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Abstract

Vehicle recognition is a challenging task with many use-
ful applications. State-of-the-art methods usually learn dis-
criminative classifiers for different vehicle categories or dif-
ferent viewpoint angles, but little work has explored vehi-
cle recognition using semantic visual attributes. In this pa-
per, we propose a novel iterative multiple instance learning
method to model local attributes and viewpoint angles to-
gether in the same framework. We expand the standard MI-
SVM formulation to incorporate pairwise constraints based
on viewpoint relations within positive exemplars. We show
that our method is able to generate discriminative and se-
mantic local attributes for vehicle categories. We also show
that we can estimate viewpoint labels more accurately than
baselines when these annotations are not available in the
training set. We test the technique on the Stanford cars and
INRIA vehicles datasets, and compare with other methods.

1. Introduction

Several recent papers have studied visual identification
of vehicle makes and models [7, 10, 13, 20]. This is an ap-
pealing problem because it is a well-defined fine-grained
recognition task that has many potential applications. For
instance, fine-grained vehicle recognition could automati-
cally annotate images on car sales websites with detailed
textual descriptions to allow for better browsing and search,
or could identify cars in surveillance video for safety and
security applications. But identifying specific vehicle mod-
els is difficult, even for humans: most vehicles have similar
global shapes and visual cues, so one must rely on subtle
differences in local appearance (Figure 1). Another chal-
lenge is viewpoint variation: cars are 3D objects whose ap-
pearance changes dramatically across different angles. Ve-
hicle recognition also inherits all of the usual complications
of fine-grained recognition, including complex and confus-
ing backgrounds, illumination and scale changes, etc.

Recent work has used visual attributes to address fine-
grain recognition problems [2,3,19,21]. Attributes are mid-
level image representations that are both visually discrimi-
native and semantically meaningful to humans. Attributes
are advantageous because they connect low-level visual fea-
tures with high-level nameable properties, allowing humans
to help specify models (e.g. in zero-shot learning [15]), and
allowing models to produce textual descriptions of objects
and scenes [12]. Local attributes, which cue on local image
features instead of scene-level features, are particularly rel-
evant for vehicles since they can capture subtle differences
between similar categories. A key problem in attribute-
based techniques is how to select the attributes themselves.
While most work has used attributes suggested by domain
efforts, recent work has found that automatically-selected
local attributes give better discriminative power [5].

In this paper, we propose to discover local attributes us-
ing multiple instance learning and apply our technique to
vehicle recognition. A key difference compared to other
work is that we explicitly consider viewpoint while se-
lecting attributes. This is motivated by the fact that vehi-
cles are usually photographed from a relatively small set
of viewpoints (e.g. side, front, back, etc.), and that local
attributes are closely connected with viewpoint (e.g. a per-
fectly round-shaped wheel implies a side view.) We assume
that viewpoint labels are not necessarily available for train-
ing images, so we must hypothesize viewpoints in addition
to discovering image regions corresponding to attributes.

To do this, we assume that each training image can be
considered as a bag of extracted image regions [5, 21], and
our goal is to find the subset of regions that are discrim-
inative. To encourage discovered regions to be semanti-
cally meaningful, we augment the classical Multiple In-
stance SVM (MI-SVM) model [1] with constraints on the
positions of image regions across images: for any pair of
images within the same vehicle class, we assume that a good
attribute should occur at similar places on the vehicle if the
viewpoints of the two images are the same, or at similar
places after an image transformation if their viewpoints are



(a) Fiat Panda (INRIA dataset) (b) Ford Escape (Stanford Cars)

Figure 1: Sample images from two categories of (a) the INRIA vehicles dataset, and (b) the Stanford cars dataset. The INRIA
set is significantly more challenging, with cars of the same make and model but different years mixed together.

different. The result of this technique is a collection of lo-
calized visual attributes for vehicle images.

To summarize, the contributions of this paper are: 1) to
learn discriminative and semantic local attributes for vehicle
categories; 2) to devise a multiple instance learning frame-
work with constraints to discover local attributes; 3) to learn
the appearance of discrete viewpoints when their annota-
tions are not available; and 4) to show that our learned at-
tributes improve the performance of object recognition.

2. Related Work
Work outside the context of attribute discovery has ex-

plored local discriminative regions for image classification.
For example, Yao et al [22] use a random forest with dense
sampling to discover discriminative regions. The random
forest combines thousands of region classifiers together,
thus improving classification compared with only low-level
image features. In contrast, our approach treats each image
as a bag of “regions” and applies multiple instance learn-
ing to find the most discriminative ones. Our modification
to the MI-SVM model allows pairwise constraints on ob-
ject geometry, and thus is more likely to find image regions
that are both discriminative and semantically meaningful.
Maji and Shakhnarovich [17] propose an approach for “part
discovery” on landmark images, by collecting pairs of user
click annotations. They use exemplar SVMs [18] to find
salient regions, while using click pair information to jointly
infer object parts. Their method does not optimize clas-
sification accuracy, while our approach learns a set of re-
gions by maximizing the classification performance through
a multiple instance learning framework.

A number of recent papers on attribute discovery are rel-
evant to our proposed approach, but all have important dif-
ferences. Gu and Ren [9] learn viewpoint angles and vehicle
classifiers at the same time, but they do not consider requir-
ing these models to be semantically-meaningful (at either
global or local levels). Duan et al [5] learn local attributes
in the context of animal species recognition, but they do
not consider multiple viewpoints, and their method relies
on multiple features (contour, shape, color, etc.) with care-

fully learned weights for each feature channel. In contrast,
we model local attributes and viewpoint angles together in
a single framework, such that the local attribute discovery
will help to model the viewpoint angles, and vice versa. Per-
haps the most relevant work to ours is that of Sharma et
al [19], which automatically mines a collection of parts and
corresponding templates for recognizing human attributes
and actions. However this method assumes that the attribute
labels for training images are given, while we assume only
category labels are available, and we want to model local
attributes and viewpoint angles at the same time.

3. Approach
We propose a method for automatically discovering dis-

criminative local attributes for vehicle categories. The dis-
covered collection of local attributes serves as a new image
representation, which improves vehicle classification per-
formance when fused together with low-level features us-
ing the method in [4]. Meanwhile, the discovered attributes
can be assigned semantic meanings, allowing novel cross-
modal applications such as querying vehicles using textual
descriptions. We first describe a technique based on the
classic MI-SVM model (Section 3.1), and then we extend
it by introducing pairwise constraints (Section 3.2). Finally
we describe how to learn the latent viewpoint angles when
these annotations are not available (Section 3.3).

3.1. MI-SVMs for attribute discovery

Multiple Instance Learning (MIL) is a form of semi-
supervised learning in which training instances are grouped
into bags. The ground-truth labels of the individual in-
stances are unknown, but each bag has a label that is positive
if at least one instance in the bag is positive, and negative if
all its instances are negative. Suppose we have a set of bags
{xI}. The standard Multiple Instance SVM (MI-SVM) [1]
is formulated as an optimization,

min
w,ξ,b

1

2
‖w‖2 + C

∑
I

ξI (1)

s.t. YI ·max
i

(w · xiI + b) ≥ 1− ξI ,



where w is a feature weight vector, b is a scalar bias, ξI is
a slack variable corresponding to training bag xI , xiI is the
ith training instance of bag xI , and YI is the ground truth
label (+1 or -1) of xI . Intuitively, this is the classic SVM
max-margin framework with an additional (soft) constraint
that all instances in the negative bags should be classified
as negative, and at least one instance in each positive bag
should be classified as positive.

Our goal is to find local image regions across the training
set that are discriminative — that occur often in one vehi-
cle category but not in another. We can apply the MI-SVM
framework to this problem in the following way. Choose a
pair of vehicle categories, calling one positive and one nega-
tive. We think of each image as a bag with a positive or neg-
ative label depending on its category, and then sample many
patches from each image to produce instances for each bag.
We then solve equation (2), which produces a weight vector
but also implicitly chooses positive instances, and these can
be viewed as the set of discriminative regions that we are
interested in. We can repeat this process for many pairs of
categories to produce a set of candidate attributes.

3.2. MI-SVMs with constraints

A problem with the above approach is that discovered
regions may not correspond to the same part of the vehi-
cle, and thus may not have semantic meaning, and also that
more than one region may be selected in each positive im-
age. To address these problems, we add constraints to en-
courage spatial consistency, requiring regions to occur in
roughly the same position on the vehicle by adding pair-
wise spatial constraints among instances in the positive bag.
But since viewpoints vary across images, we must explicitly
model viewpoint in order to compare spatial positions.

Our model. Let vI ∈ V denote the viewpoint label of im-
age (bag) I , where we assume that V is a small set of possi-
ble discrete viewpoints. For now we assume the viewpoint
labels are given; we discuss how to handle unknown view-
point labels in Section 3.3. We formulate the attribute dis-
covery problem using MI-SVMs, with additional pairwise
spatial constraints among positive instances that encourage
the spatial consistency property, as illustrated in Figure 2.
Suppose that we knew which instance in each positive bag
should be part of the attribute, and denote this region x∗I for
bag I . Then we could solve a separate MI-SVM problem
for each individual viewpoint v ∈ V ,

min
{w(v), ξ, b(v)}

1

2
‖w(v)‖2 + C(v)

∑
I∈I(v)

ξI (2)

s.t. ∀I ∈ I(v), YI · (w(v) · x∗I + b(v)) ≥ 1− ξI ,

where I(v) is the set of images having viewpoint label v,
i.e. I(v) = {I|vI = v}.

Figure 2: Visualization of SVM models: standard SVM
(left), standard MI-SVM (middle), and our MI-SVM with
constraints (right) between instances in each positive bag.
For recognizing vehicles given their viewpoint angles, we
define the constraints such that two selected region candi-
dates must come from consistent locations on the vehicles.

Now suppose the weight vectors and biases for each
viewpoint were already known, so that we need to estimate
the x∗I for each bag I . We want to do this in a way that
encourages spatial consistency. We pose this problem as in-
ference on a Conditional Random Field (CRF) [14]. Let lI
be a scalar variable which takes a value from the region in-
dices in image I . We define an energy function to measure
the compatibility of a given assignment of variables to lI ,

E({lI}|{vI}) =
∑
I

φ(lI |vI) +
∑
I,J

δ(lI , lJ |vI , vJ), (3)

where the first set of terms in the summation measures how
well the selected regions are modeled by the MI-SVM,

φ(lI |vI) = −(w(vI) · xlII + b(vI)),

and the pairwise terms encourage positive regions to be at
about the same spatial position on the car. If the viewpoint
labels between two images are the same, then measuring
this distance is a simple matter of comparing image coor-
dinates. If the labels are different, then we need to apply a
transformation so that the two coordinate systems are com-
parable. In particular, our pairwise function is,

δ(lI , lJ |vI , vJ) =

{
‖µ(lI)− µ(lJ)‖2, if vI = vJ

‖HvJ
vI µ(lI)− µ(lJ)‖

2, if vI 6= vJ ,

where µ(lI) denotes the spatial position of region lI relative
to the vehicle center, and HvJ

vI is a homography matrix. We
estimate the homography between two viewpoints by ex-
tracting SIFT features [16] from the training images having
each viewpoint and running RANSAC [8] on feature corre-
spondences. Finally, to estimate the best region x∗I for each
image I , we minimize equation (3) through CRF inference,

{x∗I} = argmin
{lI}

E({lI}|{vI}). (4)

Of course, in our problem we know neither the SVM
parameters or the region selections. We thus solve these it-
eratively, first finding the weights and biases in equation (2)
by holding the region variables fixed, and then solve for the



region variables in equation (4) while holding the SVM pa-
rameters fixed. The result is a collection of region selections
for all positive training images.

Generating regions. We have not yet addressed how to
generate the instances within each bag. Although we could
randomly sample patches, in practice this creates many ir-
relevant regions. We thus use an approach similar to [17],
applying a pre-trained deformable part-based model car de-
tector [6] on the training images to produce multiple detec-
tions with part locations. We then sample from the part de-
tection bounding boxes to generate region candidates. This
is faster than the hierarchical segmentation in [5] and pro-
duces regions that are more likely to be on the vehicles.

Generating multiple attributes. The above procedure can
be used to find the best attribute for a given pair of cat-
egories, but in practice we want to generate multiple at-
tribute hypotheses. To do this, we first find the best attribute
by solving for {x∗I} using the iterative procedure described
above. To find a second attribute, we modify the unary term
of equation (3) so that a large constant penalty is paid for se-
lecting an lI that was chosen as part of the earlier attribute.
In our experiments, we repeat this procedure 5 times to pro-
duce 5 attribute candidates per pair of categories.

3.3. Recovering Viewpoint Angles

We now consider the case in which the viewpoint labels
{vI} are not available ahead of time, so we need to estimate
the viewpoint label of each image in addition to the local
attributes. We first initialize the viewpoint labels with K-
means clustering using global image gradient features (e.g.
dense SIFT [16]) with K = |V|. Then, after each new at-
tribute is discovered, we update the viewpoint label of each
image. To do this, we apply the attribute detectors that have
been found so far across all viewpoint angles on the discov-
ered region, choose the best detector, and assign that view-
point to the region. For all of the discovered regions in an
image, we collect all such viewpoint predictions, and use
these to vote for the viewpoint of the image.

4. Experiments
We consider two datasets in our experiments: Stanford

cars [20] with 14 car categories (and 68 training and 34 test
images in each category); and INRIA vehicles [11] with 29
categories and a total of 10,000 images equally split into
training and test sets. There is viewpoint angle bias in both
datasets (e.g. images in Stanford cars are mostly from 45◦

and 135◦). In Stanford cars, each category consists of car
images of the same make, model and year, and bounding
box annotations and 8 discrete viewpoint labels are also pro-
vided. The INRIA dataset does not have viewpoint labels,
and the images in a category are only guaranteed to be the
same make and model, not necessarily from the same year.
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Figure 3: Relationship between region size and (solid line)
the performance of image classification using single re-
gions, and (dashed line) the semantic meaningfulness as
judged by humans, for Stanford (left) and INRIA (right).

On both datasets, we extract dense SIFT and color his-
togram features for each region candidate and compute
corresponding Fisher vectors using 32D Gaussian mixture
models. We also extract these features on the whole im-
age with a three-layer spatial pyramid as a baseline. Note
that [5] uses hierarchical segmentation to generate image re-
gion candidates, and different types of features (shape, con-
tour, color, gradient, etc) are extracted from the segments.
In our case, since the sampled regions are all rectangles, we
only use gradient and color features.

4.1. Single attributes

To validate the region pooling parameters and test how
our sampling strategy is related to accuracy, we test sin-
gle region performance, where we train multi-class linear
SVM classifiers on all image region features, using category
labels as training labels for classifying vehicle categories.
We observe that the performance for classifying single re-
gions decreases as region size decreases (Figure 3). This
make intuitive sense because discriminative information is
lost when the image is broken into small pieces. For exam-
ple, it is difficult to tell the difference between two vehicle
categories if only parts of the wheels are given.

We also wanted to measure the relationship between re-
gion size and whether or not a region is semantically mean-
ingful. To do this, we conducted a simple experiment on
Mechanical Turk where image regions of varying sizes were
shown, and users were asked to rate (on a scale of 1-10)
whether the region corresponded to a meaningful part of
the vehicle or not. Results are also shown in Figure 3. We
found that semantic meaning suffers if regions are too big
or too small: too small cannot capture useful image content,
while too big loses interpretability and locality of attributes.
Based on these results, we set the region size for the remain-
der of the experiments in order to maximize the semantic
meaningfulness of our image region candidates, generating
50×50 regions for Stanford and 70×70 regions for INRIA.
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Figure 4: Classification accuracy with different numbers of
discovered attributes and different techniques for handling
viewpoints, for Stanford (left) and INRIA (right) datasets.

4.2. Multiple attributes

To use multiple attributes for classification, we aggregate
the discovered attributes and use them to build a new repre-
sentation for each training image. To do this, we apply each
attribute classifier on a held-out validation set, and collect
all attribute detection scores. We build a T = (K×A) table,
where K is the number of categories and A is the number
of attributes. If more than half of the images in a category
k have attribute a, then we set T (k, a) = 1, otherwise to 0.
We use T for nearest neighbor classification.

Our framework can be used to generate multiple at-
tributes by learning MI-SVM on different category pairs
and by forcing candidate regions not to overlap (Section 3).
However not all such attribute candidates are beneficial to
the overall classification performance, so we use an attribute
selection method similar to [5] to select the subset of best
ones for classification. When a new attribute is generated,
we keep it if it improves the overall classification accuracy
on a held-out validation set; otherwise it is dropped.

Semantic filtering and naming. We post process these
attribute candidates to name them using human feedback
from Amazon Mechanical Turk. We present the attribute
visualizations generated from each viewpoint to human sub-
jects with their cropped bounding boxes, and put them in a
single image gallery if they correspond to the same attribute.
Specifically, we asked each subject for the part name, a de-
scriptive word, and their confidence score (on a 1-5 scale) as
well. We remove the non-semantic ones if the average con-
fidence score is lower than 3. Every candidate was shown
to 5 human users, and the names of the attributes were de-
termined by the majority of the feedbacks.

Category classification results. We studied classification
accuracy according to number of detected attributes, as
shown in Figure 4. We also compare several attribute se-
lection methods requiring different degrees of viewpoint su-
pervision. GT Viewpoint uses the ground truth viewpoint
labels in the training set using our technique of Section 3.2.
No Viewpoint completely ignores viewpoint information in

the vehicle discovery process (i.e. all images are assumed
to have the same viewpoint label). K-means Viewpoint
runs K-means using global image features to assign initial
viewpoint labels without any further update (i.e. performs
only the initialization phase of Section 3.3). Finally, Latent
Viewpoint uses our full model, treating viewpoint labels as
unknown latent variables and applying the method in Sec-
tion 3.3. From the figure, we see that incorporating view-
points into the model helps classification accuracy across
any number of attributes. The best results are achieved
when viewpoint is available in ground truth, but our tech-
nique that can infer viewpoints automatically performs bet-
ter than either of the simpler baselines. Note that we use
8 viewpoints in these experiments and the INRIA vehicles
dataset does not have ground truth viewpoint annotations,
so we only report results for the other three methods.

Combining with low level features. We achieve better
results by combining the attribute features with low-level
Fisher vector features [4]. We use a simple blending scheme
on the normalized scores of each test image as S = α ·
Slow+(1−α) ·Sattr, where Sattr is the classification score
from attributes and Slow is the score from the Fisher vectors.
We choose the best α using a held-out validation set. On
both datasets, we find that combining attributes and low-
level features improves classification accuracy compared
with just using the low-level features, with an increase from
88.2% to 89.57% on Stanford cars and 33.58% to 34.54%
on INRIA, both using 50 attributes. (Note that low-level re-
sults on the INRIA set reported in [11] are higher, but they
use a much larger mixture model to compute Fisher vectors,
so the numbers are not directly comparable.)

Qualitative Results. Figure 5 shows sample local attributes
learned using our technique applied on the Stanford cars
dataset. These semantic and discriminative visual attributes
can be used for automatic image annotation on new images.
Figure 6 shows sample tags produced for test images on the
Stanford cars dataset.

5. Conclusion
We have presented a novel approach for discovering lo-

cal visual attributes for vehicle categories and for model-
ing viewpoint classes at the same time. We have performed
systematic experimental evaluations to demonstrate our dis-
covered attributes help to improve baseline classification
methods. We showed that our discovered attributes are
both discriminative and semantically meaningful, leverag-
ing user feedback on the machine-generated attribute candi-
dates. In future work, we will explore more useful applica-
tions of local attributes (e.g. image retrieval, automatically
caption generation, etc.) and will study incorporating local
attributes into vehicle detectors.
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(a) head light, fender, red,
red and blue

(b) wheel, silver wheel
cup, black tire

(c) back wheel, tire,
white, right headlight

(d) window, trunk, rear,
black

(e) headlight, front light,
square

(f) side door, silver wheel
cup, black tire

(g) front wheel, black, sil-
ver, right headlight

(h) hood, windshield,
bumper, silver, blue

(i) front wheel, fender,
red, white

(j) rear headlight, back,
black window

Figure 5: Examples of automatically generated local attributes for the Stanford cars dataset. Each panel represents one
discovered local attribute for a particular viewpoint of the vehicle category, with names coming from Mechanical Turk users.

Figure 6: Examples of vehicle annotation results on new images.
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