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Abstract
Case-based reasoning (CBR) is a knowledge-based reasoning and learning methodology that applies
prior cases—records of prior instances or experiences—by adapting their lessons to solve new problems.
The CBR process enables explainable reasoning from few examples, with minimal learning cost. How-
ever, the success of CBR depends on having appropriate similarity and adaptation knowledge, which
may be hard to acquire. This paper illustrates the opportunity to leverage neural network methods to
reduce the knowledge engineering burden for case-based reasoning. It presents an experimental exam-
ple from ongoing work on refining the case difference heuristic approach to learning case adaptation
knowledge by applying neural network learning.
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1. Introduction

Case-based reasoning (CBR) is a methodology for reasoning and learning in which agents rea-
son by retrieving and adapting the lessons of prior episodes [1, 2, 3, 4, 5]. A major inspiration for
CBR models came from observations of human reasoning [2, 6]. Human experts—and others—
are reminded of past experiences as they encounter new problems. The sharing of "war stories"
is a common way experts transmit knowledge. Motivations for applying CBR include easing
knowledge acquisition, both because cases may be easier to elicit than rules [3] and because,
in some domains, cases are captured routinely as a byproduct of other processes, providing
a readily-available knowledge resource [7]. CBR also provides multiple choices for where to
place domain knowledge, enabling knowledge engineers to focus knowledge capture effort
wherever most convenient. CBR models have been developed for many knowledge-rich tasks
and have been widely applied [8, 9, 10, 11].

However, even when case acquisition and engineering are straightforward, case-based rea-
soning requires additional knowledge sources that may be difficult to acquire. Most notably, the
knowledge used to adapt prior solutions to new circumstances is often captured in rule-based
form and may be hard to generate. For many years, acquiring case adaptation knowledge has
been seen as a key challenge for case-based reasoning [3, 12]. The difficulty of acquiring case
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adaptation knowledge has led to numerous CBR applications that focus primarily on retrieval
[13, 14], functioning as extended memories for a human rather than as full problem-solvers.

The difficulty of capturing adaptation knowledge has led to interest in how case adaptation
knowledge can be learned. The most widely used approach, called the case difference heuristic
[12], generates rules by comparing pairs of cases, ascribing differences in their solutions to
differences in the problems they address. The method generates new rules that adjust solutions
analogously when a retrieved case differs from a new problem in a similar way. This approach
has proven useful, but has depended on human expertise to define problem characterizations
and to determine how to generalize the observed differences.

This paper argues for increasing the flexibility and accuracy of case difference heuristic mod-
els by using a neural network to learn how to process a given difference. Following on seminal
work by Liao, Liu and Chao [15], it implements a case difference heuristic model by using
a neural network to learn how to process a given difference. However, rather than relying
only on the difference, as in their work, our approach also provides the neural model with the
problem context in which the adaptation is performed. We present experiments illustrating its
benefits over both CBR baselines and a neural net baseline. Because an important benefit of
adaptation is extending the ability of a CBR system to address novel queries, we specifically test
performance for such queries. The results support the benefit of the approach in that setting.

The paper first highlights the complementary strengths of case-based reasoning and neural
network methods, which make it appealing to achieve benefits from both by using network
methods to support case-based reasoning. It then sketches the steps of the case-based reason-
ing process, the sources of knowledge on which it depends, and the case difference heuristic
approach to learning case adaptation knowledge. It next presents a preliminary case study on
exploiting a neural network to determine solution differences for the case difference heuris-
tic. Finally, it considers broader opportunities for synergies between case-based reasoning and
network methods.

2. Complimentary Strengths of Case-Based Reasoning and
Network Methods

The contrasting properties of CBR and network models make it appealing to use network meth-
ods to support CBR. CBR is appealing because it can function successfully with very limited
data, and because the ability to place knowledge in multiple “knowledge containers” (as de-
scribed below) can facilitate development of knowledge-rich systems. In addition, it is a lazy
learning method with inexpensive learning: CBR systems learn by simply storing new cases,
without generalization until (and only if) needed to process a new problem.

Neural network models, in contrast, do not easily exploit prior knowledge. They depend on
large data sets and are an eager learning method, generalizing at training time, making learning
expensive. However, they offer the ability to achieve high performance in a knowledge light
way. Thus they are promising for learning from data to support CBR.
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Figure 1: The CBR cycle. Image based on Aamodt and Plaza [1]

3. Case-Based Reasoning and Knowledge

3.1. The CBR Cycle

The CBR process is a cycle in which problems are presented to the system for processing steps
often described as retrieve, reuse, revise, and retain. The most relevant prior case is retrieved, its
solution is reused—matched to the new situation—and then revised—adapted to fit—and finally,
retained—stored as a new case, learned by the system. The process is illustrated in Figure 1.

The case-based reasoning process uses multiple forms of knowledge, commonly referred to
as the CBR knowledge containers [16]: representational vocabulary, case knowledge, similarity
knowledge, and case adaptation knowledge. The knowledge containers can be seen as over-
lapping, in the sense that placing knowledge in one can decrease the need for knowledge in
another. For example, increasing the case base size can decrease the need for adaptation knowl-
edge, if the added cases enable retrieving cases more similar to incoming problems (which
reduces the need for adaptation). The ability to choose where to place knowledge provides
flexibility for knowledge acquisition from humans and by automated learning methods.

3.2. Acquiring Case Adaptation Knowledge

Acquiring case adaptation knowledge is a classic hard problem for case-based reasoning. Case
adaptation knowledge is often encoded in the form of rules, whose effectiveness may depend
on quality of a domain theory. Early case-based reasoning research invested extensive effort
to develop case adaptation knowledge (e.g., [17]). The difficulty of generating case adaptation
knowledge was a serious impediment to the development of CBR systems with rich reasoning,
and prompted development of case-based aiding systems which functioned as external mem-
ories, retrieving cases to present to the user without adaptation [13]. Later work recognized
the potential of learning methods to capture case adaptation knowledge. These included the
generation of rules by decision tree learning [18, 19], and the use of case-based reasoning for
the adaptation process itself [20, 21, 22, 23]



The most influential adaptation rule learning approach is the case-difference heuristic (CDH)
approach. This knowledge-light approach generates adaptation knowledge using cases in the
case base as data (e.g. [12, 24, 25, 26, 27, 28]). The case difference heuristic generates rules
for adapting retrieved cases to fit new problems, using cases in the case base. Given a pair of
cases, it calculates the difference between their problem descriptions (generally represented
as feature vectors) and the difference between their solutions (generally numerical values for
regression tasks). From the pair, a rule is generated. The rule encodes that when an input
problem and retrieved case have a problem difference similar to the one from which the rule
was generated, the solution for the retrieved case should be adjusted by the previously observed
solution difference. For example, in the real estate price prediction domain, a rule might be
generated from two similar apartments, one a two-bedroom and the other a three-bedroom, to
adjust the price given an additional bedroom. Normally, human knowledge is used to determine
how the adjustment should be done (e.g., a fixed or percent increment), and the process relies
on the assumption that the old and new contexts will be sufficiently similar for the rule to apply
to future cases.

Liao, Liu and Chao [15] have applied deep learning to learn differences to assign to the solu-
tion of a retrieved case for regression problems. Their method presents the problem difference
of two cases to a network which has been trained on pairs to output solution differences. Craw
et al. [29] showed that with careful tuning of feature weights, superior performance can be
achieved by taking more context into account for the case difference heuristic. We are in-
vestigating the use of network methods to avoid the tuning step when adding context to the
case-difference heuristic approach.

4. An Illustration from Case Adaptation

To investigate the effect of using a network to learn adaptations taking into account the context,
we conducted an initial experiment. Liao, Liu and Chao [15] tested neural network adaptation
for the NACA 0012 airfoil dataset [30] from the UCI repository [31]. Their results showed that
neural networks can learn adaptations for a CDH approach in that domain. Our experiment
compares five different systems: a k-NN system with 𝑘 = 1, which can be seen as a CBR system
with no case adaptation, a k-NN system with 𝑘 = 3, which can be viewed as a CBR system with
very simple adaptation (solution averaging), a CBR system using adaptation rules generated
using the case difference heuristic ("normal CDH"), inspired by Craw et al. [29], a CBR system
using a neural network to learn rules from CDH and carry out adaptation (“network CDH”),
and, as a further baseline for comparison, a NN system that solves the regression problem
directly.

The design of the network CDH system builds on the model of of Liao et al. [15], but dif-
fers in two respects. First, in addition to taking as input the problem differences, it takes as
input the problem of the retrieved case, which provides context for the adaptation. Second,
in addition to being trained on pairs of similar cases, it is trained on pairs of random cases,
enabling generation of rules for larger differences (cf. Jalali and Leake [32]). Our experimental
procedure differs from theirs in testing on data sets for which we restrict the available training
cases so that the test query is always novel.



4.1. Implementations

The NN system is implemented as a feedforward neural network of four fully connected layers.
Depending on the task domain, there is minor variation in the number of neurons per layer.
The system is trained until the validation error converges.

The CBR system with normal CDH is implemented following Craw et al. [29]. A pair of
cases is compared to produce an adaptation example, within which one of the two cases’ prob-
lem descriptions is used as a context, indicating that a problem difference in such a context
can lead to such a solution difference. This system is denoted as “CBR + normal CDH" and
implemented as follows:

• Case retrieval: Training cases are stored in a case base. Given a query, the case retrieval
process finds the most similar case from the case base using 1-NN.

• Case adaptation: During training, adaptation examples are assembled from pairs of train-
ing cases and stored in an adaptation case base 𝐶𝐵𝐴. During testing, the problem differ-
ence between the query and the retrieved case is calculated. The problem description of
the retrieved case is used as the context. Then a non-optimized 1-nearest neighbor algo-
rithm retrieves the most similar adaptation example. This solution difference is added to
the retrieved solution to produce the final solution.

The second system, the CBR system using CDH assisted by a neural network, denoted as “CBR
+ network CDH”, and is based on Craw et al. [29] and Liao et al. [33]. Following the latter, a
neural network 𝑁𝑁𝑎 is trained from cases treated as adaptation examples, as follows:

• Case retrieval: Training cases are stored in a case base. Given a query, the case retrieval
process finds the most similar case from the case base using 1-NN. This is the same as in
CBR + normal CDH.

• Case adaptation: During training, pairs of training cases are used to train an adaptation
neural network 𝑁𝑁𝑎 to produce a solution difference given a problem difference and a
context. During testing, the problem difference between the query and the retrieved case
is calculated. The problem description of the retrieved case is used as the context. Then
𝑁𝑁𝑎 uses the problem difference and the context to propose a solution difference. This
solution difference is added to the retrieved solution to produce the final solution.

For a given task domain, the required NN system might vary (e.g., more neurons might be
needed if a case’s problem description contains many features). No matter the variation of the
NN system, the CBR + network CDH system always uses the same structure for 𝑁𝑁𝑎.

We note that the experiments use a minimalistic design for all three systems. A CBR system
can take many forms involving design choices such as retrieval, adaptation, case maintenance,
user feedback and intervention, etc.; similarly, a NN system can vary by using different layers,
numbers of neurons, activation functions, and connectivity. The CBR + network CDH and CBR
+ normal CDH systems are trained on the same adaptation examples, and the CBR + network
CDH and NN systems use the same neural network structure. Our choices of models are based



on the goal of a simple yet fair comparison, where all models are given the same case base and
similar computational power.

All experiments are done under a constrained setting previously used by Leake and Ye [34],
in which each test case is “forced” to be novel: the training phase is done after a test case is
chosen, so the systems are only allowed to train on not-too-similar cases. More specifically:

• Before the systems are trained, a test case is chosen from the test set to be the query.

• The top 𝑛𝑐𝑟 (standing for number of cases removed) neighbors of the query are identified
and temporarily removed from the case base.

• The systems train using the trimmed case base:

– The NN system is trained on 90% of the trimmed case base with the remainder
used as the validation data set. The NN system is trained until its validation error
converges.

– The k-NN system is provided with the trimmed case base as training examples.

– The CBR system uses the above k-NN with 𝑘 = 1 as its case retrieval process.
The CBR system trains its adaptation knowledge in a process inspired by Jalali and
Leake [32]. From the trimmed case base, the CBR system assembles 𝑛 pairs of a case
and its nearest neighbor, using 𝑟𝑝 (standing for random pairs) pairs of randomly
chosen cases.

• After the training phase, each system is tested on the query.

4.2. Experiment on Airfoil Data Set

For comparison with the results of Liao et al. [33], we performed the above experiment for the
airfoil self-noise data set. In this data set, a problem description 𝑋 is a vector of 5 numeric
attributes describing wind and the airfoil blade section, and a solution description 𝑦 is the
sound level of the noise generated by the airfoil blade. The data set contains 1503 cases, 10%
of which are used as the test cases. We use 𝑟𝑝 = 5000 and 𝑛𝑐𝑟 is chosen from the range of
{100, 200, 300, 400, 500}.

4.2.1. Experimental Results

The results are shown in Table 1. As 𝑛𝑐𝑟 increases, all systems suffer to some extent because
the queries become harder to solve. The system with the best result for each 𝑛𝑐𝑟 is highlighted.
We note that 3-NN consistently outperforms 1-NN, presumably because multiple retrievals de-
crease the influence of a potentially misleading nearest case. CBR + network CDH consistently
outperforms 1-NN and 3-NN, which is expected because of the ability to do better adaptation.
CBR + normal CDH performs poorly through all experiments. Given the better performance of
CBR + network CDH, we hypothesize that the poor performance is due to inability to reliably
select the right adaptation. A similar effect was observed by Craw et al. [29], where a suitable
technique was needed to retrieve the best adaptation example. The NN system consistently



Table 1
Average MSE of systems for different values of 𝑛𝑐𝑟 on the Airfoil dataset.

Number of cases removed (ncr)

100 200 300 400 500

3-NN 1.083 1.229 1.387 1.600 1.742
1-NN 1.374 1.698 1.845 2.184 2.403
CBR + network CDH 0.484 0.693 0.824 1.016 1.168
NN 0.409 0.549 0.749 0.864 1.267
CBR + normal CDH 1.175 1.893 1.919 2.522 2.593

outperforms all other systems, and the CBR system ranks second, except when 𝑛𝑐𝑟 = 500 and
the CBR + network CDH ranks first.

In this data set, there are plenty of samples for values in each dimension, and many cases
share the same attributes. In such a setting the NN system can learn to solve novel queries.
When enough cases are removed to impair the NN system, the adaptation knowledge and
overall performance of CBR + network CDH are also impaired.

4.3. Experiment on Car Features and MSRP Data Set

The next experiment is carried out on the Car Features and MSRP Data Set from Kaggle [35].
A problem description 𝑋 contains fifteen numeric features such as engine horse power, and
nominal features such as make and model. A solution description 𝑦 is the price of a car. For
cars sold in 2017, Manufacturer Suggested Retail Price (MSRP) is used. For older cars, True
Market Value is collected from edmunds.com.

4.3.1. Experimental Settings

The original data set contains about 12000 cases. We cleaned the data by dropping rows with
missing values. Nominal attributes were transformed into one-hot encodings. Additionally,
we removed 4000 cases which share the same attributes with other cases but have slightly
different solutions. We also removed extreme outlier cases (the rare cases with a solution price
above 600,000). The cleaned data set contains 6629 cases, each with 1009 dimensions. The high
dimensionality is due to the variety of values in nominal attributes, which are converted into
one-hot encodings.

As in previous experiments, 10% of the cases are used as test queries. We use 𝑟𝑝 = 10000, and
𝑛𝑐𝑟 is chosen from the range of {0, 1, 2, 10, 50, 100}. Differently from previous experiments, we
evaluate systems when 𝑛𝑐𝑟 = 0. Due to the time cost of our special testing procedure, we only
test 50 random queries per experiment when 𝑛𝑐𝑟 ≠ 0.

4.3.2. Experimental Results

The test results are shown in Table 2. The best systems have comparable performance when
𝑛𝑐𝑟 = 0 or 𝑛𝑐𝑟 = 1. The CBR system substantially outperforms all other systems when 𝑛𝑐𝑟 ≥ 2.



Table 2
Average MSE of systems for different values of 𝑛𝑐𝑟 on the Car Dataset.

Number of cases removed (ncr)

0 1 2 10 50 100

3-NN 0.106 0.216 0.560 1.623 1.477 1.768
1-NN 0.065 0.040 0.497 1.677 1.527 2.039
CBR + network CDH 0.029 0.030 0.049 0.257 0.237 0.256
NN 0.035 0.080 0.108 0.413 0.544 0.560
CBR + normal CDH 0.076 0.067 0.489 1.672 1.487 1.973

Due to the high dimensionality, removing cases heavily impacts the quality of the nearest
neighbor retrieval, as shown by the k-NN systems when 𝑛𝑐𝑟 ≥ 2. Without similar cases, the
NN system cannot learn general knowledge about the query even if a minimal number of cases
is removed, as shown by the NN system when 𝑛𝑐𝑟 ≥ 2. Nonetheless, we see the CBR system
performs exceptionally well for novel queries in such a high dimensional data set. The general
knowledge learned by the NN system may be less suitable to this novelty, while the adaptation
knowledge learned by the CBR + network CDH system from (𝑛 + 𝑟𝑝) pairs of cases is less
affected. Finally, we note that CBR + network CDH is essentially adapting the results of 1-NN.
By comparing the two rows, we notice that often 1-NN performs poorly but the adaptation
process often successfully estimates a correct result.

5. Opportunities for Using CBR Knowledge to Benefit Deep
Networks

Additional opportunities for synergies between case-based reasoning and deep learning come
in the reverse direction: how case-based reasoning may support deep learning.

Research on case-based reasoning supporting deep learning has primarily focused on using
CBR systems and DL systems in parallel, to exploit the availability of similar cases when assess-
ing network conclusions. Gates, Kisby, and Leake [36] propose pairing CBR and DL systems to
assess solution confidence. Much CBR research has advanced the idea of "twin systems" that
pair CBR and DL for explainability, as described in a survey by Keane and Kenny [37].

We see additional opportunity for fruitful pairings. One of the most knowledge-rich com-
ponents of many CBR systems is the case adaptation knowledge component. This paper has
discussed methods for decreasing the knowledge acquisition burden for case adaptation knowl-
edge. Once adaptation knowledge has been acquired, either by human knowledge engineering
or automatically, it becomes a resource that can be used in other contexts. We plan to explore
the application of case adaptation knowledge to adapt the solutions generated by network
methods.



6. Conclusion and Next Steps

Case-based reasoning provides benefits of explainability and the ability to reason effectively
from small data sets, but suffers from the difficulty of obtaining knowledge to adapt cases.
This paper has illustrated how a network approach can alleviate this knowledge acquisition
problem, using an approach that augments prior work by considering the problem context in
addition to the difference between cases. Experiments support improved performance, espe-
cially on novel queries, for which supporting adaptations with a neural network provides better
performance than directly performing the task with the baseline neural network.

A next step will be to extend the CDH approach by exploiting the strength of deep learning
to generate feature descriptions. Rather than relying on a network to learn the appropriate
difference for a rule to apply, we intend first to use a deep network to derive the features to use
to represent problems and solutions, and apply the case difference heuristic to learn adaptation
rules for that new representation. This approach will use machine learning to refine both the
vocabulary knowledge container and the adaptation knowledge container.
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