trajectory Yt =
{yt+1,yt+2, . . . ,yt+�d} with a trajectory regressor. Given hd

t

and estimated goal input x̃d
t+1, it produces a new hidden state

for the next time step through a recurrent cell. Our trajectory
regressor is a single fully-connected layer that takes hidden states
hd
t+i and computes a trajectory ŷt+i at each time step,

F. Loss Functions

We use the Root Mean Square Error (RMSE) as loss function
to supervise trajectory prediction from our decoder. For our
stochastic model using CAVE, we follow [5], [8] and adapt
best-of-many (BoM) approach to minimize the distance between
our best prediction Ŷt and target Yt. This approach leads to
more accurate and diverse predictions and encourages the model
to capture the true variation in data. To ensure SGE to predict
accurate goal states, we also optimize the prediction from SGE
using RMSE between goal prediction Ŷg

t and ground truth Yt.
Finally, we add KL-divergence loss (KLD) to optimize the prior
network in the CVAE. Thus, for each training sample, our final
loss is summarized as follows,

Ltotal = min
∀k∈K

RMSE(Ŷk
t ,Yt) + RMSE(Ŷg

t ,Yt)

+ KLD(Qφ(z|Xt, Yt), Pν(z|Xt)),

where Ỹk
t is thek-th trajectory hypothesis from CVAE, Ỹg

t is the
predicted stepwise goal location, and Yt is the object’s ground
truth location at time t.

IV. EXPERIMENTS

A. Datasets

First-person datasets. JAAD [41] and PIE [37] have egocen-
tric videos recorded at 30 frames per second (fps), and consist
of 2,800 and 1,835 pedestrian trajectories, respectively. Follow-
ing [37], we divided the datasets into train (50%), validation
(10%), and test (40%) sets. HEV-I [10] includes 230 videos that
are splitted into 40,000 train and 17,000 test samples. Follow-
ing [10], the annotations are generated by using Mask-RCNN
and Sort [42] with a Kalman filter. We use 1.6 seconds of
observations to predict future trajectories of length 0.5, 1.0, and
1.5 seconds.

Third-person dataset. ETH [43] and UCY [44] include 1,536
pedestrians in 5 sets of data with 4 unique scenes. Following
prior work [19], a leave-one-out strategy is used to split the
train and test sets. We use 3.2 seconds of observations to predict

4.8 seconds future trajectories. NuScenes [45] is a dataset for au-
tonomous driving, and we follow the their prediction challenge
splits and settings. We use 2 seconds of observations to predict
6 seconds future trajectories.

B. Implementation Details

We use Gated Recurrent Units (GRUs) as the backbone for
both encoder and decoder with 512 hidden size. The length of
the observation �e is determined by the default setting of each
benchmark: �e is 16 on HEV-I, 15 on JAAD, 15 on PIE, and
8 on ETH-UCY. Object bounding boxes are taken as inputs
for JAAD and PIE, and following [10], optical flow is also
included on HEV-I. We follow [19] to use object centroids,
velocities, and accelerations as inputs for ETH and UCY. We
use the Adam [46] optimizer with initial learning rate 5× 10−4,
which is dynamically reduced based on the validation loss. Our
models are optimized end-to-end with batch size 128 and the
training is terminated after 50 epochs.

C. Evaluation Protocols

Our main evaluation metrics are average displacement error
(ADE), which measures accuracy along the whole trajectory,
and final displacement error (FDE), which measures accuracy
only at the trajectory end point. For first-person datasets, we
use upper-left and lower-right coordinates of bounding boxes
to calculate ADE and FDE, except for HEV-I where we only
use the upper-left coordinate to be consistent with prior work.
In the bird’s eye view ETH and UCY datasets, we follow prior
work to use the coordinates of points. To compare to the state-
of-the-art [36] in HEV-I, we also use final intersection over
union (FIOU), the overlap between the predicted bounding box
and ground truth at the final step, which measures the model’s
ability to predict both the scale and location of bounding boxes in
the long-term. We use mean squared error (MSE) to evaluate
our performance on JAAD and PIE, calculated according to
the upper-left and lower-right coordinates of the bounding box.
Center mean squared error (CMSE) and center final mean
squared error (CFMSE) are similar to ADE and FED except
they are computed based on the bounding box centroids. All
results metrics used for HEV-I, JAAD, and PIE dataset are in
pixels, while for ETH and UCY we compute the ADE and FDE
in Euclidean space.

D. Exploration Study

We begin with experiments for design trade-offs and training
strategies of our architecture with JAAD and PIE.

How to implement SGE? We considered three instantiations
of fattn in the SGE module. First, we implement SGE with
GRUs (Table I, row 9). The hidden size is set to 128, since
we only need a lightweight module to produce a coarse goal
prediction. hg

t+i is defined to be the hidden state at time t+ i,
which is initialized by using the encoder hidden state he

t after a
linear transformation. The GRU input xg

t+1 is initialized with a
zero vector and updated using the auto-regressive strategy, and
the sequence of the output hidden state at each time step is used
as the stepwise goals. Second, we try SGE with a multilayer
perceptron (MLP) (Table I, row 10) that takes the encoder hidden
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TABLE I
EXPLORATION STUDY OF OUR MODEL ON JAAD AND PIE. ↓ DENOTES LOWER IS BETTER. THE LAST ROW IS OUR BEST MODEL

states he
t as input, and directly outputs �d goals of size 128. We

call this SGNet-ED-MLP. Third, we follow [9] and implement
a convolution-deconvolution framework for SGE to predict the
stepwise goals (Table I, row 11).

As shown in Table I, all of the above variants achieve the
state-of-the-art results, indicating that the SGE module is not
sensitive to the choice of fattn. The results also suggest that
using temporal models, such as GRU, as SGE is more effective
and robust in future trajectory prediction. Thus, we use this
version in the remaining experiments (SGNet-ED).

What if the decoder or the encoder does not receive pre-
dicted goals? To evaluate the importance of using predicted
goals in the decoder and encoder, we implemented two baselines
that remove the connection between SGE and the decoder (first
row) or the encoder (second row). Table I demonstrates that our
best model (last row) outperforms both baselines significantly,
highlighting the importance of incorporating predicted goals
in both the decoder and encoder for achieving more accurate
results.

Does SGE need supervision? To investigate whether super-
vised stepwise goals offer more accurate information for trajec-
tory prediction, we train our network without the goal module
loss, RMSE(Ŷg

t ,Yt). This change decreases the accuracy of our
best model by 13/68/208 and 15/57/181 on JAAD/PIE for 0.5 s,
1.0 s, and 1.5 s MSE, respectively. This suggests supervision
on SGE leads to better goal representation to help predicting
trajectory, and thus using loss to optimize SGE is important in
our model.

What if we exclude goal aggregator? For each time step,
each individual goal has a different impact on the prediction.
Thus we develop goal aggregators that use an attention mecha-
nism to understand the relative importance of different subsets
of future goals. The results in Table I show that excluding
this attention mechanism (row 3) reduces significantly reduces
results compared to our full model.

Are stepwise goals better than fewer goals? To further
illustrate that using stepwise goals is superior to fewer or only
long-term goals, we replace stepwise goals with different num-
ber of goals in the encoder and decoder. We show the results
in Table I (Row 4–9). For each setting, we always include
the last goal, and add more goals incrementally. The results
indicate that as goals are added, they offer extra information

and can significantly enhance trajectory prediction performance.
Performance is optimal when goals are predicted at each time
step.

Our full model (SGNet-ED) thus uses GRU as the backbone
for SGE, and the output stepwise goals are fed into both en-
coder and decoder. Our final loss term includes goal loss, BoM
trajectory loss, and KLD loss.

How to handle multi-modal data? Handling multi-modal
input such as social cues/interactions or ego-motion is a classic
problem in trajectory prediction. For demonstration, we con-
ducted an experiment on NuScenes prediction challenge split in
the Table VI to show the ability to integrate map and interaction
information: we followed CoverNet [49] to rasterize the location
of each agent in the scene and overlay it on the map. We use a
four layer CNN to extract features from the overplayed map and
combine it with the initial decoder hidden state. We submitted
our result to NuScenes and ranked third place in NuScenes
prediction challenge at the 6th AI Driving Olympics [50]. The
results suggest that social cues and map information can be
implicitly learned and integrated into our model, considerably
improving the final results. Note our proposed module is a simple
and efficient temporal unit, and we only take historical trajectory
as an input in the following experiments.

E. Comparison With the State-of-The-Art

In this section, we compare our best model under two different
settings: deterministic, in which the model returns a single tra-
jectory, and stochastic, in which we report the best-performing
sample among K trajectories.

1) Deterministic Results on First-Person Benchmarks: We
start by evaluating our model’s performance on predicting
pedestrian trajectory in two first-person datasets. As shown in
Table II, our model (SGNet-ED) significantly outperforms the
state-of-the-art on the first-person pedestrian detection datasets.
Compared to [5] on JAAD, our model reduces the MSE error
by 13%, 15%, and 15% for 0.5 s, 1.0 s, and 1.5 s prediction,
respectively. On PIE, our model reduces MSE by 3%, 9%, and
11% for 0.5 s, 1.0 s, and 1.5s prediction. As the prediction time
range increases (and thus the problem becomes harder), our
model decreases MSE more significantly, suggesting that SGE
is especially helpful for long-term prediction. We obtain similar
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TABLE II
DETERMINISTIC RESULTS ON JAAD AND PIE IN TERMS OF MSE/CMSE /CFMSE . ↓ DENOTES LOWER IS BETTER

TABLE III
DETERMINISTIC RESULTS ON ETH AND UCY IN TERMS OF ADE/FDE. ↓ DENOTES THE LOWER THE BETTER

TABLE IV
STOCHASTIC RESULTS ON JAAD AND PIE IN TERMS OF MSE/CMSE /CFMSE . ↓ DENOTES LOWER IS BETTER

results from other evaluation metrics, as shown in Table II. In
addition, we perform experiments on the HEV-I first-person
vehicle dataset. Our SGNet-ED yields 6.28, 11.35 and 18.27
for 0.5 s, 1.0 s, and 1.5 s ADE, 39.86 for FDE, and 0.63 for
FIOU. Our results improve by an average of 10% over [36].

2) Deterministic Results on Third-Person Benchmarks: Ta-
ble III shows that our model outperforms the state-of-the-art by
more than 10% in terms of ADE and FDE on average.

3) Stochastic Results on First-Person Benchmarks: To fairly
compare with [5], we generate K = 20 proposals and report
the best-performing sample. For the first-person datasets, our
method outperforms the state-of-the-art by an average of 14%
on JAAD and 25% on PIE (Table IV).

4) Stochastic Results on Third-Person Benchmarks: For
ETH-UCY, we follow the leave-one-out evaluation protocol with
K = 20 by following the prior work in Table V. SGNet-ED
outperforms the current state-of-the-art stochastic model [5]
by 5% on average on ETH, ZARA1 and ZARA2, and achieves
comparable results on HOTEL and UNIV.

As with the first-person datasets, our model leads to a larger
improvement as the prediction length increases, implying that
estimated stepwise goals provide better temporal information for
accurately predicting the location and magnitude of objects. For
the third-person dataset, our model does not explicitly model

interaction, which may explain why our model is better on
less complex scenes (ETH, ZARA1 and ZARA2). Including
interaction or scene maps may help our model to improve on
crowd scenes.

F. Qualitative Results

The first row of Fig. 4 shows four examples of our best
model’s deterministic predictions on JAAD, HEV-I, ETH, and
UCY, respectively. In (a), the pedestrian intends to cross the
street as the ego-vehicle approaches. The historical trajectory
was determined by the pedestrian’s movement and the vehicle’s
ego-motion. The prediction shows the intention of the pedestrian
to cross ahead of the ego-vehicle, avoiding a collision. In (b), the
target vehicle makes a right turn ahead of the ego-vehicle, and
the ego-vehicle waits for it after the turn. In (c), the pedestrian
follows a curved route, and (d) demonstrates our ability to
notice the pedestrian’s immediate change and make an accurate
prediction.

The second row of Fig. 4 shows four examples of our
best model’s stochastic predictions. We show all 20 stochastic
trajectories generated by our best model. Images (e) and (f)
illustrate the results of JAAD and PIE, respectively, which both
anticipate the presence of a pedestrian crossing the street. Images
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TABLE V
STOCHASTIC RESULTS ON ETH AND UCY IN TERMS OF ADE/FDE. ↓ DENOTES LOWER IS BETTER

Fig. 4. Qualitative results. The yellow color indicates the observed trajectory, the red color indicates the ground truth future trajectory, and the cyan color indicates
the predictions from our SGDNet-ED model (better in color).

TABLE VI
RESULTS ON NUSCENES WITHOUT (FIRST ROW) AND WITH (SECOND ROW)

MAP AND INTERACTION (MI)

(g) and (h) show the scene in ETH and UCY. Most of the
predictions are close to the ground truth trajectory and bounding
box, indicating the stability of our stochastic prediction model.

G. Failure Cases

Fig. 5 studies two failure cases of our model. In case (a), the
marked person is descending the stairs in the near future, but
our model fails to predict the correct trajectory due to the lack
of context information and interaction between pedestrians. In
case (b), most of the stochastic predictions show the pedestrian
walking along the road, but one prediction indicates the pos-
sibility that the pedestrian may cross the road along the zebra
crossing. However, this error may be a “blessing in disguise,”
for example helping an autonomous driving system to prepare
for a potential future risk.

Fig. 5. Failure cases of deterministic (a) and stochastic (b) predictions. The
yellow color indicates the observed trajectory, the red color indicates the ground
truth future trajectory, and cyan color indicates the predictions from our SGNet-
ED model (better in color).

V. CONCLUSION

We presented SGNet to tackle the trajectory prediction prob-
lem. Unlike most existing goal-driven models that only estimates
final destination or distant goals, SGNet predicts both long-
and short-term goals and explicitly incorporates these estimated
future states. We showed that these goals can help to predict
the trajectory. We conducted extensive experiments on three
first-person and three bird’s eye view datasets to evaluate the
proposed approach. Experimental results showed the effective-
ness and robustness of our models against the state-of-the-art
methods.
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