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Abstract—Video segmentation—partitioning video frames into multiple segments or objects—plays a critical role in a broad range of
practical applications, from enhancing visual effects in movie, to understanding scenes in autonomous driving, to creating virtual
background in video conferencing. Recently, with the renaissance of connectionism in computer vision, there has been an influx of deep
learning based approaches for video segmentation that have delivered compelling performance. In this survey, we comprehensively
review two basic lines of research — generic object segmentation (of unknown categories) in videos, and video semantic segmentation
— by introducing their respective task settings, background concepts, perceived need, development history, and main challenges. We
also offer a detailed overview of representative literature on both methods and datasets. We further benchmark the reviewed methods
on several well-known datasets. Finally, we point out open issues in this field, and suggest opportunities for further research. We also
provide a public website to continuously track developments in this fast advancing field: https://github.com/tfzhou/VS-Survey.

Index Terms—Video Segmentation, Video Object Segmentation, Video Semantic Segmentation, Deep Learning

1 INTRODUCTION

IDEO segmentation — identifying the key objects with
V some specific properties or semantics in a video scene
— is a fundamental and challenging problem in computer
vision, with numerous potential applications including au-
tonomous driving, robotics, automated surveillance, social
media, augmented reality, movie production, and video
conferencing.

The problem has been addressed using various tradi-
tional computer vision and machine learning techniques,
including hand-crafted features (e.g., histogram statistics,
optical flow, etc.), heuristic prior knowledge (e.g., Vvi-
sual attention mechanism [1], motion boundaries [2], etc.),
low /mid-level visual representations (e.g., super-voxel [3],
trajectory [4], object proposal [5], efc.), and classical ma-
chine learning models (e.g., clustering [6], graph models [7],
random walks [8], support vector machines [9], random
decision forests [10], markov random fields [11], conditional
random fields [12], etc.). Recently, deep neural networks,
and Fully Convolutional Networks (FCNs) [13] in particular,
have led to remarkable advances in video segmentation.
These deep learning-based video segmentation algorithms
are significantly more accurate (and sometimes even more
efficient) than traditional approaches.

With the rapid advance of this field, there is a huge
body of new literature being produced. However, most
existing surveys predate the modern deep learning era [14],
[15], and often take a narrow view, such as focusing only
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Fig. 1. Video segmentation tasks reviewed in this survey: (a) object-level
automatic video object segmentation (object-level AVOS), (b) instance-
level automatic video object segmentation (instance-level AVOS), (c)
semi-automatic video object segmentation (SVOS), (d) interactive video
object segmentation (IVOS), (e) language-guided video object segmen-
tation (LVOS), (f) video semantic segmentation (VSS), (g) video instance
segmentation (VIS), and (h) video panoptic segmentation (VPS).

on video foreground/background segmentation [16], [17].
In this paper, we offer a state-of-the-art review that ad-
dresses the wide area of video segmentation, especially to
help new researchers enter this rapidly-developing field.
We systematically introduce recent advances in video seg-
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Fig. 2. Overview of this survey.

mentation, spanning from task formulation to taxonomy,
from algorithms to datasets, and from unsolved issues to
future research directions. We cover crucial aspects includ-
ing task categories (i.e., foreground /background separation
vs semantic segmentation), inference modes (i.e., automatic,
semi-automatic, and interactive), and learning paradigms
(i.e., supervised, unsupervised, and weakly supervised), and
we try to clarify terminology (e.g., background subtraction,
motion segmentation, efc.). We hope that this survey helps
accelerate progress in this field.

This survey mainly focuses on recent progress in two
major branches of video segmentation, namely video object
segmentation (Fig. 1(a-e)) and video semantic segmentation
(Fig. 1(f-h)), which are further divided into eight sub-fields.
Even after restricting our focus to deep learning-based video
segmentation, there are still hundreds of papers in this
fast-growing field. We select influential work published in
prestigious journals and conferences. We also include some
non-deep learning video segmentation models and relevant
literature in other areas, e.g., visual tracking, to give neces-
sary background. Moreover, in order to promote the devel-
opment of this field, we provide an accompanying webpage
which catalogs algorithms and datasets addressing video
segmentation: https:/ /github.com/tfzhou/VS-Survey.

Fig. 2 shows the structure of this survey. Section §2 gives
some brief background on taxonomy, terminology, study
history, and related research areas. We review representative
papers on deep learning algorithms and video segmentation
datasets in §3 and §4, respectively. Section §5 conducts
performance evaluation and analysis, while §6 raises open
questions and directions. Finally, we make concluding re-
marks in §7.

2 BACKGROUND

In this section, we first formalize the task, categorize re-
search directions, and discuss key challenges and driving
factors in §2.1. Then, §2.2 offers a brief historical background

Capsule Routing-based

Video Panoptic
Segmentation (§3.23)

covering early work and foundations, and §2.3 establishes
linkages with relevant fields.

2.1

Formally, let X and Y denote the input space and out-
put segmentation space, respectively. Deep learning-based
video segmentation solutions generally seek to learn an ideal
video-to-segment mapping f*: X — Y.

Problem Formulation and Taxonomy

2.1.1

According to how the output space Y is defined, video
segmentation can be broadly categorized into two classes:
video object (foreground/background) segmentation, and
video semantic segmentation.

e Video Foreground/Background Segmentation (Video
Object Segmentation, VOS). VOS is the classic video seg-
mentation setting and refers to segmenting dominant objects
(of unknown categories). In this case, Y is a binary, fore-
ground /background segmentation space. VOS is typically
used in video analysis and editing application scenarios,
such as object removal in movie editing, content-based
video coding, and virtual background creation in video
conferencing. It typically is not concerned with the exact
semantic categories of the segmented objects.

e Video Semantic Segmentation (VSS). As a direct exten-
sion of image semantic segmentation to the spatio-temporal
domain, VSS aims to extract objects within predefined se-
mantic categories (e.g., car, building, pedestrian, road) from
videos. Thus, Y corresponds to a multi-class, semantic pars-
ing space. VSS serves as a perception foundation for many
application fields, such as robot sensing, human-machine
interaction, and autonomous driving, which require high-
level understanding of the physical environment.

Remark. VOS and VSS share some common challenges,
such as fast motion and object occlusion. However, due
to differences in application scenarios, many challenges are
different. For instance, VOS often focuses on human created

Video Segmentation Category
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media, which often have large camera motion, deformation,
and appearance changes. VSS instead often focuses on ap-
plications like autonomous driving, which requires a good
trade off between accuracy and latency, accurate detection
of small objects, model parallelization, and cross-domain
generalization ability.

2.1.2 Inference Modes for Video Segmentation

VOS methods can be further classified into three types: au-
tomatic, semi-automatic, and interactive, according to how
much human intervention is involved during inference.
o Automatic Video Object Segmentation (AVOS). AVOS,
or unsupervised video segmentation or zero-shot video segmen-
tation, performs VOS in an automatic manner, without any
manual initialization (Fig. 1(a-b)). The input space X refers
to the video domain V only. AVOS is suitable for video
analysis but not for video editing that requires segmenting
arbitrary objects or their parts flexibly; a typical application
is virtual background creation in video conferencing.
e Semi-automatic Video Object Segmentation (SVOS).
SVOS, also known as semi-supervised video segmentation or
one-shot video segmentation [18], involves limited human in-
spection (typically provided in the first frame) to specify
the desired objects (Fig. 1(c)). For SVOS, X =V x M,
where V indicates the video space and M refers to human
input. Typically the human input is an object mask in the
first video frame, in which case SVOS is also called pixel-
wise tracking or mask propagation. Other forms of human
input include bounding boxes and scribbles [8]. From this
perspective, language-guided video object segmentation
(LVOS) is a sub-branch of SVOS, in which the human input
is given as linguistic descriptions about the desired objects
(Fig. 1(e)). Compared to AVOS, SVOS is more flexible in
defining target objects, but requires human input. SVOS is
typically applied in a user-friendly setting (without special-
ized equipment), such as video content creation in mobile
phones. One of the core challenges in SVOS is how to fully
utilize target information from limited human intervention.
e Interactive Video Object Segmentation (IVOS). SVOS
models are designed to operate automatically once the tar-
get has been identified, while systems for IVOS incorporate
user guidance throughout the analysis process (Fig. 1(d)).
IVOS can obtain high-quality segments and works well for
computer-generated imagery and video post-production,
where tedious human supervision is possible. IVOS is also
studied in the graphics community as video cutout. The
input space X for IVOS is V x S, where S typically refers
to human scribbling. Key challenges include: 1) allowing
users to easily specify segmentation constraints; 2) incor-
porating human specified constraints into the segmentation
algorithm; and 3) giving quick response to the constraints.
In contrast to VOS, VSS methods typically work in an
automatic mode (Fig. 1(f-h)), i.e., X = V. Only a few early
methods address the semi-automatic setting, called label
propagation [19].
Remark. The terms “unsupervised” and “semi-supervised”
are conventionally used in VOS to specify the amount of
human interaction involved during inference. But they are
easily confused with “unsupervised learning” and “semi-
supervised learning.” We urge the community to replace these
ambiguous terms with “automatic” and “semi-automatic.”

2.1.3 Learning Paradigms for Video Segmentation

Deep learning-based video segmentation models can be
grouped into three categories according to the learning strat-
egy they use to approximate f*: supervised, unsupervised,
and weakly supervised.
e Supervised Learning Methods. Modern video segmen-
tation models are typically learned in a fully supervised
manner, requiring N input training samples and their de-
sired outputs y,:= f*(z,), where {(z,, yn)}n CXxY. The
standard method for evaluating learning outcomes follows
an empirical risk/loss minimization formulation:'

. 1

J € argmin >, e(f(@n), 2(zn)),
where F denotes the hypothesis (solution) space, and « :
X x Y — R is an error function that evaluates the estimate
f(x,) against video segmentation related prior knowledge
z(z,) €Z. To make f a good approximation of f* current
supervised video segmentation methods directly use the de-
sired output yy,, i.e., z(zy):=f*(x,), as the prior knowledge,
with the price of requiring vast amounts of well-labeled data.
e Unsupervised (Self-supervised) Learning Methods.
When only data samples {x,,},CX are given, the problem
of approximating f* is known as unsupervised learning.
Unsupervised learning includes fully unsupervised learning
methods in which the methods do not need any labels at all,
as well as self-supervised learning methods in which net-
works are explicitly trained with automatically-generated
pseudo labels without any human annotations [20]. Almost
all existing unsupervised learning-based video segmenta-
tion models are self-supervised learning methods, where
the prior knowledge Z refers to pseudo labels derived
from intrinsic properties of video data (e.g., cross-frame con-
sistency). We thus use “unsupervised learning” and “self-
supervised learning” interchangeably.
o Weakly-Supervised Learning Methods. In this case, Z
is typically a more easily-annotated domain, such as tags,
bounding boxes, or scribbles, and f* is approximated using
a finite number of samples from A x Z.
Remark. So far, deep supervised learning-based methods
are dominant in the field of video segmentation. However,
exploring the task in an unsupervised or weakly supervised
setting is more appealing, not only because it alleviates the
annotation burden of Y, but because it inspires an in-depth
understanding of the nature of the task by exploring Z.

2.2 History and Terminology

Digital image segmentation has been studied for at least 50
years, starting with the Roberts operator [21] for identify-
ing object boundaries. Since then, numerous algorithms for
image segmentation have been proposed, and many are ex-
tended to the video domain. The field of video segmentation
has evolved quickly and undergone great change.

Earlier attempts focus on video over-segmentation, i.e.,
partitioning a video into space-time homogeneous, percep-
tually distinct-regions. Typical approaches include hierar-
chical video segmentation [7], temporal superpixel [22], and
super-voxels [3], based on the discontinuity and similarity of
pixel intensities in a particular location, i.e., separating pixels

1. We omit the regularization term for brevity.
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according to abrupt changes in intensity or grouping pixels
with similar intensity together. These methods are instruc-
tive for early stage video preprocessing, but cannot solve
the problem of object-level pattern modeling, as they do not
provide any principled approach to flatten the hierarchical
video decomposition into a binary segmentation [2], [9].

To extract foreground objects from video sequences,
background subtraction techniques emerged beginning in
the late 70s [23], and became popular following the work
of [24]. They assume that the background is known a priori,
and that the camera is stationary [25], [26] or undergoes a
predictable, parametric 2D [27] or 3D motion with 3D paral-
lax [28]. These geometry-based methods fit well for specific
application scenarios such as surveillance systems [9], [26],
but they are sensitive to model selection (2D or 3D), and
cannot handle non-rigid camera movements.

Another group of video segmentation solutions tackled
the task of motion segmentation, ie., finding objects in
motion. Background subtraction can also be viewed as a
specific case of motion segmentation. However, most mo-
tion segmentation models are built upon motion analy-
sis [29], [30], factorization [31], and/or statistical [32] tech-
niques that comprehensively model the characteristics of
moving scenes without prior knowledge of camera motion.
Among the big family of motion segmentation algorithms,
trajectory segmentation attained particular attention [4],
[33]-[36]. Trajectories are generated through tracking points
over multiple frames and can represent long-term motion
patterns, serving as an informative cue for segmentation.
Though impressive, motion-based methods heavily rely on
the accuracy of optical flow estimation and can fail when
different parts of an object exhibit heterogeneous motions.

To overcome these limitations, the task of extracting
generic objects from unconstrained video sequences, i.e.,
AVOS, has drawn increasing research interest [37]. Several
methods [5], [38]-[40] explored object hypotheses or propos-
als [41] as middle-level object representations. They gener-
ate a large number of object candidates in every frame and
cast the task of segmenting video objects as an object region
selection problem. The main drawbacks of the proposal-
based algorithms are the high computational cost [17] and
complicated object inference schemes. Some others explored
heuristic hypotheses such as visual attention [1] and motion
boundary [2], but easily fail in scenarios where the heuristic
assumptions do not hold.

As argued earlier, an alternative to the above unattended
solutions is to incorporate human-marked initialization, i.e.,
SVOS. Older SVOS methods often rely on optical flow [8],
[42]-[44] and share a similar spirit with object tracking [45],
[46]. In addition, some pioneering IVOS methods were
proposed to address high-quality video segmentation un-
der extensive human guidance, including rotoscoping [47],
[48], scribble [8], [49]-[52], contour [53], and points [54].
Significant engineering is typically needed to allow IVOS
systems to operate at interactive speeds. In short, SVOS and
IVOS pay for the improved flexibility and accuracy: they
are infeasible at large scale due to their human-in-the-loop
nature.

In the pre-deep learning era, relatively few papers [12],
[55]-[58] considered VSS due to the complexity of the task.
The approaches typically relied on supervised classifiers

such as SVMs and video over-segmentation techniques.

Overall, traditional approaches for video segmentation,
though giving interesting results, are constrained by hand-
crafted features and heavy engineering. But deep learning
brought the performance of video segmentation to a new
level, as we will review in §3.

2.3 Related Research Areas

There are several research fields closely related to video
segmentation, which we now briefly describe.

e Visual Tracking. To infer the location of a target ob-
ject over time, current tracking methods usually assume
that the target is determined by a bounding box in the
first frame [59]. However, in more general tracking scenar-
ios, and in particular the cases studied in early tracking
methods, diverse object representations are explored [60],
including centroids, skeletons, and contours. Some video
segmentation techniques, such as background subtraction,
are also merged into older trackers [61], [62]. Hence, visual
tracking and video segmentation encounter some common
challenges (e.g., object/camera motion, appearance change,
occlusion, etc.), fostering their mutual collaboration.

e Image Semantic Segmentation. The success of end-to-
end image semantic segmentation [63]-[65] has sparked the
rapid development of VSS. Rather than directly applying
image semantic segmentation techniques frame by frame,
recent VSS systems explore temporal continuity to increase
both accuracy and efficiency. Nevertheless, image semantic
segmentation techniques continue to serve as a foundation
for advancing segmentation in video.

¢ Video Object Detection. To generalize object detection in
the video domain [112], video object detectors incorporate
temporal cues over the box- or feature- level. There are many
key technical steps and challenges, such as object proposal
generation, temporal information aggregation, and cross-
frame object association, that are shared between video
object detection and (instance-level) video segmentation.

3 DEEP LEARNING-BASED VIDEO SEGMENTATION
3.1

VOS extracts generic foreground objects from video se-
quences with no concern for semantic category recognition.
Based on how much human intervention is involved in
inference, VOS models can be divided into three classes
(§2.1.2): automatic (AVOS, §3.1.1), semi-automatic (SVOS,
§3.1.2), and interactive (IVOS, §3.1.3). Moreover, although
language-guided video object segmentation (LVOS) falls in
the broader category of SVOS, LVOS methods are reviewed
alone (§3.1.4), due to the specific multi-modal task setup.

Deep Learning-based VOS Models

3.1.1 Automatic Video Object Segmentation (AVOS)

Instead of using heuristic priors and hand-crafted features
to automatically execute VOS, modern AVOS methods learn
generic video object patterns in a data-driven fashion. We
group landmark efforts based on their key techniques.

e Deep Learning Module based Methods. In 2015, Fragki-
adaki et al. [113] made an early effort that learns a multi-
layer perceptron to rank proposal segments and infer fore-
ground objects. In 2016, Tsai et al. [43] proposed a joint opti-
mization framework for AVOS and optical flow estimation
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TABLE 1
Summary of essential characteristics for reviewed AVOS methods (§3.1.1).
Instance: instance- or object-level segmentation; Flow: if optical flow is used.

| Year | Method || Pub. | Core Architecture | Instance  Flow Training Dataset
FSEG [66] CVPR Two-Stream FCN Object v ImageNet VID [67] + DAVIS;6 [17]
~ SFL [68] Iccv Two-Stream FCN Object v DAVIS;6 [17]
= LVO [69] ICccv Two-Stream FCN Object v DAVIS;6 [17]
o LMP [70] || ICCV FCN Object v FI3D [71]
NREF [72] ICCV FCN Object v Youtube-Objects [73]
IST[74] || CVPR FCN Object 7 DAVIS16 [17]
FGRNE [75] || CVPR FCN + RNN Object SegTrackV2 [76] + DAVISy¢ [17] + FBMS [36]
= MBN [77] || ECCV FCN Object v DAVIS;6 [17]
& PDB[78] || ECCV RNN Object DAVIS;6 [17]
MOT [79] ICRA Two-Stream FCN Object v DAVIS6 [17]
RVOS [80] CVPR RNN Instance DAVIS; 7 [81]/YouTube-VIS [32]
COSNet [83] || CVPR | Siamese FCN + Co-attention | Object MSRA10K [84] + DUT [85] + DAVISs6 [17]
UMOD [86] CVPR Adversarial Network Object v SegTrackV2 [76] + DAVISy6 [17] + FBMS [36]
o AGS[87] || CVPR FCN Object SegTrackV2 [76] + DAVIS ¢ [17] + DUT [85] + PASCAL-S [85]
= AGNN [89] || 1CCV FCN + GNN Object MSRAT10K [84] + DUT [85] + DAVIS;6 [17]
o MGA [90] Iccv Two-Stream FCN Object v DUTS [91] + DAVIS;¢ [17] + FBMS [36]
AnDiff [92] ICCV | Siamese FCN + Co-attention Object DAVIS;6 [17]
LSMO [93] JCcv Two-Stream FCN Object v FT3D [71] + DAVIS;6 [17]
MATNet [94] AAAT Two-Stream FCN Object v Youtube-VOS [95] + DAVIS;6 [17]
PyramidCSA [96] AAAI | Siamese FCN + Co-attention Object DUTS [91] + DAVIS;6 [17] + DAVSOD [97]
o MuG [98] CVPR FCN Object OxUvA [99]
1] EGMN [100] || ECCV FCN + Episodic Memory Object MSRA10K [84] + DUT [85] + DAVIS;6 [17]
o WCSNet [101] || ECCV Siamese FCN Object SALICON [102] + PASCAL VOC 2012 [103] + DUTS [91] + DAVIS;¢ [17]
DFNet [104] ECCV Siamese FCN Object MSRA10K [84] + DUT [85] + DAVIS;¢ [17]
F2Net [105] || AAAI Siamese FCN Object MSRATOK [31] + DAVIS 6 [17]
— TODA [106] CVPR Siamese FCN Instance DAVIS; 7 [81]/YouTube-VIS [582]
I RTNet [107] || CVPR Two-Stream FCN Object v DUTS [91] + DAVISs6 [17]
o DyStab [108] CVPR Adversarial Network Object v SegTrackV2 [76] + DAVISy¢ [17] + FBMS [36]
MotionGrouping [109] ICCV Transformer Object ' DAVIS16 [17]/SegTrackV2 [76]/FBMS59 [110]/MoCA [111]

with a naive use of deep features from a pre-trained clas-
sification network. Later methods [70], [72] learn FCNs to
predict initial, pixel-level foreground estimates from frame
images [72], [114] or optical flow fields [70], while several
post-processing steps are still needed. Basically, these prim-
itive solutions largely rely on traditional AVOS techniques;
the learning ability of neural networks is under-explored.

o Pixel Instance Embedding based Methods. A group of
AVOS models has been developed to make use of stronger
deep learning descriptors [74], [77] — instance embeddings —
learned from image instance segmentation data [115]. They
first generate pixel-wise instance embeddings, and select
representative embeddings which are clustered into fore-
ground and background. Finally, the labels of the sampled
embeddings are propagated to the other ones. The cluster-
ing and propagation can be achieved without video specific
supervision. Though using fewer annotations, these meth-
ods suffer from a fragmented and complicated pipeline.

e End-to-end Methods with Short-term Information En-
coding. End-to-end model designs became the mainstream
in this field. For example, convolutional recurrent neural
networks (RNNs) were used to learn spatial and temporal
visual patterns jointly [78], [89]. Another big family is built
upon two-stream networks [66], [68], [69], [75], [90], [93],
[94], wherein two parallel streams are built to extract fea-
tures from raw image and optical flow, which are further
fused for segmentation prediction. Two-stream methods
make explicit use of appearance and motion cues, at the
cost of optical flow computation and vast learnable pa-
rameters. These end-to-end methods improve accuracy and
show the advantages of applying neural networks to this
task. However, they only consider local content within very
limited time span; they stack appearance and/or motion
information from a few successive frames as input, ignoring
relations among distant frames. Although RNNs are usually
adopted, their internal hidden memory creates the inherent
limits in modeling longer-term dependencies [116].

e End-to-end Methods with Long-term Context Encoding.
Current leading AVOS models use global context over long

time spans. In a seminal work [83], Lu et al. proposed a
Siamese architecture-based model that extracts features for
arbitrary frame pairs and captures cross-frame context by
calculating pixel-wise feature correlations. During inference,
for each test frame, context from several other frames
(within the same video) is aggregated to locate objects. A
contemporary work [92] exploited a similar idea but only
used the first frame as reference. Several papers [101], [107]
extended [83] by making better use of information from
multiple frames [89], [175], [176], encoding spatial context
[105], and incorporating temporal consistency to improve
representation power and computation efficiency [96], [104].
o Un-/Weakly-supervised based Methods. Only a hand-
ful of methods learn to perform AVOS from unlabeled or
weakly labeled data. In [87], static image salient object seg-
mentation and dynamic eye fixation data, which are more
easily acquired compared with video segmentation data, are
used to learn video generic object patterns. In [98], visual
patterns are learned through exploring several intrinsic
properties of video data at multiple granularities, i.e., intra-
frame saliency, short-term visual coherence, long-range se-
mantic correspondence, and video-level discriminativeness.
In [86], an adversarial contextual model is developed to
segment moving objects without any manual annotation,
achieved by minimizing the mutual information between
the motions of an object and its context. This method is
further enhanced in [108] by adopting a bootstrapping strat-
egy and enforcing temporal consistency. In [109], motion
is exclusively exploited to discover moving objects, and a
Transformer-based model is designed and trained by self-
supervised flow reconstruction using unlabeled video data.
e Instance-level AVOS Methods. Instance-level AVOS, also
referred as multi-object unsupervised video segmentation, was
introduced with the launch of the DAVIS;g challenge [177].
This task setting is more challenging as it requires not only
separating the foreground objects from the background,
but also discriminating different object instances. To tackle
this task, current solutions typically work in a top-down
fashion, i.e., generating object candidates for each frames,
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TABLE 2
Summary of essential characteristics for reviewed SVOS methods (§3.1.2). Flow: if optical flow is used.
| Year | Method || Pub. | Core Architecture Flow |  Technical Feature Training Dataset
OSVOS [15] CVPR FCN Online Fine-tuning DAVIS16 [17]
MaskTrack [117] || CVPR FCN v Propagation-based ECSSD [118] + MSRA10K [84] + PASCAL-S [88] + DAVIS ¢ [17]
I~ CTN [119] CVPR FCN v Propagation-based PASCAL VOC 2012 [
) VPN [120] CVPR Bilateral Network Propagation-based DAVIS;6 [17]
o PLM [121] CVPR Siamese FCN Matching-based DAVIS;6 [17]
OnAVOS [122] BMVC FCN Online Fine-tuning PASCAL VOC 2012 [103] + COCO [123] + DAVIS [17]
Lucid [124] Jcv Two-Stream FCN v Propagation-based DAVIS6 [17]
CINM [125] CVPR Spatio-temporal MRF v Propagation-based DAVIS;7 [81]
FAVOS [126] CVPR FCN Propagation-based DAVIS;¢ [17]/DAVIS; 7 [
RGMP [127] CVPR Siamese FCN Propagation-based PASCAL VOC 2012 [103] + ECSSD [118] + MSRA10K [84] + DAVIS; 7 [81]
OSMN [128] CVPR FCN + Meta Learning Online Fine-tuning ImageNet VID [67] + DAVIS;6 [17]
MONet [129] || CVPR FCN v Online Fine-tuning PASCAL VOC 2012 [103] + DAVIS 6 [17]
2 CRN [130] CVPR FCN + Active Contour v Propagation-based PASCAL VOC 2012 [103] + DAVIS;6 [17]
& RCAL [131] CVPR FCN + RL Propagation-based MSRA10K [84] + PASCAL-S + SOD + ECSSD [118] + DAVIS;¢ [17]
0SVOS-S [132] PAMI FCN Online Fine-tuning DAVISy6 [17]/DAVIS; 7 [81]
Videomatch [133] ECCV Siamese FCN Matching-based DAVIS;6 [17]/DAVIS; 7 [81]
Dyenet [134] ECCV Re-ID Propagation-based DAVIS; 7 [81]
LSE [135] ECCV FCN Propagation-based PASCAL VOC 2012 [103]
Colorization [136] ECCV Siamese FCN Unsupervised Learning Kinetics [137]
MVOS [138] PAMI Siamese FCN + Meta Learning Online Fine-tuning PASCAL VOC 2012 [103] + DAVIS;6 [17]/DAVIS; 7 [51]
FEELVOS [139] CVPR FCN Matching-based COCO [123] + DAVIS;7 [81] + YouTube-VOS [95]
MHP-VOS [140] CVPR Graph Optimization Propagation-based COCO [123] + DAVIS¢ [17]/DAVIS; 7 [81]
AGSS [141] CVPR FCN v Propagation-based DAVIS; 7 [31]/YouTube-VOS [95]
AGAME [142] || CVPR FCN Propagation-based MSRA10K [84] + PASCAL VOC 2012 [103] + DAVIS, 7 [31]/YouTube-VOS [95]
o SiamMask [143] CVPR Siamese FCN Box-Initialization DAVIS;6 [17]/DAVIS; 7 [81]/YouTube-VOS [95]
S RVOS [80] CVPR RNN Propagation-based DAVIS; 7 [31]/YouTube-VIS [52]
o BubbleNet [144] CVPR Siamese Network Bubble Sorting DAVIS; 7 [81]
RANet [145] ICCcv Siamese FCN Matching-based MSRA10K [84] + ECSSD [118]+ HKU-IS [146] + DAVIS;6 [17]/DAVIS;7 [81]
DMM-Net [147] ICCcv Mask R-CNN Differentiable Matching DAVIS; 7 [81]/YouTube-VOS [95]
DTN [148] ICCcv FCN v Propagation-based COCO [123] + PASCAL VOC 2012 [103] + DAVIS;6/DAVIS: 7 [81]
STM [149] Iccv Memory Network Matching-based PASCAL VOC 2012 [103] + COCO [123] + ECSSD [118] + DAVIS; 7 [81]/YouTube-VOS [95]
TimeCycle [150] ECCV Siamese FCN Unsupervised Learning VLOG [151]
UVC [152] NeurIPS Siamese FCN Unsupervised Learning COCO [123] + Kinetics [137]
e-OSVOS [153] NeurIPS | Mask R-CNN + Meta Learning Online Fine-tuning DAVIS;7 [31] + YouTube-VOS [95]
AFB-URR [154] || NeurIPS Memory Network Matching-based PASCAL VOC 2012 [103] + COCO [123] + ECSSD [118] + DAVIS; 7 [51]/YouTube-VOS [95]
Fasttan [155] CVPR Faster R-CNN Propagation-based COCO [123] + DAVIS; 7 [81]
Fasttmu [156] || CVPR FCN + RL Box-Initialization PASCAL VOC 2012 [103] + DAVIS; 7 [81]
SAT [157] CVPR FCN + RL Propagation-based COCO [123] + DAVIS; 7 [81] + YouTube-VOS [95]
FRTM-VOS [158] CVPR FCN Matching-based DAVIS; 7 [81]/YouTube-VOS [95]
TVOS [159] CVPR FCN Matching-based DAVIS; 7 [81]/YouTube-VOS [95]
I MuG [98] CVPR Siamese FCN Unsupervised Learning OxUvA [99]
& MAST [160] CVPR Memory Network Unsupervised Learning OxUvA [99] + YouTube-VOS [
GCNet [161] ECCV Memory Network Matching-based MSRA10K [34] + ECSSD [118] + HKU-IS [146] + DAVIS; 7 [81]/YouTube-VOS [95]
KMN [162] ECCV Memory Network Matching-based PASCAL VOC 2012 [103] + COCO [123] + ECSSD [118] + DAVIS; 7 [381]/YouTube-VOS [95]
CFBI [163] ECCV FCN Matching-based COCO [123] + DAVIS; 7 [81]/YouTube-VOS [95]
LWL [164] ECCV Siamese FCN + Meta Learning Matching-based DAVIS; 7 [81] + YouTube-VOS [95]
MBSN [165] ECCV Memory Network Matching-based DAVIS; 7 [81]/YouTube-VOS [
EGMN [100] ECCV Memory Network Matching-based MSRA10K [84] + COCO [123] + DAVIS;7 [81] + YouTube-VOS [95]
STM-Cycle [166] NeurIPS Memory Network Matching-based DAVIS; 7 [81] + YouTube-VOS [95]
QMA [167] AAAT Memory Network Box-Initialization DUT [385] + HKU-IS [146] + MSRATOK [84] + YouTube-VOS [95]
SwiftNet [168] CVPR Memory Network Matching-based COCO [123] + DAVIS; 7 [81]/YouTube-VOS [95]
G-FRTM [169] CVPR FCN + RL Matching-based DAVIS; 7 [81] + YouTube-VOS [95]
I SST [170] CVPR Transformer Matching-based DAVIS; 7 [81] + YouTube-VOS [95]
& GIEL [171] CVPR Siamese FCN Matching-based DAVIS;7 [81] + YouTube-VOS [95]
LCM [172] CVPR Memory Network Matching-based PASCAL VOC 2012 [103] + COCO [123] + ECSSD [118] + DAVIS; 7 [51]/YouTube-VOS [95]
RMNet [173] CVPR Memory Network v Matching-based PASCAL VOC 2012 [103] + COCO [123] + ECSSD [118] + DAVIS; 7 [81]/YouTube-VOS [95]
CRW [174] NeurIPS FCN Unsupervised Learning Kinetics [137]
and associating instances over different frames. In an early o Online Fine-tuning based Methods. Following the one-
attempt [ ], Ventura et al. delivered a recurrent network- shot pru‘lClp]e, this famlly of methods [ ], [ ]/ [ ], [ ]

based model that consists of a spatial LSTM for per-frame
instance discovery and a temporal LSTM for cross-frame
instance association. This method features an elegant model
design, while its representation ability is too weak to enu-
merate all the object instances and to capture complex
interactions between instances over the temporal domain.
Thus later methods [175], [178], [179] strengthen the two-
step pipeline through: i) employing image instance seg-
mentation models (e.g., Mask R-CNN [180]) to detect ob-
ject candidates, and ii) leveraging tracking/re-identification
techniques and manually designed rules for instance associ-
ation. Foreground /background AVOS techniques [83], [89]
are also used to filter out nonsalient candidates [175], [179].
More recent methods, e.g., [106], generate object candidates
first and obtain corresponding tracklets via advanced SVOS
techniques. Overall, current instance-level AVOS models
follow the classic tracking-by-detection paradigm, involving
several ad-hoc designs. There is still considerable room for
further improvement in accuracy and efficiency.

3.1.2 Semi-automatic Video Object Segmentation (SVOS)
Deep learning-based SVOS methods mainly focus on the
first-frame mask propagation setting. They are categorized
by their utilization of the test-time provided object masks.

trains a segmentation model separately on each given object
mask in an online fashion. Fine-tuning methods essentially
exploit the transfer learning capabilities of neural networks
and often follow a two-step training procedure: i) offline pre-
training: learn general segmentation features from images
and video sequences, and ii) online fine-tuning: learn target-
specific representations from test-time supervision. The idea
of fine-tuning was first introduced in [18], where only
the initial image-mask pair is used for training an online,
one-shot, but merely appearance-based FCN model. Then,
in [122], more pixel samples in the unlabeled frames are
mined as online training samples to better adapt to further
changes over time. As [18], [122] have no notion of indi-
vidual objects, [132] further incorporates instance segmen-
tation models (e.g., Mask R-CNN [180]) during inference.
While elegant through their simplicity, fine-tuning methods
have several weaknesses: i) pre-training is fixed and not
optimized for subsequent fine-tuning, ii) hyperparameters
of online fine-tuning are often excessively hand-crafted and
fail to generalize between test cases, iii) the common existing
fine-tuning setups suffer from high test runtimes (up to
1,000 training iterations per segmented object online [18]).
The root cause is that these approaches choose to encode all
the target-related cues (i.e., appearance, mask) into network
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parameters implicitly. Towards efficient and automated fine-
tuning, some recent methods [128], [138], [153] turn to
meta learning techniques, i.e., optimize the fine-tuning poli-
cies [138], [153] (e.g., generic model initialization, learning
rates, efc.) or even directly modify network weights [128].

¢ Propagation-based Methods. Two recent lines of research
—built upon mask propagation and template matching tech-
niques respectively — try to refrain from the online opti-
mization to deliver compact, end-to-end SVOS solutions.
In particular, propagation-based methods use the previous
frame mask to infer the current mask [117], [119], [120]. For
example, Jampani et al. [120] propose a bilateral network for
long-range video-adaptive mask propagation. Perazzi et al.

[117] approach SVOS by employing a modified FCN, where
the previous frame mask is considered as an extra input
channel. Follow-up work adopts optical flow guided mask
alignment [129], heavy first-frame data augmentation [124],
and multi-step segmentation refinement [130]. Others apply
re-identification to retrieve missing objects after prolonged
occlusions [134], design a reinforcement learning agent that
tackles SVOS as a conditional decision-making process [131],
or propagate masks in a spatiotemporal MRF model to im-
prove temporal coherency [125]. Some researchers leverage
location-aware embeddings to sharpen the feature [135], or
directly learn sequence-to-sequence mask propagation [95].
Advanced tracking techniques are also exploited in [126],
[140], [155], [157]. Propagation-based methods are found to
easily suffer from error accumulation due to occlusions and
drifts during mask propagation. Conditioning propagation
on the initial frame-mask pair [127], [141], [148] seems a
feasible solution to this. Although target-specific mask is exp-
licitly encoded into the segmentation network, making up
for the deficiencies of fine-tuning methods to a certain extent,
propagation-based methods still embed object appearance
into hidden network weights. Clearly, such implicit target-
appearance modeling strategy hurts flexibility and adaptiv-
ity (while[142] is an exception — a generative model of target
and background is explicitly built to aid mask propagation).
o Matching-based Methods. This type of methods, might the
most promising SVOS solution so far, constructs an embed-
ding space to memorize the initial object embeddings, and
classifies each pixel’s label according to their similarities to
the target object in the embedding space. Thus the initial
object appearance is explicitly modeled, and test-time fine-
tuning is not needed. The earliest effort in this direction can
be tracked back to [121]. Inspired by the advance in visual
tracking [190], Yoon et al. [121] proposed a Siamese network
to perform pixel-level matching between the first frame and
upcoming frames. Later, [126] proposed to learn an embed-
ding space from the first-frame supervision and pose VOS
as a task of pixel retrieval: pixels are simply their respective
nearest neighbors in the learned embedding space. The idea
of [121] is also explored in [133], while it computes two ma-
tching maps for each upcoming frame, with respect to the
foreground and background annotated in the first frame. In
[139], pixel-level similarities computed from the first frame
and from the previous frame are used as a guide to segment
succeeding frames. Later, many matching-based solutions
were proposed [145], [191], perhaps most notably Oh et al.,
who propose a space-time memory (STM) model to explic-
itly store previously computed segmentation information in

7

an external memory [149]. The memory facilitates learning
the evolution of objects over time and allows for comprehen-
sive use of past segmentation cues even over long period of
time. Almost all current top-leading SVOS solutions [159],
[163] are built upon STM; they improve the target adaption

ability [100], [158], [164], incorporate local temporal continu-
ity [162], [172], [173], explore instance-aware cues [171], and
develop more efficient memory designs [154], [161], [165],
[168]. Recently, [170] introduced a Transformer [192] based

model, which performs matching-like computation through
attending over a history of multiple frames. In general,
matching-based solutions enjoy the advantage of flexible
and differentiable model design as well as long-term corre-
spondence modeling. On the other hand, feature matching
relies on a powerful and generic feature embedding, which
may limit its performance in challenging scenarios.

It is also worth mentioning that, as an effective technique

for target-specific model learning, online learning is applied
by many propagation [95], [117], [125], [130], [140] and
matching [121], [134], [145] methods to boost performance.
o Box-initialization based Methods. As pixel-wise anno-
tations are time-consuming or even impractical to acquire
in realistic scenes, some work has considered the situation
where the first-frame annotation is provided in the form of
a bounding box. Specifically, in [143], Siamese trackers are
augmented with a mask prediction branch. In [156], rein-
forcement learning is introduced to make decisions for tar-
get updating and matching. Later, in [167], an outside mem-
ory is utilized to build a stronger Siamese track-segmenter.
o Un-/Weakly-supervised based Methods. To alleviate the
demand for large-scale, pixel-wise annotated training sam-
ples, several un-/weakly-supervised learning-based SVOS
solutions were recently developed. They are typically built
as a reconstruction scheme (i.e., each pixel froma ‘query’ frame
is reconstructed by finding and assembling related pixels
from adjacent frame(s)) [136], [160], [193], and/or adopt
a cycle-consistent tracking paradigm (i.e., pixels/patches are
encouraged to fall into the same location after one cycle of
forward and backward tracking) [98], [150], [152], [174].
o Other Specific Methods. Other papers make specific con-
tributions that deserve a separate look. In [147], Zeng et al.
extract mask proposals per frame and formulate the match-
ing between object templates and proposals in a differentiable
manner. Instead of using only the first frame annotation,
[144] learns to select the best frame from the whole video for
user interaction, so as to boost mask propagation. In [166],
Li et al. introduce a forward-backward data flow based cycle
consistency mechanism to improve both traditional SVOS
training and offline inference protocols, through mitigating
the error propagation problem. To accelerate processing
speed, a dynamic network [169] is proposed to selectively
allocate computation source for each frame according to the
similarity to the previous frame.

3.1.3 Interactive Video Object Segmentation (IVOS)

AVOS, without any human involvement, loses flexibility in
segmenting arbitrary objects of user interest. SVOS addi-
setting has gained increasing attention. Unlike classic mod-
els [48], [49], [52] requiring extensive and professional user
intervention, recent deep learning-based IVOS solutions
usually work with multiple rounds of scribble supervision,
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tionally considers first-frame anno-
tations, but easily fails in challeng-

TABLE 3

Summary of essential characteristics for reviewed IVOS methods (§3.1.3).

ing scenes without human feedback. Year | Method ][ Pub. [ Core Architecture|  Technical Feature Training Dataset
Moreover, the first-frame annota- [2017 mw - FCN Interaction-Propagation PASCAL VOC 2012 [103]
. 4 . . 2018 BFVOS CVPR FCN Pixel-wise Retrieval DAVISg [17]
tions are typically detailed masks, [z VS CVPR FCN Interaction-Propagation DAVIS; 7 [31]+YouTube-VOS [95]

3 : LI _ MANet [184] || CVPR| Siamese FCN Interaction-Propagation DAVIS, 7 [81]
Wthh are FeleLlS to acqulre' 79 sec 2020 ATNet [185] || ECCV FCN Interaction-Propagation SBD + DAVIS; 7 [81]+YouTube-VOS [95]
onds per instance for coarse poly- ScribbleBox [186] || ECCY GCN Interaction-Propagation | COCO [123] + ImageNet VID [67] + YouTube-VOS [97]

. IVOS-W [187] |[CVPR|  FCN + RL Keyframe Selection DAVIS7 [51]
gon annotations of COCO [125], and |, GIS [158] | CVPR FCN Interaction-Propagation DAVIS; 7 [31]+YouTube-VOS [95]
much more for higher quality. Thus MiVOS [189] || CVPR | Memory Network | Interaction-Propagation |  BL30K [189]+DAVIS; [81] + YouTube-VOS [95]
performing VOS in the interactive
TABLE 4

to minimize the user’s effort. In this scenario [194], the user
draws scribbles on a selected frame and an algorithm com-
putes the segmentation maps for all video frames in a batch
process. For refinement, user intervention and segmentation
are repeated. This round-based interaction [183] is useful for
consumer-level applications and rapid prototyping for pro-
fessional usage, where efficiency is the main concern. One
can control the segmentation quality at the expense of time,
as more rounds of interaction will provide better results.

o Interaction-propagation based Methods. The majority of
current studies [188], [189] follow an interaction-propagation
scheme. In the preliminary attempt [181], IVOS is achieved
by a simple combination of two separate modules: an
interactive image segmentation model [195] for produc-
ing segmentation based on user annotations; and a SVOS
model [18] for propagating masks from the user-annotated
frames to the others. Later, [183] devised a more compact so-
lution, with also two modules for interaction and propaga-
tion, respectively. However, the two modules are internally
connected through intermediate feature exchanging, and
also externally connected, i.e., each of them is conditioned
on the other’s output. In [185], a similar model design is
also adopted, however, the propagation part is specifically
designed to address both local mask tracking (over adjacent
frames) and global propagation (among distant frames),
respectively. However, these techniques [1581], [185] have to
start a new feed-forward computation in each interaction
round, making them inefficient as the number of rounds
grows. A more efficient solution was developed in [184]. The
critical idea is to build a common encoder for discriminative
pixel embedding learning, upon which two small network
branches are added for interactive segmentation and mask
propagation, respectively. Thus the model extracts pixel
embeddings for all frames only once (in the first round).
In the following rounds, the feed-forward computation is
only made within the two shallow branches.

o Other Methods. Chen et al. [182] propose a pixel embed-
ding learning-based model, applicable to both SVOS and
IVOS. With a similar idea of [126], IVOS is formulated
as a pixel-wise retrieval problem, i.e., transferring labels
to each pixel according to its nearest reference pixel. This
model supports different kinds of user input, such as masks,
clicks and scribbles, and can provide immediate feedback
after user interaction. In [186], an interactive annotation
tool is proposed for VOS. The annotation has two phases:
annotating objects with tracked boxes, and labeling masks
inside these tracks. Box tracks are annotated efficiently by
approximating the trajectory using a parametric curve with
a small number of control points which the annotator can
interactively correct. Segmentation masks are corrected via
scribbles which are propagated through time. In [187], a

Summary of characteristics for reviewed LVOS methods (§3.1.4).

al + Language

Encoder Technical Feature

Year Training Dataset

Method H Pub. ‘ Lz

2018 A2DS CVPR 13D + CNN Dynamic Conv. A2D Sentences [196]

LangVOS ACCV CNN + CNN Cross-modal Att. | DAVIS;7-RVOS [196]

2019 AAN ICCV 13D + CNN Cross-modal Att. A2D Sentences [196]

CDNet AAAI 13D + GRU Dynamic Conv. A2D Sentences [196]

2020 PolarRPE [200] || IJCAI 13D + LSTM Dynamic Conv. A2D Sentences [196]

VT-Capsule [201] || CVPR 13D + CNN Capsule Routing A2D Sentences [196]
URVOS [202] || ECCV CNN + MLP Cross-modal Att. | Refer-YouTube-VOS [202]

2021 CST [203] || CVPR 13D + GRU Cross-modal Att. A2D Sentences [196]

CMSANet [204] || PAMI | CNN + Word embed. | Cross-modal Att. A2D Sentences [196]

reinforcement learning framework is exploited to automati-
cally determine the most valuable frame for interaction.

3.1.4 Language-guided Video Object Segmentation (LVOS)

LVOS is an emerging area, dating back to 2018 [196], [197].
Although there have already existed some efforts [247] in
the intersection of language and video understanding, none
of them addresses pixel-level video-language reasoning.
Most efforts in LVOS are made around the theme of efficient
alignment between visual and linguistic modalities. Accord-
ing to the multi-modal information fusion strategy, existing
models can be divided into three groups.

e Dynamic Convolution-based Methods. The first initiate
was proposed in [196] that applies dynamic networks [248]
for visual-language relation modeling. Specifically, convo-
lution filters, dynamically generated from linguistic query,
are used to adaptively transform visual features into desired
segments. In the same line of work, [199], [200] incorporate
spatial context into filter generation. However, as indi-
cated by [198], linguistic variation of input description may
greatly impact sentence representation and subsequently
make dynamic filters unstable, causing inaccurate segmen-
tation. For example, “car in blue is parked on the grass” and
“blue car standing on the grass” have the same meaning but
different generated filters, leading to poor performance.

e Capsule Routing-based Methods. In [201], both video and
textual inputs are encoded through capsules [249], which
are considered effective in modeling visual/textual entities.
Then, dynamic routing is applied over the video and text
capsules for visual-textual information integration.

o Attention-based Methods. Neural attention technique is
also widely adopted in the filed of LVOS [197], [202], [204],
[250], [251], for fully capturing global visual/textual context.
In [198], vision-guided language attention and language-
guided vision attention were developed to capture visual-
textual correlations. In [203], two different attentions are
learned to ground spatial and temporal relevant linguistic
cues to static and dynamic visual embeddings, respectively.

3.2 Deep Learning-based VSS Models

Video semantic segmentation aims to group pixels with
different semantics (e.g., category or instance membership),




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

TABLE 5

Summary of essential characteristics for reviewed VSS methods (§3.2). Flow indicates whether optical flow is used.

| Year | Method || Pub. | Seg. Level | Core Architecture | Flow | Technical Feature | Training Dataset
© Clockwork [205] || ECCV | Semantic FCN v Faster Segmentation Cityscapes [206]/YouTube-Objects [73]
S FSO [207] || CVPR | Semantic | FCN + Dense CRF v Temporal Feature Aggregation Cityscapes [206]/CamVid [208]
o JFS [209] || ECCV | Semantic FCN v Temporal Feature Aggregation KITTI MOTS [210]
BANet [211] [| CVPR | Semantic FCN + LSTM Keyframe Selection CamVid [208]/KITTI
~ PEARL [212] || ICCV | Semantic FCN v Flow-guided Feature Aggregation Cityscapes [206]/CamVid [208]
S NetWarp [213] || ICCV | Semantic Siamese FCN v Flow-guided Feature Aggregation Cityscapes [206]/CamVid [208]
« DFF [214] || ICCV | Semantic FCN Flow-guided Feature Aggregation Cityscapes [206]
BBF [215] || ICCV | Semantic Two-Stream FCN v Weakly-Supervised Learning Cityscapes [206]/CamVid [208]
GRFP [216] || CVPR | Semantic FCN + GRU v Temporal Feature Aggregation Cityscapes [206]/CamVid [205]
© LVS [217] || CVPR | Semantic FCN Keyframe Selection Cityscapes [206]/CamVid [208]
= DVSN [218] || CVPR | Semantic FCN+RL v Keyframe Selection Cityscapes [206]
o EUVS [219] || ECCV | Semantic Bayesian CNN v Flow-guided Feature Aggregation CamVid [208]
GCREF [220] || CVPR | Semantic FCN+CRF v Gaussian CRF CamVid [208]
Accel [221] || CVPR | Semantic FCN v Keyframe Selection KITTT
= SSeg [222] || CVPR | Semantic FCN Weakly-Supervised Learning Cityscapes [206]/CamVid [208]
& MOTS [210] || CVPR | Instance Mask R-CNN Tracking by Detection KITTI MOTS [210] /MOTSChallenge [210]
MaskTrack R-CNN [82] || ICCV | Instance Mask R-CNN Tracking by Detection YouTube-VIS [32]
EFC [223] || AAAI | Semantic FCN v Temporal Feature Aggregation Cityscapes [206]/CamVid [205]
TDNet [224] || CVPR | Semantic | Memory Network Attention-based Feature Aggregation Cityscapes [206]/CamVid [208]/NYUDv2 [225]
MaskProp [226] || CVPR | Instance Mask R-CNN Instance Feature Propagation YouTube-VIS [82]
VPS [227] || CVPR | Panoptic Mask R-CNN Spatio-Temporal Feature Alignment VIPER-VPS [227]/Cityscapes-VPS [227]
IS MOTSNet [228] || CVPR | Instance Mask R-CNN Unsupervised Learning KITTI MOTS [210] /BDD100K [229]
& MVAE [230] || CVPR | Instance | Mask R-CNN+VAE Variational Inference KITTI MOTS [210] /YouTube-VIS [32]
ETC [231] || ECCV | Semantic FCN + KD v Knowledge Distillation Cityscapes [206]/CamVid [208]
Sipmask [232] || ECCV | Instance FCOS Single-Stage Segmentation YouTube-VIS [82]
STEm-Seg [233] || ECCV | Instance FCN Spatio-Temporal Embedding Learning | DAVIS;7 [81]/YouTube-VIS [52]/KITTI-MOTS [210]
Naive-Student [234] || ECCV | Semantic FCN+KD Semi-Supervised Learning Cityscapes [
CompFeat [235] [| AAAT | Instance Mask R-CNN Spatio-Temporal Feature Alignment YouTube-VIS [
TraDeS [236] || CVPR | Instance Siamese FCN Tracking by Detection MOT /nuScenes/KITTI MOTS [210] /YouTube-VIS [82]
SG-Net [237] || CVPR | Instance FCOS Single-Stage Segmentation YouTube-VIS [32]
VisTR [238] || CVPR | Instance Transformer Transformer-based Segmentation YouTube-VIS [32]
— SSDE [239] || CVPR | Semantic FCN Semi-Supervised Learning Cityscapes [206]
=) SiamTrack [240] || CVPR | Panoptic Siamese FCN Supervised Contrastive Learning VIPER-VPS [227]/Cityscapes-VPS [227]
o ViP-DeepLab [241] || CVPR | Panoptic FCN Depth-Aware Panoptic Segmentation Cityscapes-VPS [227]
fIRN [242] || CVPR | Instance Mask R-CNN v Weakly-Supervised Learning YouTube-VIS [52]/Cityscapes [206]
SemiTrack [243] || CVPR | Instance SOLO Semi-Supervised Learning YouTube-VIS [52]/Cityscapes [206]
Propose-Reduce [244] || ICCV | Instance Mask R-CNN Propose and Reduce DAVIS; 7 [81]/YouTube-VIS [82]
CrossVIS [245] || ICCV | Instance FCN Dynamic Convolution YouTube-VIS [82]/OVIS [246]

where different semantics result in different types of seg-
mentation tasks, such as (instance-agnostic) video seman-
tic segmentation (VSS, §3.2.1), video instance segmentation
(VIS, §3.2.2) and video panoptic segmentation (VPS, §3.2.3).

temporal consistency into the training phase, without bring-
ing any extra inference cost. But its processing speed is
still bounded to the adopted per-frame segmentation algo-
rithms, as all features must be recomputed at each frame.
For these methods, the utility in time-sensitive application

3.2.1 (Instance-agnostic) Video Semantic Segmentation (VSS) areas, such as mobile and autonomous driving, is limited.

Extending the success of deep learning-based image se-
mantic segmentation techniques to the video domain has
become a research focus in computer vision recently. To
achieve this, the most straightforward strategy is the naive
application of an image semantic segmentation model in
a frame-by-frame manner. But this strategy completely ig-
nores temporal continuity and coherence cues provided in
videos. To make better use of temporal information, research
efforts in this field are mainly made along two lines.

o Efforts towards More Accurate Segmentation. A major
stream of methods exploits cross-frame relations to boost
the prediction accuracy. They typically first apply the very
same segmentation algorithms to each frame independently.
Then they add extra modules on top, e.g., optical flow-
guided feature aggregation [212], [213], [219], and sequential
network based temporal information propagation [216], to
gather multi-frame context and get better results. For ex-
ample, in some pioneer work [207], [209], after performing
static semantic segmentation for each frame individually,
optical flow [209] or 3D CRF [207] based post processing is
applied for gaining temporally consistent segments. Later,
[220] jointly learns CNN-based per-frame segmentation and
CRF-based spatio-temporal reasoning. In [213], features
warped from previous frames with optical flow are com-
bined with the current frame features for prediction. These
methods require additional feature aggregation modules,
which increase the computational costs during the inference.
Recently, [223] proposes to only incorporate flow-guided

o Efforts towards Faster Segmentation. Yet another comple-
mentary line of work tries to leverage temporal information
to accelerate computation. They approximate the expen-
sive per-frame forward pass with cheaper alternatives, i.e.,
reusing the features in neighbouring frames. In [205], parts
of segmentation networks are adaptively executed across
frames, thus reducing the computation cost. Later methods
use keyframes to avoid processing of each frame, and then
propagate the outputs or the feature maps to other frames.
For instance, [214] employs optical flow to warp the fea-
tures between the keyframe and non-key frames. Adaptive
keyframe selection is later exploited in [211], [218], further
enhanced by adaptive feature propagation [217]. In [221],
Jain et al. use a large, strong model to predict the keyframe
and use a compact one in non-key frames. Keyframe-
based methods have different computational loads between
keyframes and non-key frames, causing high maximum la-
tency and unbalanced occupation of computation resources
that may decrease system efficiency [224]. Additionally, the
spatial misalignment of other frames with respect to the
keyframes is challenging to compensate for and often leads
to different quantity results between keyframes and non-
key frames. In [231], a temporal consistency guided knowl-
edge distillation technique is proposed to train a compact
network, which is applied to all frames. In [224], several
weight-sharing sub-networks are distributed over sequen-
tial frames, whose extracted shallow features are composed
for final segmentation. This trend of methods indeed speeds
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up inference, but still with the cost of reduced accuracy.

o Semi-/Weakly-supervised based Methods. Away from
these main battlefields, some researchers made efforts to
learn VSS under annotation efficient settings. In [215], clas-
sifier heatmaps are used to learn VSS from image tags only.
[222], [234] use both labeled and unlabeled video frames to
learn VSS. They propagate annotations from labeled frames
to other unlabeled, neighboring frames [222], or alterna-
tively train teacher and student networks with groundtruth
annotations and iteratively generated pseudo labels [234].

3.2.2 Video Instance Segmentation (VIS)

In 2019, Yang et al. extended image instance segmentation to
the video domain [82], which requires simultaneous detec-
tion, segmentation and tracking of instances in videos. This
task is also known as multi-object tracking and segmentation
(MOTS) [210]. Based on the patterns of generating instance
sequences, existing frameworks can be roughly categorized
into four paradigms: i) track-detect, ii) clip-match, iii) propose-
reduce, iv) segment-as-a-whole. Track-detect methods detect
and segment instances for each individual frame, followed
by frame-by-frame instance tracking [82], [210], [228], [230],
[252], [235]-{257], [252]. For example, in [82], [210], [253],
Mask R-CNN [180] is adapted for VIS/MOTS by adding a
tracking branch for cross-frame instance association. Alter-
natively, [237] models spatial attention to describe instances,
tackling the task from a novel single-stage yet elegant per-
spective. Clip-match methods divide an entire video into
multiple overlapped clips, and perform VIS independently
for each clip through mask propagation [226] or spatial-
temporal embedding [233]. Final instance sequences are
generated by merging neighboring clips. Both of the two
paradigms need two independent steps to generate a com-
plete sequence. They both generate multiple incomplete
sequences (i.e., frames or clips) from a video, and merge (or
complete) them by tracking/matching at the second stage.
Intuitively, these paradigms are vulnerable to error accumu-
lation in the process of merging sequences, especially when
occlusion or fast motion exists. To address these limitations,
a propose-reduce paradigm is proposed in [244]. It first
samples several key frames and obtains instance sequences
by propagating the instance segmentation results from each
key frame to the entire video. Then, the redundant sequence
proposals of the same instances are removed. This paradigm
not only discards the step of merging incomplete sequences,
but also achieves robust results considering multiple key
frames. However, these three types of methods still need
complex heuristic rules to associate instances and /or multi-
ple steps to generate instance sequences. The segment-as-a-
whole paradigm [238] is more elegant; it poses the task as a
direct sequence prediction problem using Transformer [192].
Almost all VIS models are built upon fully supervised
learning, while [242], [243] are the exceptions. Specifically,
in [242], motion and temporal consistency cues are lever-
aged to generate pseudo-labels from tag labeled videos for
weakly supervised VIS learning. In [243], a semi-supervised
embedding learning approach is proposed to learn VIS from
pixel-wise annotated images and unlabeled videos.

3.2.3 Video Panoptic Segmentation (VPS)

Very recently, Kim et al. extended image panoptic segmen-
tation to the video domain [227], which aims at a holis-
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Fig. 3. Example frames from twenty famous video segmentation bench-
mark datasets. The ground-truth segmentation annotation is overlaid.
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tic segmentation of all foreground instance tracklets and
background regions, and assigning a semantic label to each
video pixel. They adapt an image panoptic segmentation
model [254] for VPS, by adding two modules for temporal
feature fusion and cross-frame instance association, respec-
tively. Later, temporal correspondence was explored in [240]
through learning coarse segment-level and fine pixel-level
matching. Qiao et al. [241] propose to learn monocular depth
estimation and video panoptic segmentation jointly.

4 VIDEO SEGMENTATION DATASETS

Several datasets have been proposed for video segmenta-
tion over the past decades. Fig. 3 shows example frames
from twenty commonly used datasets. We summarize their
essential features in Table 6 and give detailed review below.

4.1 VOS Datasets
4.1.1 AVOS/SVOS/IVOS Datasets

e Youtube-Objects is a large dataset of 1,407 videos col-
lected from 155 web videos belonging to 10 object categories
(e.g., dog, cat, plane, etc.). VOS models typically test the
generalization ability on a subset [256] having totally 126
shots with 20,647 frames that provides coarse pixel-level
fore-/background annotations on every 10" frames.

o FBMSsq [36] consists of 59 video sequences with 13,860
frames in total. However, only 720 frames are annotated for
fore- /background separation. The dataset is split into 29 and
30 sequences for training and evaluation, respectively.

® DAVIS 4 [17] has 50 videos (30 for train set and 20 for val
set) with 3,455 frames in total. For each frame, in addition
to high-quality fore-/background segmentation annotation,
a set of attributes (e.g., deformation, occlusion, motion blur,
etc.) are also provided to highlight the main challenges.

e DAVIS;[81] contains 150 videos, i.e., 60/30/30/30 videos
for train/val / test-dev / test-challenge sets. Its train and val sets
are extended from the respective sets in DAVIS;s. There
are 10,459 frames in total. DAVIS;7 provides instance-level
annotations to support SVOS. Then, DAVIS; g challenge[194]
provides scribble annotations to support IVOS. Moreover, as
the original annotations of DAVIS;~ are biased towards the
SVOS scenario, DAVIS; g challenge[177] re-annotates val and
test-dev sets of DAVIS; 7 to support AVOS.

¢ YouTube-VOS [95] is a large-scale dataset, which is split
into a frain (3,471 videos), val (507 videos), and test (541
videos) set, in its newest 2019 version. Instance-level precise
annotations are provided every five frames in a 30FPS frame
rate. There are 94 object categories (e.g., person, snake, etc.)
in total, of which 26 are unseen in train set.
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TABLE 6
Statistics of representative video segmentation datasets. See §4.1 and §4.2 for more detailed descriptions.
I Dataset [ Year | Pub. | #Video [  #Train/Val/Test/Dev ]| Annotation I Purpose I #Class | Synthetic |

Youtube-Objects [73] [[ 2012 CVPR 1,407 (126) -/-/-/- Object-level AVOS, SVOS Generic 10
FBMSs9 [36] 2014 PAMI 59 29/30/-/- Object-level AVOS, SVOS Generic -

DAVIS6 [17] \ 2016 CVPR 50 30/20/-/- Object-level AVOS, SVOS Generic
DAVIS, 7 [81] 2017 - 150 60/30/30/30 Instance-level AVOS, SVOS, IVOS Generic -
YouTube-VOS [95] \ 2018 - 4,519 3,471/507/541/- SVOSs Generic 94
A2D Sentence [196] 2018 CVPR 3,782 3,017/737/-/- LVOS Human-centric -

J-HMDB Sentence [196] \ 2018 CVPR 928 -/-/-/- LVOS Human-centric

DAVIS;7-RVOS [197] 2018 ACCV 90 60/30/-/- LVOS Generic
Refer-Youtube-VOS [202] || 2020 ECCV 3,975 3,471/507/-/- LVOS Generic -
CamVid [208] 2009 PRL 4 (frame: 467/100/233/-) VSS Urban 11
CityScapes [206] \ 2016 CVPR 5,000 2,975/500/1,525 VSS Urban 19
NYUDv2 [225] 2012 ECCV 518 (frame: 795/654/-/-) VSS Indoor 40
VSPW [255] \ 2021 CVPR 3,536 2,806/343/387/- VSs Generic 124
YouTube-VIS [82] 2019 ICCV 3,859 2,985/421/453/- VIS Generic 40
KITTI MOTS [210] ‘ 2019 CVPR 21 12/9/-/- VIS Urban 2
MOTSChallenge [210] 2019 CVPR 4 -/-/-/- VIS Urban 1

BDD100K [229] || 2020 ECCV 100,000 7,000/1,000/2,000/- VSS, VIS Driving 40 (VSS), 8 (VIS)
QVIS [246] 2021 - 901 607/140/154/- VIS Generic 25
VIPER-VPS [227] \ 2020 CVPR 124 (frame: 134K /50K /70K /-) VPS Urban 23 v

Cityscapes-VPS [227] 2020 CVPR 500 400/100/-/- VPS Urban 19

Remark. Youtube-Objects, FBMSs9 and DAVIS;¢ are used
for instance-agnostic AVOS and SVOS evaluation. DAVIS; 7
is unique in comprehensive annotations for instance-level
AVOS, SVOS as well as IVOS, but its scale is relatively small.
YouTube-VOS is the largest one but only supports SVOS
benchmarking. There also exist some other VOS datasets,
such as SegTracky [45] and SegTracky o [76], but they were
less used recently, due to the limited scale and difficulty.

4.1.2 LVOS Datasets

e A2D Sentence[196] augments A2D [257] with phrases. It
contains 3,782 videos, with 8 action classes performed by
7 actors. In each video, 3 to 5 frames are provided with
segmentation masks. It contains 6,655 sentences describing
actors and their actions. The dataset is split into 3,017/737
for train/test, and 28 unlabeled videos are ignored [198].
e J-HMDB Sentence [196] is built upon J-HMDB [258]. It
is comprised of 928 short videos with 928 corresponding
sentences describing 21 different action categories.

e DAVIS7-RVOS [197] extends DAVIS;7 by collecting re-
ferring expressions for the annotated objects. 90 videos from
train and val sets are annotated with more than 1,500 re-
ferring expressions. They provide two types of annotations,
which describe the highlighted object: 1) based on the entire
video (i.e., full-video expression) and 2) using only the first
frame of the video (i.e., first-frame expression).

e Refer-Youtube-VOS [202] includes 3,975 videos from
YouTube-VOS [95], with 27,899 language descriptions of
target objects. Similar to DAVIS;7-RVOS [197], both full-
video and first-frame expression annotations are provided.
Remark. To date, A2D Sentence and J-HMDB Sentence are
the main test-beds. However, the phrases are not produced
with the aim of reference, but description, and limited to
only a few object categories corresponding to the dominant
‘actors” performing a salient ‘action” [202]. But newly in-
troduced DAVIS;7-RVOS and Refer-Youtube-VOS show im-
proved difficulties in both visual and linguistic modalities.

4.2 VSS Datasets

e CamVid [208] is composed of 4 urban scene videos with
11-class pixelwise annotations. Each video is annotated ev-
ery 30 frames. The annotated frames are usually grouped
into 467/100/233 for train/val/test [207].

o CityScapes [200] is a large-scale VSS dataset for street

views. It has 2,975/500/1,525 snippets for train/val/
test, captured at 17FPS. Each snippet contains 30 frames,
and only the 20" frame is densely labelled with 19 semantic
classes. 20,000 coarsely annotated frames are also provided.
e NYUDv2 [225] contains 518 indoor RGB-D videos with
high-quality ground-truths (every 10" video frame is la-
beled). There are 795 training frames and 654 testing frames
being rectified and annotated with 40-class semantic labels.
o VSPW|[255] is a recently proposed large-scale VSS dataset.
It addresses video scene parsing in the wild by considering
diverse scenarios. It consists of 3,536 videos, and provides
pixel-level annotations for 124 categories at 15FPS. The
train/val/test sets contain 2,806/343/387 videos with
198,244 /24,502 /28,887 frames, respectively.

e YouTube-VIS [82] is built upon YouTube-VOS [95] with
instance-level annotations. Its newest 2021 version has 3,859
videos (2,985/421/453 for train/val/test) with 40 se-
mantic categories. It provides 232K high-quality annotations
for 8,171 unique video instances.

o KITTI MOTS [210] extends the 21 training sequences
of KITTI tracking dataset [259] with VIS annotations — 12
for training and 9 for validation, respectively. The dataset
contains 8,008 frames with a resolution of 375 x 1242, 26,899
annotated cars and 11,420 annotated pedestrians.

e MOTSChallenge[210] annotates 4 of 7 training sequences
of MOTChallengez;7 [260]. It has 2,862 frames with 26,894
annotated pedestrians and presents many occlusion cases.

e BDD100K [229] is a large-scale dataset with 100K driving
videos (40 seconds and 30FPS each) and supports various
tasks, including VSS and VIS. For VSS, 7,000/1,000/2,000
frames are densely labelled with 40 semantic classes for
train/val/test. For VIS, 90 videos with 8 semantic cat-
egories are annotated by 129K instance masks — 60 training
videos, 10 validation videos, and 20 testing videos.

e OVIS[246] is a new challenging VIS dataset, where object
occlusions usually occur. It has 901 videos and 296K high-
quality instance masks for 25 semantic categories. It is split
into 607 training, 140 validation and 154 test videos.

o VIPER-VPS[227] re-organizes VIPER [261] into the video
panoptic format. VIPER, extracted from the GTA-V game
engine, has annotations of semantic and instance segmen-
tations for 10 thing and 13 stuff classes on 254K frames of
ego-centric driving scenes at 1080 x 1920 resolution.

o Cityscapes-VPS[227] is built upon CityScapes[206]. Dense
panoptic annotations for 8 thing and 11 stuff classes for
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TABLE 7
Quantitative object-level AVOS results on DAVIS;s [17] val (§5.1.2)
in terms of region similarity .7, boundary accuracy F and time stability
T . We also report the recall and the decay performance over time for
both 7 and F. (FPS denotes frames per second. : FPS is borrowed
from the original paper. The three best scores are marked in red, blue,

and , respectively. These notes also apply to the other tables.)
J F T
MethOdeeanT recallt decay] | meant recallt decay] | mean) FPST‘
MuG [98]]] 580 653 20 | 515 532 21 | 301 | 25
SFL[68]|| 674 814 62 | 667 771 51 | 282 | 33
MotionGrouping [109] || 68.3 - - 67.6 - - - 83.3
VO [69]]| 759 891 0.0 | 721 834 13 | 265 | 135
LMP [70]|| 70.0 85.0 659 792 25 | 572 | 183
FSEG [66] || 70.7 830 15 | 653 738 1.8 | 328 | 7.2
PDB[78]|| 772 931 09 | 745 844 -02 | 291 | 14
MOT [79]|| 772 878 50 | 774 844 33 | 279 | 1.0
LSMO [93]|| 782 911 41 | 759 847 35 | 212 | 04
IST [74]|| 785 - - 755 - - - -
AGS[87]|| 797 891 19 | 774 858 0.0 | 267 | 1.7
MBN [77]|| 80.4 932 48 | 785 886 44 | 278 | 1.0
COSNet [83] || 805 931 44 | 794 895 50 | 184 | 2.2
AGNN [89]]| 813 931 0.0 | 797 885 51 | 337 | 19
MGA [90]|| 814 - - 81.0 - - . 1.1
AnDiff [92]|| 81.7 909 22 | 805 85.1 214 | 28
PyramidCSA [96]|| 78.1  90.1 . 785 882 - - 1110
WCSNet [101] || 822 - - 80.7 - - - 25
MATNet [94] || 82.4 55 | 807 902 45 | 216 | 1.3
EGMN [100] || 825 943 42 | 812 5.6 5.0
DFNet [104] || 83.4 - - - - 159 | 3.6
F2Net [105] 957 0.0 | 844 923 08 | 209 | f10
RTNet [107]|| 856 961 05 | 847 938 09 | 199 | 6.7

500 snippets in Cityscapes val set are provided every five
frames and temporally consistent instance ids to the thing
objects are also given, leading to 3000 annotated frames in
total. These videos are split into 400/100 for train/val.

Remark. CamVid, CityScapes, NYUDv2, and VSPW are
built for VSS benchmarking. YouTube-VIS, OVIS, KITTI
MOTS, and MOTSChallenge are VIS datasets, but the diver-
sity of the last two are limited. BDD100K has both VSS and
VIS annotations. VIPER-VPS and Cityscapes-VPS are aware
of VPS evaluation, but VIPER-VPS is a synthesized dataset.

5 PERFORMANCE COMPARISON

Next we tabulate the performance of previously discussed
algorithms. For each of the reviewed fields, the most widely
used dataset is selected for performance benchmarking. The
performance scores are gathered from the original articles,
unless specified. For the running speed, we obtain the FPS
for most methods by running their codes on a RTX 2080Ti
GPU. For a small set of methods whose implementations
are not well organized or publicly available, we directly
borrow the values from the corresponding papers. Despite
this, it is essential to remark the difficulty when comparing
runtime. As different methods are with different code bases
and levels of optimization, it is hard to make completely
fair runtime comparison [17], [63], [262]; the values are only
provided for reference.

5.1 Object-level AVOS Performance Benchmarking
5.1.1 Evaluation Metrics

Presently, three metrics are frequently used [17] to measure
how object-level AVOS methods perform on this task:

® Region Jaccard J is calculated by the intersection-over-
union (IoU) between the segmentation results Y € {0, 1}** h
and the ground-truth Y € {0, 1}**": 7 = [Y N Y|/|Y U Y],
which computes the number of pixels of the intersection
between Y and Y, and divides it by the size of the union.

12
TABLE 8
Quantitative instance-level AVOS results on DAVIS;7 [81] val
(§5.2.2) in terms of region similarity .7 and boundary accuracy F.
J&F J F
‘ Method mean? | mean? recallt decayl | meant recallt decuyi‘FPsT‘
PDB[78][ 55.1 | 53.2 589 49 | 570 602 0.7
RVOS [80]|| 41.2 | 36.8 402 457 464 17 | 143
AGS[87]|| 575 | 555 616 70 | 595 628 9.0 | 1.1
AGNN [175]|| 61.1 | 589 657 117 | 632 671 143 | 09
STEm-Seg [233] -40 | 67.8 755 12 | 93
UnOVOST [178] || 67.9 | 664 764 -02 | 693 769 0.0 | 1.0
TODA [106]|| 65.0 | 63.7 719 69 94 | 9.1

e Boundary Accuracy F is the harmonic mean of the bound-
ary precision P. and recall R.. The value of F reflects how
well the segment contours ¢(Y) match the ground-truth
contours ¢(Y"). Usually, the value of P, and R, can be com-
puted via bipartite graph matching [263], then the boundary
accuracy F can be computed as: F = 2P.R./(P. + R.).

e Temporal Stability 7 is informative of the stability of seg-
ments. It is computed as the pixel-level cost of matching two
successive segmentation boundaries. The match is achieved
by minimizing the shape context descriptor [264] distances
between matched points while preserving the order in
which the points are present in the boundary polygon. Note
that 7" will compensate motion and small deformations, but
not penalize inaccuracies of the contours [17].

5.1.2 Results

We select DAVIS;¢ [17], the most widely used dataset in
AVOS, for performance benchmarking. Table 7 presents the
results of those reviewed AVOS methods DAVIS;4 val set.
The current best solution, RTNet [107], reaches 85.6 region
similarity 7, significantly outperforming the earlier deep
learning-based methods, such as SFL [68], proposed in 2017.

5.2 Instance-level AVOS Performance Benchmarking
5.2.1 Evaluation Metrics

In instance-level AVOS setting, region Jaccard 7, boundary
accuracy F, and J&F - the mean of J and F — are used
for evaluation [177]. Each of the annotated object tracklets
will be matched with one of predicted tracklets according
to J&F, using bipartite graph matching. For a certain
criterion, the final score will be computed between each
ground-truth object and its optimal assignment.

5.2.2 Results

Regarding instance-level AVOS, we take into account
DAVIS;7 [81] in which the vast majority of methods are
evaluated. From Table 8 we can find that UnOVOST [178]
is the top scorer, with 67.9 J at the time of this writing.

5.3 SVOS Performance Benchmarking
5.3.1 Evaluation Metrics

Region Jaccard J, boundary accuracy F, and J&F are also
widely adopted for SVOS performance evaluation [194].

5.3.2 Results

DAVIS;; [81] is also one of the most important SVOS
dataset. Table 9 shows the results of recent SVOS methods
on DAVIS 7 val set. In this case, all the top-leading solu-
tions, such as EGMN [100], LCM [172], and RMNet [173], are
built upon the memory augmented architecture — STM [149].
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TABLE 10 TABLE 11
Quantitative IVOS results on DAVIS ;7 [81] Quantitative LVOS results on A2D Sentence [196] test (§5.5.2)
val (§5.4.2) in terms of AUC and J@60. in terms of Precision@K, mAP and loU.
\ Method || AUCt | J@601 | Overlap mAPT ToU
D) o1 =1 Method || paosr  P@oet  P@07t  P@0st  P@09t | 05095 | overallt  meant | O
MANet [184] 74.9 76.1 A2DS [196] 50.0 376 23.1 94 0.4 215 55.1 056 B
IVOS-W [187] 74.1 - CMSANet [204] 46.7 385 27.9 13.6 1.7 253 61.8 432 6.5
ATNet [185] AAN [198] 55.7 459 319 16.0 2.0 27.4 60.1 49.0 8.6
GIS [188] 82.0 82.9 VT-Capsule [201] 52.6 45.0 345 20.7 3.6 30.3 56.8 46.0 -
MiVOS [189] 84.9 85.4 CDNet [199] 53.1 7.2
PolarRPE [200] 63.4 57.9 48.3 322 8.3 38.8 66.1 5.4
CST [203] 65.4 58.9 49.7 333 9.1 39.9 66.2 56.1 8.1
TABLE 9
Quantitative SVOS results on DAVIS, 7 [51] val (§5.3.2) Quantitative VSS results on-g:-\if5 lei; 2es [206] val (§5.6.2) in terms
in terms of region similarity 7 and boundary accuracy F. Y _p ; va e
of 10Ugjass @and loUcategory (Max Latency: maximum per-frame time cost).
T&F T F T&F T F
Wzt mean? meant meant FPST‘ Wldusdl mean? meant meant FPST‘ ‘ Method H T0U gjass T IOUCategory T ‘ FPST  Max Latency (ms){ ‘
OnAVOS [122][[ 679 | 645 70.5 | 0.08 STM [129][[ 81.8 [ 792 843 | 63 Clockwork [205] 66.4 88.6 6.4 198
0SVOs [18]|| 603 | 56.7 63.9 |0.22 | e-OSVOS[153]|| 77.2 | 744 80.0 | 0.5 DFF [214] 69.2 88.9 5.6 575
CINM [125]|| 675 | 645 70.5 |T0.01|| AFB-URR [154]|| 74.6 | 73.0 76.1 | 3.8 PEARL [212] 75.4 89.2 13 800
FAVOS [126]|| 58.2 | 546 61.8 | 0.56 Fasttan [155]|| 75.9 | 723 794 | 17 NetWarp [213] 80.5 91.0 - -
MAST [160]|| 655 | 633 67.6 | 5.1 ||STM-Cycle [166]|| 71.7 | 68.7 747 | 38 DVSN [218] 70.3 - 119.8 -
CRW [174]|| 67.6 | 645 70.6 | 7.3 QMA [167]|| 719 | - - |63 LVS [217] 76.8 89.8 5.8 380
RGMP [127]|| 66.7 | 648 68.6 | 7.7 || Fasttmu [156]|| 70.6 | 69.1 72.1 | 9.7 GREP [216] 39 255
OSMN [128]|| 54.8 | 52.5 57.1 | 7.7 SAT[157]|| 723 | 68.6 76.0 | 139 B t i
Accel [221] 75.5 1.1
0SVOS-S[132]|| 68.0 | 647 71.3 |0.22 TVOS [159]|| 72.3 | 69.9 747 | 137 VPLR [227] 814 ) t59 )
Videomatch [133]|| 61.4 | - - |f0.38 GCNet [161]|| 714 | 69.3 735 | f25 TDNet [224] 79.9 90.1 56 178
Dyenet [134]|| 69.1 | 67.3 710 | 2.4 KMN [162]|| 76.0 | 742 77.8 | 83 : : o
MVOS [138]|| 59.2 | 563 621 | 1.5 CFBI[163]|| 819 | 793 845 | 22 EFC [223] || 83.5 92.2 36-7 -
FEELVOS [139]|| 715 | 69.1 740 | 22 LWL [164]|| 70.8 | 682 735 |15.6 Lukas [239] 71.2 - 1.9 -
MHP-VOS [140]|| 753 | 71.8  78.8 |0.01 MSN [165]|| 741 | 714 76.8 | 110
AGSS [141]|| 67.4 | 649 69.9 | T10 EGMN [100]|| 82.8 | 80.0 852 | 5.0 . .
AGAME [142]|| 70.0 | 672 727 | t14 || SwiftNet [168]|| 81.1 | 783 839 | 125 trend from the first LVOS model [196] proposed in 2018, to
SiamMask [143]|| 564 | 643 585 | 135 || G-FRIM[169]| 764 | - - |1182)  recent complicated solution [203]. For runtime comparison,
RVOS [30]|| 60.6 | 57.5 63.6 | 0.56 SST[170]|| 825 | 79.9 851 | - . . .
RANet [145]|| 65.7 | 632 682 | 130 GIEL [171] 67 all the methods are tested on a video clip of 16 frames with
DMM-Net [147]|| 70.7 | 68.1 733 |0.37 LCM [172]|| 83.5 | 80.5 86.5 | 85 :
DTN [144]]| 674 | 642 706 |143|| RMNet[173]|| 535 | 810 860|119 resolution 512 x 512 and a textual sequence of 20 words.

5.4 IVOS Performance Benchmarking

5.4.1 Evaluation Metrics

Area under the curve (AUC) and Jaccard at 60 seconds
(J@60s) are two widely used IVOS evaluation criteria [194].
e AUC is designed to measure the overall accuracy of the
evaluation. It is computed over the plot Time vs Jaccard.
Each sample in the plot is computed considering the average
time and the average Jaccard for a certain interaction.

e J@60 measures the accuracy with a limited time budget
(60 seconds). It is achieved by interpolating the Time vs
Jaccard plot at 60 seconds. This evaluates which quality an
IVOS method can obtain in 60 seconds.

5.4.2 Results

DAVIS 7 [81] is also widely used for IVOS performance
benchmarking. Results summarized in Table 10 show that
the method proposed by Cheng et al. [189] is the top one.

5.5 LVOS Performance Benchmarking

5.5.1 Evaluation Metrics

As [196], overall IoU, mean IoU and precision are adopted.
o IoU: overall IoU is computed as total intersection area of
all test data over the total union area, while mean IoU refers
to average over IoU of each test sample.

o Precision: Precision@K is computed as the percentage of
test samples whose IoU scores are higher than a threshold
K. Precision at five thresholds ranging from 0.5 to 0.9 and
mean average precision (mAP) over 0.5:0.05:0.95 are reported.

5.5.2 Results

A2D Sentence [196] is arguably the most popular dataset in
LVOS. Table 11 gives the results of six recent methods
on A2D Sentence test set. It shows clear improvement

5.6 VSS Performance Benchmarking
5.6.1 Evaluation Metrics

IoU metric is the most widely used metric in VSS. Moreover,
in Cityscapes [206] — the gold-standard benchmark dataset
in this field, two IoU scores, [oUcategory and IoUcpass, defined
over two semantic granularities, are reported. Here, ‘cate-
gory’ refers to high-level semantic categories (e.g., vehicle,
human), while ‘class’ indicates more fine-grained semantic
classes (e.g., car, bicycle, person, rider). In total, [206] consid-
ers 19 classes, which are further grouped into 8 categories.

5.6.2 Results

Table 12 summarizes the results of eleven VSS approaches
on Cityscapes [206] val set. As seen, EFC [223] performs
the best currently, with 83.5% in terms of IoU ;.

5.7 VIS Performance Benchmarking
5.7.1 Evaluation Metrics

As in [82], precision and recall metrics are used for VIS
performance evaluation. Precision at IoU thresholds 0.5
and 0.75, as well as mean average precision (mAP) over
0.50:0.05:0.95 are reported. Recall@N is defined as the max-
imum recall given NV segmented instances per video. These
two metrics are first evaluated per category and then av-
eraged over the category set. The IoU metric is similar to
region Jaccard J used in instance-level AVOS (§5.2.1).

5.7.2 Results

Table 13 gathers VIS results for on YouTube-VIS [82] val
set, showing that Transformer-based architecture, i.e., VisTR
[238], and redundant sequence proposal based solution
Propose-Reduce [244], greatly improve the state-of-the-art.
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TABLE 14

Quantitative VPS results on Cityscapes-VPS |

1(§5.8.2) test in term of VPQ. Each cell shows VPQF / VPQ¥-Thing / VPQF-Stuff.

Temporal window size
Method H k=0t k=5t k= 101 k = 151 VPt ‘ FPSt ‘
VPS [227] 64.2 /59.0 / 67.7 57.9 / 465/ 65.1 548 /41.1/ 634 52.6 /36,5 /629 57.4 /458 / 64.8 1.3
SiamTrack [240] 63.8 / 59.4 / 66.6 58.2 / 47.2 / 65.9 56.0 /432 / 644 54.7 / 40.2 / 63.2 57.8 / 47.5 / 65.0 45

ViP-DeepLab [241] 689 /616 /735 629 /51.0 / 70.5

59.9 / 46.0 / 68.8

10.0

582 /421 /684 62.5 /502 /703

TABLE 13
Quantitative VIS results on YouTube-VIS [82] the val (§5.7.2)
in terms of Precision@ K, mAP, Recall@N and loU.

Method H P@05t P@0.75t R@lf R@I0} ‘ i FPST’
RN 200 || 272 62 123 136 | 105 | 3
MaskTrack RCNN [82] || 511 326 310 355 | 303 | 20
Sipmask [232] | 530 333 335 389 | 325 | 24
STEmSeg [233] | 558 379 344 416 | 346 | 9
CrossVIS [245] | 573 397 360 420 | 366 | 36
SemiTrack [243] | 611 398 369 445 | 383 | 10
MaskProp [226] - 45.6 - - 425 1
CompFeat[235] | 560 386 331 403 | 353 | 117
TraDeS [236] | 526 328 291 366 | 326 | 26
SG-Net [227] 396 363 | 20
VisTR [238] || 640 383 449 58
Propose-Reduce [244] 71.6 51.8 46.3 56.0 47.6 2

5.8 VPS Performance Benchmarking

5.8.1 Evaluation Metrics

In [227], the panoptic quality (PQ) metric used in image
panoptic segmentation is modified as video panoptic quality
(VPQ) to adapt to video panoptic segmentation.

e VPQ: Given a snippet V*'** with time window k, true po-
sitive (TP) is defined by TP = {(u, @) UxU: IoU(u, @) > 0.5}
where U and U are the set of the ground-truth and predicted
tubes, respectively. False Positives (FP) and False Negatives
(FN) are defined accordingly. After accumulating TP,, FP,,
and FN, on all the clips with window size k and class ¢, we

. E_ 1 > (u,a) e, JoU(uw, ) o 1
define: VPQ" = N e AESYTAESo .Whenk=1,VPQ

is equivalent to PQ. For evaluation, VPQ* is reported over
k€{0,5,10,15} and finally, VPQ=14 3", 1 5.10,15) VPQ"-
5.8.2 Results

Cityscapes-VPS [227] is chosen for testing VPS methods. As
shown in Table 14, ViP-DeepLab [241] is the top one.

5.9 Summary

From the results, we can draw several conclusions. The
most important of them is related to reproducibility. Across
different video segmentation areas, many methods do not
describe the setup for the experimentation or do not provide
the source code for implementation. Some of them even do
not release segmentation masks. Moreover, different meth-
ods use various datasets and backbone models. These make
fair comparison impossible and hurt reproducibility.
Another important fact discovered thanks to this study
is the lack of information about execution time and memory
use. Many methods particularly in the fields of AVOS,
LVOS, and VPS, do not report execution time and almost
no paper reports memory use. This void is due to the fact
that many methods focus only on accuracy without any
concern about running time efficiency or memory require-
ments. However, in many application scenarios, such as
mobile devices and self-driving cars, computational power
and memory are typically limited. As benchmark datasets
and challenges serve as a main driven factor behind the
fast evolution of segmentation techniques, we encourage
organizers of future video segmentation datasets to give this
kind of metrics its deserved importance in benchmarking.

Finally, performance on some extensively studied video
segmentation datasets, such as DAVIS;s [17] in AVOS,
DAVIS;7 [81] in SVOS, A2D Sentence [196] in LVOS, have
nearly reached saturation. Though some new datasets are
proposed recently and claim huge space for performance
improvement, the dataset collectors just gather more chal-
lenging samples, without necessarily figuring out which
exact challenges have and have not been solved.

6 FUTURE RESEARCH DIRECTIONS

Based on the reviewed research, we list several future re-
search directions that we believe should be pursued.

e Long-Term Video Segmentation: Long-term video seg-
mentation is much closer to practical applications, such
as video editing. However, as the sequences in existing
datasets often span several seconds, the performance of
VOS models over long video sequences (e.g., at the minute
level) are still unexamined. Bringing VOS into the long-
term setting will unlock new research lines, and put forward
higher demand of the re-detection capability of VOS models.
e Open World Video Segmentation: Despite the obvious
dynamic and open nature of the world, current VSS algo-
rithms are typically developed in a closed-world paradigm,
where all the object categories are known as a prior. These
algorithms are often brittle once exposed to the realistic
complexity of the open world, where they are unable to
efficiently adapt and robustly generalize to unseen cate-
gories. For example, practical deployments of VSS systems
in robotics, self-driving cars, and surveillance cannot afford
to have complete knowledge on what classes to expect at
inference time, while being trained in-house. This calls for
smarter VSS systems, with a strong capability to identify
unknown categories in their environments [265].

e Cooperation across Different Video Segmentation Sub-
fields: VOS and VSS face many common challenges, e.g.,
object occlusion, deformation, and fast motion. Moreover,
there are no precedents for modeling these tasks in a unified
framework. Thus we call for closer collaboration across
different video segmentation sub-fields.

o Annotation-Efficient Video Segmentation Solutions:
Though great advances have been achieved in various
videos segmentation tasks, current top-leading algorithms
are built on fully-supervised deep learning techniques, re-
quiring a huge amount of annotated data. Though semi-
supervised, weakly supervised and unsupervised alterna-
tives were explored in some literature, annotation-efficient
solutions receive far less attention and typically show weak
performance, compared with the fully supervised ones. As
the high temporal correlations in video data can provide ad-
ditional cues for supervision, exploring existing annotation-
efficient techniques in static semantic segmentation in the
area of video segmentation is an appealing direction.

o Adaptive Computation: It is widely recognized that there
exist high correlations among video frames. Though such
data redundancy and continuity are exploited to reduce
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the computation cost in VSS, almost all current video seg-
mentation models are fixed feed-forward structures or work
alternatively between heavy and light-weight modes. We
expect more flexible segmentation model designs towards
more efficient and adaptive computation [266], which allows
network architecture change on-the-fly — selectively activat-
ing part of the network in an input-dependent fashion.

o Neural Architecture Search: Video segmentation models
are typically built upon hand-designed architectures, which
may be suboptimal for capturing the nature of video data
and limit the best possible performance. Using neural archi-
tecture search techniques to automate the design of video
segmentation networks is a promising direction.

7 CONCLUSION

To our knowledge, this is the first survey to comprehensively
review recent progress in video segmentation. We provided
the reader with the necessary background knowledge and
summarized more than 150 deep learning models accord-
ing to various criteria, including task settings, technique
contributions, and learning strategies. We also presented
a structured survey of 20 widely used video segmentation
datasets and benchmarking results on 7 most widely-used
ones. We discussed the results and provided insight into
the shape of future research directions and open problems
in the field. In conclusion, video segmentation has achieved
notable progress thanks to the striking development of deep
learning techniques, but several challenges still lie ahead.
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