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Abstract

In this paper we describe our recent research ef-
forts towards reliable and automatic generation of
indices for use in content understanding of video.
Following our earlier research in temporal shot seg-
mentation of video, we have developed a compre-
hensive system framework for segmenting an uncon-
strained variety of text from general purpose broad-
cast video. In addition, the framework also contains
a novel tracking and a binarization algorithm. Also
developed to be a part of the above framework are
other modules, viz. a novel scene text segmenta-
tion method, and a novel text segmentation method
which extracts uniform colored text from still video
frames. We have thoroughly evaluated the meth-
ods which form a part of our framework against a
fairly large dataset. The framework applies a bat-
tery of methods for reliable localization and ectrac-
tion of text regions. Towards this, we have developed
methods for fusing the results from different meth-
ods. More recently, we have extended our interest to
localizing and extracting stylized text from video and
determining the lifetimes of the video text events.
Results from the above research are presented in this

paper.
1 Introduction

The use of digital video is becoming increasingly
ubiquitous. Today, many homes are maintaining
personal media archives. Large media archives are
also being maintained by several organizations with
an interest in commerce, entertainment, medical re-
search, security, etc. Additionally, there has been a
growing demand for image and video data in applica-
tions, due to the significant improvement in the pro-
cessing technology, network subsystems and avail-
ability of large storage systems. Use of digital video
involves capture, compression, archival, indexing, re-
trieval, querying, browsing, transmission, and view-
ing. While capture, compression and archival issues
are being addressed by better hardware, transmis-
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sion is the subject of recent advances in communica-
tion technologies and viewing is something we are all
used to. Indexing, retrieval, querying and browsing,
on the other hand, will require automated methods
to understand the content of digital video. Content-
based information retrieval from such digital video
databases and media archives is a challenging prob-
lem and is rapidly gaining widespread research and
commercial interest.

For retrieval purposes the video may be either an-
notated and indexed manually or be indexed using
automated content description methods. Not only
is manual indexing a challenging and cumbersome
task, but also suffers from possibly incomplete, sub-
jective and summarial content descriptions. The lat-
ter method can solve many of these problems. Sev-
eral automated methods have been developed which
attempt to access image and video data by content
from media databases [1]. Providing semantic access
to visually rich and temporally linear information
is a challenging task. A popular approach to ad-
dress this problem has been to temporally segment
video into subsequences separated by shot changes,
gradual transitions or special effects such as fade-
ins and fade-outs [2, 3]. A story board of events
that occurred in the video can thus be created by
selecting a key frame from each (or significant) sub-
sequence. The video can now be queried with vi-
sual queries that use color, texture or activity. This
is a pseudo-semantic approach to video content de-
scription, wherein the human interpretation of color,
texture and/or motion define the content. The next
step in content-based indexing of digital video is to
localize, extract, and recognize objects contained in
it. An example of such an object is the visual text
appearing in the video data.

1.1 Text as a Video Index

There is a considerable amount of text occurring in
video that is a useful source of information. The
presence of text in a scene, to some extent, naturally




describes its content. If this text information can
be harnessed, it can be used along with the tempo-
ral segmentation methods to provide richer content-
based access to the video data. The text in video
frames can be classified broadly into two large cate-
gories - caption or artificial, overlay text and scene
text. Caption text comprises of text strings that are
generated by graphic titling machines and compos-
ited on the video frame during the editing stage of
production. This text could also be graphical ele-
ments with text contained within them or graphic
effects using text. It is placed intentionally by the
program editor to provide information of the subject
being discussed. Examples of such text are found as
credit titles, ticker tape news, information in com-
mercials, etc. Scene text, on the other hand, occurs
naturally in the scene being imaged. The image of
this text may be distorted by perspective projec-
tion, be subject to the illumination conditions of the
scene, be susceptible to occlusion by other objects,
suffer from motion blurring etc. It can also be on
planar as well as non-planar surfaces such as the
text on soft drink cans.

A number of research efforts are on to create video
storyboards or abstracts in a digital library context.
Such efforts naturally concentrate on artificial text
since they deal with video from content creators
or producers, whose structure and intent are well
known [4, 5]. Artificial text can hence serve as a key
to the visual content. In addition, any scene text
is also likely to be highly correlated with the story
being depicted. Thus, the detection and recognition
of text from unconstrained, general-purpose video is
an important research problem. An indexing sys-
tem that seeks to comprehensively label or index
video by detecting, localizing and recognizing text
in the frame must handle both kinds of text in digi-
tal video.

In this paper, we describe our research in index-
ing video through reliable localization and extrac-
tion of text in video. We have developed a multi-
threaded framework for this purpose [6, 7]. This
framework applies a battery of text extraction meth-
ods, on MPEG-1 video and JPEG images, in order to
add reliability in segmenting text from video. Some
of these methods are novel methods developed by
us, some contain enhancements made by us on algo-
rithms published in the literature, while others are
our implementations of original work by other au-
thors. We have also developed a novel scene text
extraction algorithm [8] and a novel algorithm for
detection of uniform colored text from video [9]. In
addition, the framework also contains a novel track-
ing and a binarization algorithm [10]. We have eval-
uated the methods which form a part of our frame-
work against a fairly large dataset [11]. From our
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evaluation, we conclude that the results of the algo-
rithms vary greatly. Common elements affecting the
results are the size of text, the contrast between the
text and the background, stroke width, the back-
ground image of which the text is a part, etc. Such
a scenario points towards developing methods for
combining the strengths of a variety of text extrac-
tion methods for achieving better results. We have
developed methods for fusing the outputs of various
text methods and are in the process of enhancing it
further [12].

Thus far, the video text segmentation methods
have used the assumption that the size of the text
remains rigid. The methods also assume that the
text blocks move in a predictable fashion. There is
a large amount of text appearing in video that does
not comply with these temporal assumptions. Mov-
ing text effects are often used with caption text to
attract viewer attention. Such effects may cause text
to change size, perspective, inter-character (word)
distance, or color over time. Text strings may ro-
tate or spin. All of these effects would cause text
extraction systems to fail. A large amount of scene
text also violates these assumptions. We call such
text as stylized text. It is clear that in order to han-
dle such a wide variety of scene and caption text,
more sophisticated text segmentation and tracking
algorithms are required. We are in the process of
developing methods to address such text. In addi-
tion, a system to extract text from video must also
determine the lifetime or extent of the text event
over time. The lifetime of the text event will mark
the first and last frame at which the text appeared.
This will enable the system to index the video bet-
ter. We are in the progress of developing methods
for determining these.

The remainder of the paper is organized as fol-
lows. Section 2 highlights other attempts for ex-
tracting text from video. In Section 3, we describe
the system framework. The text localization meth-
ods are described in Section 4. Tracking and bina-
rization methods are described in Section 5. Sec-
tion 6 presents the performance evaluation results.
Finally, we conclude with Section 7.

2 Related Work

This section presents methods for extracting text
from images and video that are published in the lit-
erature. There has been a growing interest in the de-
velopment of methods for detecting, localizing and
segmenting text from images and video. There has
been relatively more work done on the detection and
recognition of artificial text, but even here the liter-
ature is sparse on work that deals with video. More
work has been done on the extraction of text strings
from images and many of the schemes for artificial




text recognition in video are modifications of work
originally done for static images.

2.1 Caption Text Extraction

Yeo [13] has proposed a method for detecting caption
text that involves computing differences between a
priori selected corresponding regions of consecutive
frames. Changes in this region are assumed to be
due to caption events, large shot changes having
been filtered out. Sato et al [14] describe a sys-
tem for performing OCR on video caption text in
the context of a digital news archive. Text is local-
ized by looking for clusters of edge pixels that satisfy
aspect ratio and other criteria.to increase its resolu-
tion. Messelodi and Modena [15], extract text from
book cover images. They use simple homogeneity
properties to separate text from other image com-
ponents and further correct their extraction through
estimation of orientation and skew correction of text
lines. Li and Doermann [16] extract text from dig-
ital video keyframes. They use the heuristic that
the texture for text is different from the surround-
ing background to identify text regions. Wavelets
are used for feature extraction and a Neural Network
is used for decisions. They also present an algorithm
for tracking moving text. The tracker assumes that
text is mostly rigid and moves in a simple, linear
manner. Wu et al [17] describe a scheme for finding
text in images. They use texture segmentation to lo-
calize text, edge detection to detect character strokes
and join strokes to form text regions. Chaddha et
al [18] have developed a method to detect text from
JPEG images. The sum of the absolute values of a
set of DCT coeflicients is computed. This measure
reflects the high spatial frequency content of blocks
containing text. Zhong et al [19] like Chaddha et
al use the DC coefficients available in the MPEG
I-frames. Those coefficients that highlight the verti-
cal and horizontal frequencies are summed and then
thresholded to detect text blocks.

Shim et al [20, 21] present a method to detect
caption text from MPEG compressed video frames
by identifying homogeneous regions in intensity im-
ages, forming positive and negative images by double
thresholding and applying heuristics based on text
characteristics for eliminating non-text regions. The
text regions are validated using the temporal redun-
dancy property of text in video. In [22, 23] meth-
ods for locating text in complex color images is pre-
sented. They have proposed a method for quantizing
the color space using peaks in the histogram before
performing segmentation. Their other method uses
the heuristic of high horizontal spatial variance to
localize text. Kim [24] also proposes text localiza-
tion method for video images similar to the spatial
variance method of Zhong [22]. Suen and Wang [25]
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propose a method for segmenting uniformly colored
text from a color graphics background. They as-
sume that all characters have the same color, an as-
sumption that does not hold in general. Hase et
al [26] propose an extraction algorithm for character
strings. Their approach is directed towards binary
document images. Lopresti and Zhou [27] use a sim-
ilar method to segment text from images found on
the Internet. Hauptmann and Smith [4] localize text
in video using the heuristic that text regions consist
of a large number of horizontal and vertical edges in
spatial proximity. Lienhart and Stuber [28] describe
a system for automatic text recognition in digital
video that works on pre-title sequences, credit titles
and closing sequences with title and credits. LeBour-
geois [29] presents a system for multifont OCR from
gray level images. The method is a modification of
run length smearing to segment and recognize text.
Mitrea and de With [30] propose a simple algorithm
to classify video frame blocks into graphics or video
based on the dynamic range and variation of gray
levels within the block. Gargi et al [6] describe an
algorithm for localizing text in a video frame. The
method localizes bounding boxes of horizontal text
strings, assuming that each character is composed of
a number of segments and that the characters within
the string are separated. Other approaches for de-
tecting text in images and video are found in [31-36].

2.2 Scene Text Extraction

Ohya et al [37] describe a method to recognize char-
acters in scene images. They use local gray level
thresholding to segment the image and localize text
regions by looking for high contrast, uniform gray
level of a character, and uniform width. They also
use the results of the OCR stage to improve their ex-
traction result—if the Chinese OCR algorithm they
use does not find a good enough match, they re-
ject the character candidate region. There is work
on the recognition of vehicle license plates [38, 39]
from video which shares some of the characteris-
tics of scene text. However, these approaches make
restrictive assumptions on the placement, contrast
or format of the license plate characters. Cui and
Huang’s approach [39] takes the advantage of using
the information from multiple frames and also cor-
recting for perspective projection distortion. Winger
et al [40] discuss the segmentation and threshold-
ing of characters from low-contrast scene images ac-
quired from a hand-held camera. Their data set in-
cludes images with low contrast, poor and uneven
illumination. Our implementation of the algorithm
does not find it to perform well in general purpose
video. Communications with the authors suggests
that the parameters were fine tuned to individual
images on a small dataset.




3 System Framework

A study of the literature reveals that no complete
video text extraction system has been developed.
Additionally, it is seen that no single algorithm is
robust for detection of an unconstrained variety of
text appearing in the video [11]. Most methods have
been developed to extract text from complex color
images and have been extended for application to
video data. However, these methods do not take ad-
vantage of the temporal redundancy in video. Fur-
ther study of the methods presented in the litera-
ture, presented in detail in Section 2, reveals that
the methods assume that the text regions are in high
contrast with the background, are composed of one
consistent color or gray-level or form a major com-
ponent in the image. In general, the use of a few
rigid assumptions about the nature of text in video
forms a weak heuristic. This study of the state of
the art was the motivation behind the development
of the framework for reliable extraction of text from
video.

The video text extraction problem is divided into
four main tasks, viz. detection, localization, track-
ing and binarization. The detection and localization
tasks have been merged because there is a signifi-
cant overlap between the detection and localization
processes. A spatio-temporal algorithm fusion mod-
ule has been proposed for aggregating the decisions
of the multiple localization algorithms over multiple
frames. The tracking stage is used for temporally
validating the text localization. Also, the caption
text and scene text segmentation tasks are sepa-
rated. Extraction of scene text uses an algorithm
developed by Gandhi [41] that uses the assumption
that scene text lies on a plane in the 3-D world and
that camera motion exists. Our approach is to use
a battery of different methods employing a variety
of heuristics for detecting, localizing and segmenting
both caption and scene text. The system also takes
advantage of the temporal nature of video and uses
the fact that the text data lasts over several frames
for providing robust text detection, specifically by
performing algorithm fusion in a spatio-temporal
manner. The system framework is described in the
following section.

An object oriented approach has been adopted
in the design of the software prototype. A multi-
threaded design has been adopted to allow maxi-
mum flexibility. The reasoning stems from the desire
that the detection and localization processing of new
frames not stall because of a time consuming track-
ing or segmentation of older frames. The POSIX
standard pthreads are used which are lightweight
and portable between IRIX, Solaris and other flavors
of UNIX. Figure 1 shows the design of the frame-
work. The main components are:
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e The control thread is the overall data
and process control center. It creates a
Frame Queue and spawn a readframe
thread. This thread is also responsible for
spawning the desired number of detection-
localizion threads, one per algorithm, the fu-
sion thread, the tracking thread, and the
binarization thread.

e The Frame Queue contains all the information
for both unprocessed and partially processed
frames. It provides a data repository for all
the threads in the system while maintaining the
temporal seqentiality of the data.

o The readframe thread reads frames from
video stream and adds it to the Frame Queue.
It provides an abstraction to the data stream
type. It presently can read in MPEG-1 bit-
streams and JPEG images and can be extended
to handle Motion JPEG compressed video.

e The detection/localization threads are the
implementations of the detection and localiza-
tion algorithms selected from the literature and
the novel algorithms developed here.

o The tracking thread tracks a given bounding
region over a set of frames.

e The segmentation thread binarizes a local-
ized text instance to make it suitable for OCR.

e The spatio-temporal algorithm fusion
thread fuses the results of various methods to
result in a single text instance.

The output thread uses the information in
the Frame Queue to write output in one of
multiple formats: a binarized image suitable
for OCR, the original frame with localized text
marked by a box, or a ViPER! compatible
ASCII data file which lists the bounding boxes
for each element, etc. ViPER (Video Perfor-
mance Evaluation Resource) is a Java based
tool developed at the laboratory for Language
and Media Processing in Center for Automa-
tion Research at the University of Maryland
for ground-truthing of video and evaluating the
performance of content extraction methods.

4

Of the methods seen in the literature, only those
methods which we judged to be promising were se-
lected. The selection was based on their applicabil-
ity to general purpose video, use of features, ease of

Text Localization Algorithms

1ViPER:
http://documents.cfar.umd.edu/LAMP/Media/Projects/ViPER
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Figure 1: Text Localization/Extraction Framework

implementation and speed of detection. In addition
to work done by others, we also include algorithms
developed by us for evaluation. The algorithms cho-
sen for evaluation are: Method A [6], Method
B [29], Method C: based on initial idea published
in [30], Method D: enhanced from initial idea pub-
lished [18], and Method E [9]. Details on other
methods can be found in the original publications
cited above. We include details on the modifications
here. Sample text localization results are presented
in Figure 2.

4.1 Modified Algorithm : Method C

A simple algorithm [30], originally proposed to clas-
sify video frame 4x4 pixel blocks into graphics or
video based on the dynamic range and variation of
intensity within the block. This method was devel-
oped to achieve higher compression for TV picture
signals. The method operates on the premise that in
the graphic regions in the frame, many adjacent pix-
els have the same luminance values or have regions
of very high dynamic range. The dynamic range of
a block is defined as the absolute difference between
the maximum and the minimum intensity in a 4x4
block.

This method is modified to classify blocks as text
or non-text. As with the original method the num-
ber of pixels in a 4x4 block that have similar gray
levels is counted and the dynamic range is computed.
If the number of gray level blocks is less than a pa-
rameter and the dynamic range of the block is either
greater than or a distinct thresholds or is 0, the block
is classified as a text block. This change in condition
follows from the fact that text has a high number of
edges. Thus, the number of pixels with similar inten-
sity levels will be small and the dynamic range will
be zero only on the character stroke which typically
has near uniform intensity. Additionally, the modi-
fied method excludes the boundary regions from its
operating space on the frame image.
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Figure 2: Sample Text Localization Results

4.2 Modified Algorithm : Method D

This method [18] was originally proposed for clas-
sifying JPEG image blocks as text or non-text. It
has been modified to work on MPEG-1 I-, B-, and
P-frames and determined appropriate threshold em-
pirically on our data. The method has been further
refined to use an iterative thresholding scheme to
reduce the number of false alarms. MPEG B- and
P-frames need to be decompressed before Discrete
Cosine Transform (DCT) can be reapplied to them
for use with this method. For this the fastct? al-
gorithm [42] was used.

The method uses texture energy to classify 8x8
blocks as text or non-text and works as follows. A
subset of the 64 possible DCT coefficients produced
during the MPEG encoding process is chosen. For
each block, the sum of the absolute values of these
coefficients is compared to a threshold to categorize
it as text or non-text. Using these blocks as seed
blocks, a series of decreasing thresholds is iteratively
applied from high (150) to low (30) and the appear-
ance of more and more text blocks as the threshold
is lowered is observed. Blocks that are classified as

2fastct: http://dmsunéd.bath.ac.uk/dcts/fastdct.html




text at a particular threshold are left in if they also
have a 8-neighbor that was classified as text at the
previous higher threshold. The motivation for do-
ing this is that text regions usually have at least one
of their component blocks detected at 150. So the
text region can be enlarged by lowering the threshold
without creating as many false positives. Any blocks
with no neighbors on the left or right are removed.
This is from the heuristic that the text is horizontal
or if vertical, is fairly wide. Any other blocks which
appear to be due to a sharp luminance change be-
tween two large homogeneous regions are discarded.
This is done by computing the mean of average lumi-
nance given by the DC term of the DCT coefficients
three blocks on either side of a target block. The
mean energy of these blocks is also computed. If
the average luminance of the three on the right is
greater than that of the left by a certain threshold,
and the energies of the blocks are below a threshold,
we conclude that this block was found because of
a sharp luminance cliff and it is discarded. Finally
the aspect ratio constraint is used to filter out false
alarms.

4.3 Novel Method : Method E

The algorithm visits every Interval rows in the im-
age. Interval is set small enough to be able to de-
tect very small text and large enough so as not to
consume too much time. In our experiment we set
Interval = 3. Given a row R on the image, we want
to determine whether or not R passes through the
middle of a text region.

Clustering in L*a*b* space: The pixels of R are
transformed and clustered in the perceptually uni-
form L*a*b* color space using hierarchical cluster-
ing. The algorithm first assigns each pixel as a clus-
ter and the distance of pairs of clusters are stored
in an array. Two clusters A and B are merged
if |jua — pgl| is minimum and for each pixel p in
AUB, |lp — pausll < MazCluster Radius, where
pz is the mean L*a*b* vector of cluster Z and || - ||
is the weighted Euclidean norm. The weighted norm
was used to achieve a slight invariance to lightness
(weights: L* = 0.8,a* = 1.1,b* = 1.1). In our ex-
periments, we set M axCluster Radius = 10 (ranges:
L* =0...100, a* = —97...88, b* = —100...88).
Merging continues until no two clusters can be
merged.

4.3.1 Determining bounding rows

Each cluster C is tested to see if it contains pixels
belonging to text. Locating the bounding rows (top
and bottom rows of text) is the first step (Fig. 3).
The cluster points are marked back on row R to
create streaks S;,¢ = 1... Ny(numberofstreaks) of
pixels in the row R. Then all pixels in the entire im-

age are examined and each pixel with a value within
the range of values represented in the cluster are col-
ored with a value of T'. All other pixels are marked
T'.

We now try to find out if there are bounding rows
above and below R which may contain horizontal
text. Given a pair of adjacent streaks S; and S;41,
we find R, - the first row above R in which the seg-
ment covering S; and S;4; is colored TV, We also
find R — the first row below R in which the seg-
ment covering under .S; and S;y1 is colored T'. The
R, of each pair of adjacent streaks is computed and
collected in an alignment histogram H,, where the
bins are the rows of the image. H, is computed in
the same way by taking all the Ry’s. We declare the
existence of a bounding row B, if at least 60% of the
elements in H, are contained in three or fewer adja-
cent histogram bins. Bjy’s existence is computed in
the same way from H,. If B, and B, exists, height
is defined as their difference.

If the cluster C' contains text pixels, then B, and
By, would mark the text block’s upper and lower row
boundaries, and height would define its vertical di-
mension. Figure 3 illustrates the computation of
B,, By and height.

Alighment R
histograms a
ma N
CEREEETEE =TT ==
R——D-- ----v‘--‘--“ - - - -
S e __—_——_x —_—
Hp \ t/ Streaks S,
Ry

Bounding rows
Ba

“eig’“l ERLELELE & %8 Fu s
By,

Figure 3: Computing the bounding rows. One of the
color clusters in row R are marked as short streaks
and pixels of the text “tough crop” lie within the
range of values of the cluster. Each segment of the
bounding top (R,) and bottom (R}p) rows are shown
separated for clarity even when they are actually on
the same row.

Finding text blocks: We look for text blocks
using heuristics on height and the lengths and gaps
of the short streaks. Streaks longer than height are
discarded and added to the gaps. Gaps longer than
height are considered not part of a text block. The
remaining regions are now smaller blocks with short
streaks. If a block’s width is greater than 1.5xheight




and the number of short streaks inside is greater
than 3, then it is considered a text block, otherwise
it is discarded. Finally, the text block is expanded a
few pixels to the left and right to ensure full coverage
of the characters at the ends.

Figure 4 shows how the text block ”For gener-
ations” is detected. The pixels of row R (passing
through the middle of text) are clustered in color
space. One of the color clusters is marked black.
Pixels in the image having similar color as the black
ones are marked white. On the left side of the image,
the two alignment histograms H, (above R) and H,
(below R) are used to mark the bright bounding rows
B, and B;. The short streaks marked black and the
height between the bounding rows are used to find
the text block. The two black streaks on the right
were not included in the text block because their gap
from the other streaks is greater than height.

Figure 4: Analysis of a video frame and detected
text block.

Fusing the detected text blocks: It was ob-
served that other color clusters were caused by the
presence of text. The characters’ color “shadows”
and the pixels in the transition from text foreground
to background result in other detected text blocks
which largely overlap with the foreground text block.
All the detected text blocks are fused (set union) to
come up with the final regions of text.

4.4 Localization of Stylized Text and
Event Determination

It is observed that while the size, orientation, color,
etc. of a text event may change over time, the ba-
sic shape of its characters remains constant. This
property can be exploited to determine whether two
text boxes correspond to the same text event. We
analyze two consecutive frames at a time. First,
the text box localization algorithm, Method D, de-
scribed above is applied to each frame. Oriented text
instances are made horizontal by applying a simple
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rotation transformation. A text binarization algo-
rithm is next applied on each text instance. We used
the binarization algorithm developed in our earlier
work [10]. This algorithm is tailored for the special
challenges of binarization of text in video frames,
including low resolution, complex background, and
unknown text color. Connected component analy-
sis is performed on the binarized text to locate in-
dividual characters. The contour of each character
is traversed and stored as a chain code. Each chain
code is then parameterized as two 1-D functions 8(¢)
and r(t), that represent the angle and distance of
each point on the boundary from a reference point,
respectively. A Gaussian filter is then applied to
both functions,to smooth out any noise introduced
by imprecise binarization. The resulting functions
represent a signature of the shape of a given charac-
ter. From this shape, feature points are extracted.
We use the points of maximum curvature (critical
points) as our features. Zhu and Chirlian’s critical
point detection algorithm [43] is used in our imple-
mentation.

The row and column coordinates of features points
within each detected text rectangle are normalized.
Text boxes within the two consecutive frames are
then analyzed as follows. For each text box in the
first frame, its normalized feature point locations are
compared to the feature point locations of every text
instance in the second frame. The feature point lo-
cation error between each pair is computed, and the
pair with the lowest error is chosen. If the lowest er-
ror is below a threshold, the two text instances are
declared to belong to the same text event. Other-
wise, the text event’s lifetime is assumed to end with
the current frame. Any text instances left unpaired
in the second frame are assumed to be the start of
a new text event.

5 Tracking and Binarization

5.1 Binarization Module

This section describes the binarization module of our
system. The goal of the binarization module is to
separate the pixels of a localized text region into cat-
egories of text and background. The output of the
module is a binary image of the localized region suit-
able for input into an OCR system. For document
images, simple thresholding is typically sufficient to
convert a gray scale image into a binary image suit-
able for OCR. This technique assumes that the text
and background colors are uniform (typically black
on white) so that the image histograms are bimodal.
In video, however, text often appears against com-
plex, nonuniform backgrounds. The text color may
also vary due to uneven illumination of scene text,
antialiasing, or due to bleeding caused by video com-




pression. These problems are further compounded
by the low resolution of video images, in which char-
acter strokes may be two pixel or less in width. Due
to these factors, it was found that algorithms which
rely on histogram bimodality [29, 17, 44, 45]) are
generally unsuccessful for video images.

As with the detection and localization modules,
the binarization module uses a number of different
algorithms. After a preprocessing step, an initial
binarization of the region is created. The binariza-
tion is then refined by examining other properties of
the region, including stroke width, color, character
size, character spacing, gray scale topography, and
shapes. Following is a detailed description of each
step.

e Preprocessing: Given a localized text box,
the region is first pre-processed by stretching
the gray scale contrast {29]. This allows bina-
rization to succeed with low contrast text.

¢ Binarization: Logical level binarization algo-
rithm proposed by Kamel and Zhao [46] has
proven to be fairly successful for this step. The
logical level algorithm was developed to extract
character strokes from complex backgrounds in
document images (for example, cash amounts
from noisy check images). Upon experimenta-
tion, it was discovered that it also works well
for extracting character strokes from gray scale
images of video frames, provided that the text
gray levels are darker than the the background.
If the text is lighter than the background, the
inverse of the frame must be taken before ap-
plying this algorithm.

Unfortunately, determining whether the text is
lighter than or darker than the background is
a nontrivial problem. Other systems have han-
dled this problem by making assumptions about
the text color [47], by examining the pixels
along the edge of the text box and assuming
they are the background colors [37], and by ex-
amining both light and dark strokes and keeping
those whose orientation and connected compo-
nent size fit the characteristics typical of text
strings. Methods described in [23, 17] perform
poorly for text appearing against complex back-
grounds. A variant of the method published
in [15] is selected. The method performs logical
level binarization on both the positive and the
negative of the video frame, and the decision of
determining the correct polarity is delayed until
later. Connected components are then found in
both binarized images.

In general, logical level creates good binariza-
tions of localized text. However, it can miss
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character strokes which have a very low con-
trast with the background, and it can include
non-text pixels which exhibit some character-
istics of character strokes. Color, size, spatial
location, topography, and shape are used to re-
fine the result of the binarization.

Color Clustering: It is reasonable to assume
that the characters of a text string are of uni-
form color. However, due to bleeding effects
caused by low-resolution capture and compres-
sion, the actual pixel colors may vary signifi-
cantly. Color clustering is used to allow for
these effects. The text region is first quan-
tized to reduce the color space, and then the
complete-link algorithm [48] is used to cluster
in the [*a*b* color space. The results of clus-
tering may be used to refine the output of the
logical level algorithm. Currently, components
containing many different clusters are consid-
ered noise and removed [49]. Results of cluster-
ing could also be used to add or remove pixels
from a given component.

Size filtering: Connected components are fil-
tered based on their size and aspect ratio. Very
small components (with area less than about 12
pixels) are eliminated since they typically rep-
resent noise, or, if text, are too small to be rec-
ognized by an OCR system. Very large com-
ponents and components with extreme aspect
ratios are also removed.

Positive or negative image selection: As
mentioned earlier, it is not known a priori
whether the text is lighter than or darker than
the background in a gray scale video frame.
Therefore the binarization and filtering steps
were conducted on both the original video frame
and its inverse. This approach has also been
taken by [23, 17, 15]. These methods take the
union of both image polarities (after applying
heuristics to reduce noise) obtained as a result
of binarization. Unfortunately, this results in
too many false alarms. However, unlike the
other systems using this approach, this method
includes a localization module separate from the
binarization module. It is reasonable to assume
that all text in a localized bounding box is ei-
ther darker than or lighter than the background.
The binarized images are examined and a choice
is made based on statistical information com-
puted from the components of each image, such
as the similarity in character height, character
aspect ratio, vertical position, and horizontal
spacing. The image with the more text-like fea-
tures is then chosen.




e Spatial location filtering: Non-text compo-
nents present in the binarization can be fur-
ther reduced by introducing spatial constraints
about character location. It is observed that
most text in video is oriented horizontally, so
components that are not located along horizon-
tal lines with other components are eliminated.
Components are clustered based on vertical po-
sition, and clusters with few components are
then eliminated. This could be generalized to
allow for non-horizontal text by, for example,
using the Hough transform [50] or Messelodi
and Modena’s slope histogram method [15].

e Topographical analysis: While the logical
level algorithm works well for most font sizes,
it fails to capture the detail of very small fonts
(with stroke widths near 1 pixel) effectively. For
these fonts, we a topographical analysis algo-
rithm [51] that operates on the gray scale im-
age region is applied. Pixels that were chosen by
the logical level algorithm and that correspond
to a peak or ridge in the topography are used
as the final binarization. This method serves
to thin the binarization and produces cleaner
output for small fonts.

Shape analysis: It is observed that some com-
mon non-text objects satisfy the heuristics used
by the detection and localization algorithms,
such as uniformity of size, color, stroke width,
spacing etc. Using the similarity of the shapes
of connected component within a region serve
as an indicator of text. It is noted that re-
gions with nearly identical shapes are usually
not text. However, the shapes of a given script
are expected to be somewhat similar, so an
area with very diverse shapes are also unlikely
to have text. Currently these comparisons are
based on simple statistics of the shapes, such
as number and density of critical points along
the contours. A simple contour-following algo-
rithm is used to find the outline of each con-
nected component, and this data is parameter-
ized to polar coordinates. Zhu and Chirlian’s al-
gorithm [43] is used to locate the critical points
of the contours.

5.1.1 Results

The results of binarization of localized text regions
are shown in Figure 5.

5.2 Text Tracking Module

Given the goal of automatically extracting text from
video, it is not immediately apparent that a tracking
component should be present in the system. How-
ever, it is needed as a verification of the localization
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Figure 5: Sample Binarization Result

algorithms. A detected text box that is changing
in shape or that is moving (especially moving non-
uniformly) may be eliminated as being due to noise
unless its motion is verified by tracking. For scene
text, zooming and rotation of the camera may alter
the size and orientation of the text box. Erroneous
discarding of localized regions can be avoided by us-
ing this knowledge. Finally. the intended applica-
tion of this system may not always be to run in a
completely automatic mode. In some scenarios, e.g.,
a ground truthing one, it may be desirable to have a
human mark initial text boxes and have the system
merely track it with time. The approach used for
developing a tracker is based on methods described
by Nakajima et al [52] and Pilu [53] with substan-
tial modifications. Unlike the algorithm described
by Li and Doermann [16] which uses only correla-
tion within a search window (template matching)
to track text, with the consequence that tracking is
slower than localization, the adopted method also
uses the motion vectors in the MPEG-1 bitstream.

The tracking algorithm assumes the availability
of an initial horizontal bounding rectangular region
to track. Multiple regions may also be specified.
If the input is an MPEG bitstream, the method
skips to the next available P-frame and extract the
motion vectors for macroblocks that point to any




macroblock partially or completely within the ini-
tial box. Some macroblocks may be intra-coded in
which case they cannot be used. Only those vec-
tors that are 2 pixels or larger are considered. Next,
spatial constraints are applied. This step eliminates
stray motion vectors retaining only those that are
similarly oriented. The motion vectors that point
to the initial text box region are clustered and the
largest cluster is assumed to belong to the new po-
sition of the moving text box. Further, flat vectors
are deleted. This is achieved by computing edges
using a kernel. Edgels® are statically thresholded
and a count of remaining significant edgels is made.
A macroblock is considered flat if it has less than 4
such significant edgels. In [52], the authors compute
the absolute sum of the first 20 DCT coeflicients
and the last 60 coefficients and retain a block only
if either of these is greater than an empirically de-
termined threshold. This approach failed to provide
satisfactory results.

Assuming that the text box undergoes rigid move-
ments, the average motion vector for the region is
computed. A correlation match is performed over a
small neighborhood of the predicted text box region
(the region in the P-frame). To ensure that the text
is matched and not the background, the luminance
gradients at each pixel (as computed by the Sobel
operator) are compared against those in the initial
text box. With subsequent P-frames an estimate of
the block motion velocity is computed. The veloc-
ity is used to predict the position of the text box in
the current P-frame. This region is used if it has a
better correlation match than the region found us-
ing the motion vectors. If the correlation results in
a high value then the neighborhood area is relaxed
and the step is repeated. At the next I-frame, a pre-
dicted text box is obtained by averaging the motion
from the last P-frame and the next P-frame, and
then a correlation search is performed to find the
exact position of the moving text box.

It is important to note that text may leave the
frame or an initial text string may grow as more
text belonging to the same string enters the frame.
In the former case, the text box is resized appro-
priately. The latter situation is detected in [52] by
looking for intra-coded macroblocks at the edge of
the frame. If these are present, the authors hypoth-
esize an object entering the frame. However, that
paper deals with large, solid objects whereas we are
tracking relatively small text regions with a possi-
bly static background showing through. A different
approach is adopted in this module. The number
of edgels found along the edge of the frame is com-
pared to the number found inside the text box. If
these counts are comparable, text is assumed to be

3Edgel is an edge pixel.
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entering the frame, and the text box is grown to ac-
commodate them. The tracker discards a block on
complete failure of determining a suitable candidate
region.

6 Performance Evaluation

Unlike the evaluation of automated methods for
detection and localization of video events and ob-
jects contained within the imaged scene, the eval-
uation of text detection and localization methods
presents interesting challenges. For example, when
evaluating video shot change events [3], it is suffi-
cient to detect at which frame a shot change (or
other video transition event) occurred. In case of lo-
calization of vehicles, faces or other objects a tightly
fitting bounding region is usually enough to perform
a fair evaluation.

In case of automated text detection and localiza-
tion methods, however, the degree of correctness is
difficult to determine. This is because the the intent
of text detection and localization is to recognize it
for indexing, retrieval and other purposes. Also, hu-
mans tend to identify the text contained in the video
as characters and words along a line, sentences, and
paragraphs. Unfortunately, the algorithms that de-
tect “text-like” regions within the video frame do
not take this approach into consideration when ap-
plying the heuristics. They detect small regions that
contain text and the size of the region (tightness of
fit) is dependent on the size of the operating element
used by the algorithm. For example, algorithms that
operate on MPEG DC coefficients, will result in re-
gions along 8x8 block boundaries, while those that
use horizontal windows will have other boundaries.
In order to obtain a commonality for evaluation, we
evaluate the methods at the lowest common denom-
ination, i.e. at the pixel level. Every pixel belonging
to a text region, as detected by the algorithm as
well as in the ground truth, is labeled as a such. All
other pixels are labeled as non-text pixels. Evalu-
ating the performance of the methods at the pixel
level eliminates any issues related to the size oper-
ating elements of each method.

Unfortunately, the ground truth is usually marked
by rectangular bounded regions which include the
inter-character and sometimes inter-word non-text
pixels. Also, non-text pixels surrounding the char-
acters but within the ground-truth bounded region
are considered as text pixels. Thus, if an algo-
rithm is very accurate and detects the text but not
the surrounding or inter-character pixels, it suffers
a penalty for being very precise in the form of a
low recall (higher missed detections). Conversely an
algorithm which operates on large blocks actually
detects the text correctly but has a looser region




boundary (due to operating block size) suffers the
penalty in the form of low precision (higher false
alarms). Thus, in a sense, the algorithms are being
evaluated unfairly. It is necessary to allow a degree
of subjectivity in evaluating these methods, which
is to evaluate them based on their ability to detect
each text event. We are in the process of developing
such an evaluation method.

6.1 Test Data

Our test consists of 15 MPEG-1 video sequences to-
taling 10299 frames. The sequences were captured
at 30 frames per second and encoded in MPEG-1
with a 352x240 frame size. The sequences are por-
tions of news broadcasts and commercials from var-
ious countries. The test database is challenging due
to the poor quality and low contrast of these broad-
casts. Text appears in a variety of colors, sizes, fonts,
and language scripts.

The ground truth was performed frame-by-frame
by humans using the ViPER tool. Bounding text
box size, position, and orientation angle were speci-
fied to pixel-level accuracy. All regions distinguish-
able as text by humans were included in the ground
truth, including text too small or fuzzy to be ac-
tually read but nevertheless identifiable as charac-
ters. Closely spaced words lying along the same
horizontal were considered to belong to the same
text instance. Separate lines of text were kept sep-
arate. The ground truth contains a total of 133
temporally-unique caption text instances (36302167
ground-truth pixels) and 79 scene text instances
(57532887 ground-truth pixels). There are 212 text
events in total.

6.2 Evaluation criteria

The ground truth defines tightly-bound text boxes
for each frame. A good detection/localization algo-
rithm would (ideally) produce similarly tight boxes.
To evaluate the accuracy and tightness of fit of an al-
gorithm’s output, the pixel areas of the text regions
in the ground truth are matched with the detected
text regions. The evaluation is a frame-by-frame,
pixel-by-pixel comparison of algorithm output with
the ground truth. In case of non-horizontal oriented
scene text, All pixels within the oriented bounding
region are considered. During evaluation, each pixel
in the test database is placed into one of three cat-
egories:

¢ Detection: Pixels belonging to text regions in
the ground truth and regions identified as text
by the localization algorithm.

e False Alarm: Pixels identified by the detec-
tion algorithm but not belonging to text regions
in the ground truth.
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e Missed Detection: Pixels belonging to the
text regions in the ground truth and not iden-
tified by the algorithm.

The performance of an algorithm is quantified by
its recall and precision as defined in Equation 1.
Note that this pixel-level evaluation is very strict.
Most actual applications would not require such pre-
cise localization. However our pixel-level criteria
provides an easily measurable basis by which the rel-
ative performances of algorithms may be compared.

Recall detects
all =
detects + missed detects
.. detects
Precision = (1)

detects + false alarms

6.3 Results and Discussion

This section presents the results of the performance
evaluation of the selected text detection and local-
ization algorithms. Most of the parameters for the
methods were kept as described in the original pub-
lication. Only those parameters which were highly
dependent on the dataset were tuned on a small sub-
set of the test dataset (approx. 1000 frames).

Table 1 presents the caption text detection and
localization performances, while Table 2 shows eval-
uation results for scene text, for the five algorithms
on the entire test dataset. The table shows the
raw numbers of total number of text pixels in the
ground truth, the detected, false alarm, and missed
detected pixels, along with computed recall and pre-
cision rates.

The results show that for caption text, overall
Method D produces the highest precision rate of
the individual algorithms, while the precisions of the
other algorithms are comparably similar. Method E
shows the highest recall. For scene text, Method
D has the highest precision followed by Method
E. Other methods have comparably similar results.
Method E also has the highest recall for scene text.
The test database contains some very challenging
scene text instances. For applications in surveillance
and navigation, detecting scene text would be im-
portant. In other applications, such as video index-
ing, detecting scene text may not be important or
even useful. Therefore scene text and caption text
were evaluated separately. All of the algorithms per-
form better for caption text than the scene text.

The recall and precision rates of the algorithms in
our evaluation are relatively low and perhaps high-
light the need for better text detection and localiza-
tion algorithms. A solution to improving the pre-
cision and recall values of the methods is to apply
algorithm fusion to combine the outputs of multi-
ple existing algorithms to produce better outputs.




Algorithm | Text Pixels | Detects FAs MDs Precision | Recall
Method A | 36302167 | 14461593 | 62125359 | 21840574 | 39.84% | 18.88%
Method B 36302167 14894707 | 45627542 | 21407460 | 41.03% 24.61%
Method C | 36302167 | 22663915 | 156512965 | 13638252 | 62.43% | 12.65%
Method D | 36302167 | 26955906 | 119769022 | 9346261 | 74.25% | 18.37%
Method E 36302167 17534049 | 35101417 | 18768118 | 48.30% 33.31%

Table 1: Overall Detection/Localization Performance :

Caption Text

Method | Frames/sec. | Sec./frame
A 0.64 1.56
B 3.1 0.32
C 5.8 0.17
D 2.3 0.44
E 0.01 100

Algorithm | Text Pixels | Detects FAs MDs Precision | Recall

Method A | 57532887 | 10016556 | 66570396 | 47516331 | 17.41% | 13.08%

Method B | 57532887 | 7278171 | 53244078 | 50254716 | 12.65% | 12.03%

Method C | 57532887 | 27062384 | 152114496 | 30470503 | 47.04% | 15.10%

Method D | 57532887 | 22207563 | 124517365 | 35325324 | 38.60% | 15.14%

Method E | 57532887 | 13878758 | 38756708 | 43654129 | 24.12% | 26.37%
Table 2: Overall Detection/Localization Performance : Scene Text

Table 3: Approximate algorithm running time.

Each algorithm uses an independent set of features
and heuristics and so a fusing of outputs of multiple
algorithms is likely to be beneficial.

6.4 Running time

Table 3 gives approximate running times for our im-
plementation of each of the algorithms on an dual
270MHz. TP30 R12000 MIPS processor SGI Octane
workstation. The times include overhead resulting
from I/O and MPEG stream decompression. The
times reported above can be improved since our im-
plementations have not been fully optimized. Our
implementation of the Method D operating on I,
P and B frames was found to be the fastest (2.3
frames/sec.) as shown in the table. This method
applied to I frames only clocked at 10.9 frames/sec.
The increase in the processing time is because P and
B frames need to be completely decompressed before
Discrete Cosine Transform can be applied to them.

7 Conclusions

We have developed a system for extracting and
segmenting an unconstrained variety of text from
general purpose broadcast video. We have thor-
oughly evaluated the methods which form a part of
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our framework against a fairly large dataset. We
have developed methods for fusing the results from
different methods. More recently, we have extended
our interest to localizing and extracting stylized text
from video and determining the lifetimes of the video
text events. We plan on developing methods for
matching localized text regions based on shape and
color properties. We also plan on developing meth-
ods for recognizing the localized text events to en-
able retrieval based on search strings.
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