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Haipeng Zhang

ANALYZING THE DYNAMICS BETWEEN THE USER-SENSED DATA AND THE REAL WORLD

Modern technologies like smartphones and social media websites have created new ways for people

to communicate and interact. In the process, these Web and mobile users are also creating col-

lections of fine-grained and large-scale digital observational data about the world. For example,

many users publicly share photos and status updates that can serve as visual or textual records of the

state of the world and people across time and space. Meanwhile, many mobile users have apps that

monitor their GPS trajectories and physical activity from onboard accelerometers and gyroscopes,

for recording exercise and other purposes. Combined together, this web and phone-sourced ‘user-

sensed data’ is potentially useful in observing and predicting the real world and people’s behavior

from new perspectives, overcoming traditional observational tools’ restrictions such as expense and

coverage. But user-sensed datasets are usually large, noisy and biased, given that they are generated

by millions of users in uncontrolled conditions, making it unclear what types of useful and reliable

observations can actually be extracted.

In this thesis we design techniques for analyzing and characterizing geo-temporal properties of

these datasets, investigating how they could give us credible observations about the real world.

Using this framework, we investigate applications in four main threads of research. First, we

analyze the geo-tags, timestamps, text tags, and visual content of 150 million online photos to

measure and quantify the occurrence of ecological phenomena, comparing against ground truth

at a continental scale. Second, we investigate and visualize the geo-temporal relationships between

photo text tags, showing that these reveal connections between real world concepts. Third, we study

the relationship between social media and e-commerce websites, showing that signals from social

media can predict aggregate consumer behavior. Finally, we study how simple behavioral statistics

of mobile users over time can characterize and even uniquely identify them.
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CHAPTER 1

INTRODUCTION

1.1 VISION

Ever since the dawn of our kind, humans have been trying to observe, understand and influence the

physical environment. The desire to explain and even manipulate various phenomena has driven the

progress of science for thousands of years. Thanks to the rapid development in science, humans

are witnessing the world not solely by eyes, but also with the aid of advanced instruments such as

thermometers, cameras, satellites and telescopes. Still these tools are not perfect — their expenses,

areas of deployment, types of phenomena being detected and physical conditions all restrict the

availability, quantity and quality of the observations.

The Internet, together with vastly available smart mobile devices, links billions of people, allows

them to communicate anytime and anywhere and creates a gigantic virtual world. For instance,

Twitter has 230 million active users posting over 200 million microblogs (tweets) per day, 76% of

whom log in via mobile devices [109, 115]. Meanwhile over 1 million new images are uploaded to

Flickr daily, with the smart mobile phone iPhone being the most popular camera [36, 63]. Like the

physical world, this world has been studied in order to model the web, understand the user society,

and improve its services. A natural question would be: from this virtual world, can we learn about
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the real world?

The virtual web of real people inevitably reflects the real world. Many mobile devices are

equipped with GPS modules allowing users to stamp geographic locations on the content that they

share on social media websites. Geo-stamped and time stamped content can potentially serve as sub-

jective or objective observations of the surrounding world — in other words, the users, with the help

of their mobile devices, are sensing their environment intentionally or unintentionally. For instance,

each ‘tweet’ on Twitter is a textual expression of the state of a person and his or her environment,

while each photo serves as a visual snapshot of what the world looked like at a particular point in

time and space. Besides geolocation information, other sensors on the mobile devices record other

properties of the environment. For example, accelerometers measure the movements of the mobile

devices, the compasses measure the directions and light sensors tell us about the intensity of light.

Users and their mobile devices act as a widely distributed web of sensors that capture the world,

contributing to a collection of fine grained and large-scale observational data. In this thesis, we

use the term ‘user-sensed data’ to refer to data about the real world captured by users or users’

devices, including publicly-shared web data and data collected directly from mobile devices. Due

to its collective nature, the data has the potential to aid our monitoring of the real world from

new angles overcoming the long-existing geographic, temporal and labor resource restrictions. By

unlocking this power, we hope to monitor and even investigate how the world (humans and various

natural phenomena) changes. We look forward to making exciting innovations possible, including

predicting people’s behaviors, instrumenting natural phenomena and discovering knowledge.

1.2 RECENT INNOVATIONS AND CHALLENGES

In the last few years, researchers have begun mining these ‘user-sensed’ datasets to estimate and

predict properties of the real world, including monitoring the spread of disease [38], predicting

product adoption rates and election outcomes [53], estimating aggregate public mood [12, 75] and
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inferring users’ social patterns and relationships from data collected on device [31]. Some of these

estimations look for specific keyword phrases related to the phenomena or sentiments of interest in

the corpus and compare with ground truth or proxies of ground truth. Some use data from mobile

device sensors as evidence of physical encounters of surrounding devices which reflect real world

interactions.

But biases and noise in user-sensed data make these data mining tasks challenging. For web

sharing data, the biases and noise lie in the user distributions and user behaviors. Social web users

are not distributed evenly across the entire human population for cultural, economical and political

reasons. For instance, in the US, social media users are younger than average and tend to live in

large cities [30]. User behaviors create noise and biases. Besides, their photographing behaviors are

biased. They do not photograph the Earth evenly, but instead take more photos in cities and tourist

attractions than in rural areas. On Flickr, northeast US has a photo density almost nine times the

average of North America and results from Crandall et al [23] show the seven most photographed

landmarks are all located in big cities. Web sharing data also often has noisy or inaccurate metadata;

for example, GPS units might fail to find fixes and photo timestamps can be incorrect as people

forget to set the clock.

Moreover, the content of social media posts can be an imperfect and biased representation of

the world. For example, photo tags can be noisy. One reason is that they are created under uncon-

trolled conditions by various users for various purposes including: indicating geographic locations,

descriptions of actions and events, identities of objects, people, and groups, and so on [99]. Visual

content can also be misleading. A specific example showing the errors caused by misleading textual

and visual content would be a snow detection task using Flickr photos (detailed in Chapter 5). We

try to detect the existence of natural snow in a certain time and space indicated by the photo’s geo-

tag and time stamp, by utilizing text-tags and visual content. However, the tag “snow” on an image

might refer to a snow lily or a snowy owl, while snow appearing in an image might be artificial
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(ski slope with artificial snow). In the aforementioned Flickr dataset, 1 in 700 people take a photo

containing evidence of snow (tagged with snow related terms) at a non-snowy place.

1.3 USER-SENSED DATA IN THIS THESIS

In this thesis, the term ‘user-sensed data’ refers to observational data about the real world captured

by the users or the users’ devices, including the web data and the data collected directly from mobile

devices. In this section, we describe the types and volume of the data with a focus on the data

analyzed in this thesis. We also discuss the biases and sources of noise inherent in these user-sensed

datasets.

1.3.1 TYPES OF DATA

The web data is generated either implicitly or explicitly by the users. Some users share content such

as photos, microblogs (short textual content), social ties, music listening history, location check-ins

and review articles publicly on various websites with social sharing elements. These websites some-

times provide access to the aforementioned data via Application Programming Interfaces (APIs)

where historical and/or live streaming data can be obtained for non-commercial research purposes.

For instance, in this thesis, we get Flickr data through its API. Rich metadata consists of the non-

visual information such as exposure settings and timestamps recorded by the cameras as well as the

information made available during the social sharing process, including text tags, comments, and

ratings. The geolocation information (latitude-longitude coordinates) embedded in the photos taken

by the cameras with GPS (e.g. some smartphones) or simply indicated by users when uploading

helps us mapping these photos as well as the phenomena they captured.

Apart from these publicly available social sharing datasets, users are generating behavioral

data when using services such as search engines and e-commerce platforms. For example, an e-

commerce website (eBay) user might issue a query and click on several resulting items, then bid
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on some of them or can also purchase some price-fixed items right away. In this thesis, from the

recorded user behaviors, we obtain the timestamped search query logs, each of which has a text

query, a user ID of the person issuing the query, the number of resulting items the user clicks on,

the number of bids the resulting items receive from the user, the total number of price-fixed item the

user purchases and the total prices the user pays on these items.

Mobile devices also observe their users and their surrounding environments through the inter-

actions with them. Users’ phone usage data such as app usage, web browsing history, SMS, phone

calls and recharges can be captured while the various hardware sensors can also collect many sorts

of data from the environment. We list a few hardware sensors that are being equipped on some latest

mobile devices and enable us to understand the users as well as the surrounding environments from

multiple angles: GPS, Wifi, Bluetooth, light sensor, accelerometer, touch sensor, compass, etc. In

this thesis, we collect and utilize the following timestamped data from mobile devices: (1) the sur-

rounding Wifi/Bluetooth device IDs and cell tower IDs; (2) the apps being used; (3) the geolocations

of the mobile devices.

1.3.2 VOLUME OF DATA

Web data is usually of large scale, consisting of content contributed by millions of users through

their interactions with the web service providers while the mobile data collected from the devices, on

the other hand, can be rich in dimensions, as fine grained user behaviors and readings from various

sensors are tracked. As a demonstration of this, we give a sense of the volume of data used in this

thesis. The two Flickr datasets analyzed in this thesis contain tens of millions of geo-tagged photos

(one with 150 million photos and other with 80 million), together with the associated information

as aforementioned in this section. Given the fact that Flickr hosts more than 6 billion photos in

2011 [63] and the estimate that less than 8% of the photos are geo-tagged [69], the 150 million geo-

tagged photos approximately take up 30% of all geo-tagged Flickr photos. For the Twitter dataset,
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we get a 1% sample of the total tweets posted on the Twitter website as provided by the public API.

The dataset has over 2 million tweets daily and the analysis spans over 3 months of data. On eBay,

in the same 3-month timespan, there are over 250 million daily search queries together with other

user behaviors related to viewing and purchasing. Our eBay dataset is a 25% sample of all these

behavioral logs.

For the mobile dataset, 22 volunteers’ mobile phone activities including the usage and hardware

sensor readings are tracked either every 5 or 10 minutes. In spite of the limited number of users

that could be recruited, various dimensions of mobile data from Wifi module readings to app usage

are recorded nonstop for about 2 months. As a result, the data is far more detailed with regard to

a specific user, recording the user’s daily patterns as well as the environments, compared with the

web data which is more related with specific usage purposes such as photographing, blogging and

purchasing without various sorts of interactions.

1.4 SCOPE AND MOTIVATION

To confront the challenges in dealing with the user-sensed data, researchers have used a variety

of ad-hoc methods based on experiences and the specific tasks. However, there lacks a general

framework that describes the shared core steps and organizes the corresponding commonly used

methods. In this thesis, we describe a straightforward framework with a focus on geo-temporal

properties. We hope it could serve as a reference or a guide for data mining tasks on similar datasets.

Using user-sensed data and the tools and techniques from this framework, we explore the con-

nection between user-sensed data. We ask our research question: to what extent can we mine the

virtual world to understand the real world? As this is a relatively large topic, we approach it by

breaking it down into four manageable sub-domains and addressing one representation problem in

each sub-domain with novel solutions, as shown in Figure 1.1. First of all, we divide the real world

into halves: one is the physical world including things such as natural phenomena and real world
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entities/concepts; the other is the human world that consists of individual human users. Questions

in these two sub-domains can usually be studied with two sets of methods. One set of methods

measures in absolute terms with common tasks being estimating or predicting the exact values for

natural phenomena or human behavior while the other set of methods measures in relative terms,

studying the connections between humans or things in the physical world. These two sets of meth-

ods further divide the two sub-domains into quadrants. As a first step, we want to prove that the

virtual world reflects the real world. Therefore, in the quadrant for studying the connections in the

physical world, we explore the geo-temporal relationships between online photo tags, showing that

these reveal connections between real world concepts. In this tagged data exploration project, the

results are evaluated by a panel of human judges. We then focus on estimating natural phenomena

where we can better evaluate our estimation techniques in crowd-sourced data. We accurately mea-

sure and quantify the occurrence of ecological phenomena including snowfall and vegetation cover,

with the results compared against fine grained large-scale ground truth. Apart from the physical

world being studied with the two projects, we are also interested in the human world as all these

user-sensed datasets are generated by users and we want to mine these datasets to understand the

users and eventually benefit them. Considering that mobile users contribute a lot to social webs

as well as these user-sensed datasets, we choose to characterize them by studying the connections

between them – e.g. users with similar behaviors may share similar hobbies or interests. Previous

approaches usually require fine-grained data such as locations, app usage and communication logs.

We show very simple behavioral statistics can characterize mobile users and even identify them.

This tells us about individual users while the study on large group of users gives us a bigger picture.

We study the temporal user behavior to discover signals from social media for predicting aggregate

consumer behaviors.

We explicitly list the four corresponding questions that we address in this thesis here:

1. Can we reveal geo-temporal connections between real world concepts from these datasets?
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Figure 1.1: Quadrants of real world problems, each with a representative problem.

2. Can we mine these datasets to detect real world phenomena?

3. Can simple behavioral statistics of mobile users characterize and even uniquely identify them?

4. Can signals from social media predict aggregate consumer behavior?

We build four novel applications to answer these questions as well as to demonstrate and test

the tools and techniques in the framework. We motivate them in the following subsections.

1.4.1 TAGGED DATA EXPLORATION FOR REAL WORLD KNOWLEDGE

As a first step in answering our meta research question, we are interested in seeing whether the user-

sensed data can reflect the real world. We start with exploring text tagged web data. As mentioned

in Sections 1.2 and 1.3, text tagged data is a common form of web data where the entries are labeled

with keywords by human users to better organize and describe content. Existing approaches mainly

rely on tag co-occurrences as a tag relationship measure to explore the tag semantics, understand

the corpus and build tag suggestion systems. We take a different route here. Given the abundance

of geo-temporal signals provided by geo-tags and timestamps, we show how to find connections

between tags by comparing their distributions over time and space, discovering tags with similar

geographic and temporal patterns of use. We also give a sense for why these tags are connected at
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a geo-temporal usage level, instead of merely claiming that they co-occur a lot. In Chapter 4, we

extract and represent geospatial, temporal and geo-temporal distributions of tag usage as vectors

which can then be compared and clustered. Using a dataset of 80 million geo-tagged Flickr photos,

we show that we can cluster Flickr photo tags based on their geographic and temporal usage patterns,

and we evaluate the results both qualitatively and quantitatively using a panel of human judges. We

visualize the temporal and geographic distributions of tag clusters. As suggested in a case study,

the visualizations help humans recognize subtle semantic relationships in the real world. All these

suggest that the discovered tag connections reveal the geo-temporal connections between concepts

in the real world. Besides the immediate application in the tagged image datasets, this approach to

finding and visualizing similar tags is potentially useful for exploring any geographic and temporal

data.

As discussed in Sections 1.2 and 1.3, the tags, provide a rich (albeit noisy, incomplete and

inconsistent) source of information about the semantic content of photos that has been a popular

corpus for the data mining community. Through the analysis on tags, the properties of online photo

collections have been studied, including identifying temporal bursts of photographic activity corre-

sponding to important events [91], finding geospatial peaks of activity corresponding to important

landmarks [79], selecting iconic images to represent particular places [23], and even predicting

product adoption rates by monitoring the popularity of product photos [53].

Much of this existing work has been based on tag co-occurrences, which assumes tags that

frequently appear with one another on the same photos are related semantically. Suggestion sys-

tems have been built upon tag co-occurrence which prompt new tags based on the existing tags

of a photo [37, 70, 99]. Clustering techniques have also been applied on tags in order to discover

semantically-related concepts represented by the groups of tags that frequently co-occur [7, 97].

While these approaches often yield reasonable results, they assume that tags are related only if they

often appear on same photos. Some other factors that relate the tags have been overlooked. For
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example, the Statue of Liberty and Central Park are clearly related as both are major New York

City landmarks. However, the tags statueofliberty and centralpark do not co-occur much because it

is nearly impossible to take a photo that includes both. Similarly, though both Mexico and Puerto

Rico are popular winter vacation destinations, the tags mexico and puertorico do not have many co-

occurrences. Moreover, co-occurrences give little information about the nature of the relationship –

i.e. why two tags are related.

We explore the more specific connections between tags as well as the connections between

the concepts that the tags represent, by comparing the spatial and temporal usage distributions of

tags. The intuition is that some related concepts that do not often co-occur on same photos, do

have similar geo-temporal distributions because they co-occur a lot in time and space which is not

necessarily reflected by the textual co-occurrences on photos. The rich metadata that includes the

generated time and geolocations of the contents make our analysis possible. geospatial and temporal

properties of tags have been studied in existing work (e.g. [53,79,91]), but we are not aware of work

that has used these properties to quantify connections between tags.

We detail our aforementioned approach with visualization and evaluation in Chapter 4.

1.4.2 REAL WORLD PHENOMENON DETECTION

In the last subsection, we motivated geo-temporal knowledge exploration and extraction where the

ground truth comes from human judgments. The ground truth obtained in this way is usually sub-

jective at relatively smaller scales. Thus, it is not suitable for evaluating estimates of large-scale real

world phenomena. Addressing this, we choose to estimate natural phenomena for which precise

and large-scale ground truth data is available such that estimation techniques can be better evalu-

ated. With this effort, we hope to assist biology and ecology research in need of observational data.

Besides this direct impact, the techniques can be potentially generalized for producing estimates in

other domains such as product distributions and political views.
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Recent work has begun to make sense of passively-collected data from social networking and

microblogging websites to make estimates and predictions about world events, including tracking

the spread of disease [38], monitoring for fires and emergencies [24], predicting product adoption

rates, election outcomes [53] and news events [89, 90], and estimating aggregate public mood [12,

83]. However, these previous studies either lack the ground truth available to judge the quality of

the estimates and predictions or have to use indirect proxies as ground truth (e.g. since no aggregate

public mood data exists, [83] evaluates against opinion polls, while [12] compares to stock market

indices). While these studies have generated promising results, it is not clear when crowd-sourcing

data from social media sites can yield reliable estimates, or how to deal with the substantial noise

and bias in these datasets. Moreover, these studies mostly relied on textual feature without taking

advantage of the vast amount of visual content online.

We study the particular problem of estimating geo-temporal distributions of ecological phenom-

ena using geo-tagged, time-stamped Flickr photos. The motivations are three-fold. First, biological

and ecological phenomena frequently appear in images, both because photographers take photos of

them purposely (e.g. close-ups of plants and animals) or incidentally (a bird in the background of a

family portrait, or the snow in the action shot of children sledding). Second, for the two phenomena

we study here, snowfall and vegetation cover, large-scale and fine grained (albeit imperfect) ground

truth is available publicly from satellites and ground-based weather stations. Thus we can explicitly

evaluate the accuracy of various techniques for extracting semantic information from large-scale

social media collections as a concrete test and application of the proposed framework.

Third, while ground truth is available for these particular phenomena, for other important eco-

logical phenomena (like the geo-temporal distribution of plants and animals) no such data is avail-

able, and social media could help cater this need. Specifically, the scientists who study climate

change are in great need of real-time, global-scale monitoring data. Recent work shows that global

climate change is impacting a variety of flora and fauna at local, regional and continental scales:
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for example, species of high-elevation and cold-weather mammals have moved northward, some

species of butterflies have become extinct, waterfowl are losing coastal wetland habitats as oceans

rise, and certain fish populations are rapidly declining [86]. However, to monitor these changes is

not an easy task: plot-based studies involving direct observation of small patches of land yield high-

quality data but are costly and possible only at very small scales, while aerial surveillance gives data

over large land areas but cloud cover, forests, atmospheric conditions and mountain shadows can in-

terfere with the observations, and only certain types of ecological information can be collected from

the air. To understand how biological phenomena are responding to both landscape changes and

global climate change, an efficient system for ground-based fine grained data collection at a global

scale is desired. A tantalizing alternative possibility for creating such ground-level, continental-

scale datasets is to use passive data-mining of the huge number of visual observations produced by

millions of users worldwide, in the form of digital images uploaded to photo-sharing websites.

There are two challenges if we want to distill credible ecological estimates from these social

sharing datasets. The first is how to discover the ecological phenomena of interest appearing in

photos and how to map these observations to specific places and times. Fortunately, as discussed in

Section 1.3.1, online photos include the ingredients necessary to produce geo-temporal data about

the world, including information about content (images, tags and comments), and when (timestamp)

and where (geo-tag) each photo was taken.

The second challenge is how to deal with the biases and noise inherent in online data. As men-

tioned earlier in this chapter, user distributions and behaviors are biased and in the particular case

of Flickr dataset, GPS modules sometimes malfunction and the tags can be wrong or semantically

misleading.

We study how to mine data from photo-sharing websites to produce credible crowd-sourced ob-

servations of ecological phenomena. We start with studying two types of phenomena – ground snow

cover and vegetation cover (“green-up”) data, as a first step towards the long-term goal of mining
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for many other types of phenomena. On one hand, they are both critical features for ecologists mon-

itoring the earth’s ecosystems; on the other hand, these two phenomena have accurate fine-grained

ground truth available at a continental scale in the form of aerial instruments like NASA’s Terra

earth-observing satellites [46, 66] and networks of ground-based observing stations like the U.S.

NOAA National Weather Service. With this data, we are able to evaluate the performance of our

data mining techniques against large-scale fine grained ground truth data across an entire continent

spanning over thousands of days. Using a dataset of nearly 150 million geo-tagged Flickr photos,

we study whether this data can potentially be a reliable resource for scientific research. An example

comparing ground truth snow cover data with the estimates produced by our Flickr analysis on one

particular day (December 21, 2009) is shown in Figure 1.2. Note that the Flickr analysis is sparse in

places with few photographs, while the satellite data is missing in areas with cloud cover, but they

agree well in areas where both observations are present. This and the more extensive experimental

results from this project suggests that Flickr analysis may produce useful observations either on its

own or as a complement other observational sources.

The main contributions of this project include: (1) introducing the novel idea of mining photo-

sharing sites for geo-temporal information about ecological phenomena, (2) applying several tech-

niques in the proposed framework for deriving crowd-sourced observations about real world phe-

nomena from noisy, biased data using both visual and textual tag analysis, and (3) evaluating the

ability of these techniques to accurately measure these phenomena, using dense large-scale ground

truth. Details of this project are elaborated in Chapter 5.

1.4.3 CHARACTERIZING MOBILE USERS

After motivating studying the physical world in Sections 1.4.1 and 1.4.2, we move onto the study

of the human world. These user-sensed datasets are generated by the users and it naturally makes

sense to mine them in order to understand the users and build services for the users. Among these
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Raw satellite map

Coarsened satellite map Map estimated by Flickr photos

Figure 1.2: Comparing MODIS satellite snow coverage data for North America on Dec 21, 2009
with estimates produced by analyzing Flickr tags (best viewed in color). Top: Original MODIS
snow data, where white corresponds with water, black is missing data because of cloud cover, grey
indicates snow cover, and purple indicates no significant snow cover. Left: Satellite data coarsened
into 1 degree bins, where green indicates snow cover, blue indicates no snow, and grey indicates
missing data. Right: Estimates produced by the Flickr photo analysis proposed in this project,
where green indicates high probability of snow cover, and grey and black indicate low-confidence
areas (with few photos or ambiguous evidence).

users, mobile users take up a large portion. Researchers study the connections between mobile users

to characterize them. For example, users with similar usage patterns may have similar hobbies or

interests.

As mentioned in Section 1.1, modern smartphones and tablets are equipped with various sensors.

Apart from that, the devices have also advanced significantly in terms of computational capacity,

memory and storage. All these allow fine grained rich mobile device usage data and information

about the surrounding environment to be collected through the interaction with the users as well as

the environment from multiple perspectives. This has stimulated people-centric mobile applications,

ranging from inferring and sharing real-time contexts such as location and activities [15, 65] to

identifying heterogeneous social behaviors of mobile users [25, 68, 87, 120]. These studies focus
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on using phone data to infer physical and social contexts for a particular user at a specific point in

time while additional studies have concentrated on analyzing long-term data from mobile devices

to monitor trends and to establish predictive models of location [28] and app usage [98]. However,

all these previous studies tend to rely on very fine-grained information. This leads us to think

whether this information can be reduced to still be able to achieve the same goals. We show that

mobile users can be characterized with far less information. We use simple behavioral statistics to

characterize mobile users. We analyze multimodal mobile usage data to extract simple statistics

that can uniquely represent mobile users effectively. Our experiments show its descriptive power in

characterizing users and identifying them uniquely. As future work, recommender systems can be

built by associating such simple features with user attributes such as social and life patterns.

It is non-trivial to model users based on high level statistics due to the following challenges: (1)

Accurately characterizing users with simple and indirect statistics is difficult. What distinguishes

the users is usually obvious and carries fine-grained information. (2) Mobile data is generated under

complex real-life settings, introducing significant noise that demands robustness in processing. (3)

Different from most existing offline data analysis approaches deployed on the server side, energy-

efficient design considerations are required for on-device applications.

To address these challenges, in Chapter 6, we present a novel approach with the following

contributions: (1) By designing a discriminative set of high-level statistical features, we are able to

identify users effectively, demonstrating the descriptive power of these features; (2) The algorithms

are designed to be lightweight and energy-efficient for on-device processing.

1.4.4 TEMPORAL USER BEHAVIOR STUDY

After studying individual users, we are curious about how these datasets reflect aggregate behavior

for large group of users. Specifically, we study the interplay between users’ behaviors on social

media and e-commerce platforms, trying to discover signals from social media for predicting large-
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scale consumer behaviors as one of the first efforts to bridge the two domains. For example, if

someone, something or some event suddenly gains popularity on social media, are people also in-

terested in purchasing relevant merchandise on e-commerce platforms? If there is such a correlation,

is there also a lag indicating that social media is faster than e-commerce? If there is such a lag, can

we detect signals from social media to predict e-commerce user behaviors? One of the potential

applications could be an instant recommendation system that monitors social media and tells the

e-commerce sellers and buyers what is going to be popular such that sellers can list the relevant

items well ahead of time and buyers can be more attracted and engaged. With such a system, the

e-commerce platform can benefit from the increased transactions.

The explosion of social media has enabled the spread of public opinion, intentions, and obser-

vations, sometimes even at a faster pace than traditional news media [64, 84, 92]. Compared with

social media where news, thoughts and observations are shared and spread, users on e-commerce

websites are more likely to take real actions (eg. selling and buying). Apart from the various study

on mining social media to generate real world insights in previous subsections, there is extensive

work in understanding user sessions, behaviors, and activities on search and e-commerce sites which

provide a closer delegate of users’ real world actions. Such analysis sometimes aims at unlocking

commercial value through understanding user intentions. Recent work on this includes quantifying

the influence of users’ domain knowledge on their search behaviors [114], comparing users’ search

behaviors across different devices [56], understanding user behaviors when their queries return no

result [101] and rewriting these queries to increase recall [100]. User’s bidding behaviors have also

been studied [4,49,82,96]. However, these standalone studies have not involved social components

which might bring new possibilities in understanding the users’ intentions.

We believe that understanding the behavioral characteristics of both social media and e-commerce

domains and their impact on each other would create opportunities of both social and economic

value. A step taken in this direction studies the price of trust by analyzing the internal social net-
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work of a Chinese e-commerce website, Taobao, to estimate how much a buyer is willing to pay

for a transaction with a trusted seller [44]. The interplay between Facebook mouth-to-mouth rec-

ommendations and a special form of e-commerce, daily deal (Groupon), have been studied [14]

where the researchers find a correlation between Facebook likes and the size of the corresponding

deal. Though these two papers reveal interesting aspects of the interaction between social network

and e-commerce, the correlations between the temporal trends from both domains which reflect the

interest and demand of the general public still remain unexplored.

As one of the first efforts, we study the interplay of user behavior on a global social media

site (Twitter) and a global e-commerce site (eBay) at a large scale and at a fine grain by analyzing

the timestamped tweets, and e-commerce search logs and transaction data. To demonstrate the

motivation, we make up a hypothesized and simplified scenario involving the two platforms: on

Twitter, you see people talking about a recent victory of your favorite soccer club, Chelsea, after

which you go to eBay, search for and eventually purchase a Chelsea T-shirt. We answer questions

including: What is the correlation between the sudden surge in popularity on social media and e-

commerce behaviors? Does one platform lead or trail in the burst in activity when such events occur?

Our findings suggest that about 5% of general eBay query streams have strong positive correlations

with the corresponding Twitter mention streams and for trending queries [85], the percentage goes

up to around 25%. Queries from certain eBay categories such as ‘Sports’ show more obvious

correlations. We also discover evidence that eBay lags Twitter for correlated pairs of streams. By

monitoring the popularities of a list of celebrities, we find that their Twitter popularities correlate

with related eBay search and sales. These correlations and lags can be useful for predictive tasks.

For example, a system monitoring social media can potentially make instant decisions whether a

burst is going to lead a sales drive on e-commerce platforms. As a result, relevant sellers and

potential buyers will be notified in advance such that the transactions can be stimulated. As a step

toward this, we adapt a burst detection algorithm to better monitor the two streams.
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In Chapter 7, we further demonstrate the methods from the framework to quantify the correla-

tion as well as the lags between the two streams and apply them to the time series extracted from

hundreds of millions of eBay search queries and tweets as a test on real world data. We then describe

an adapted peak detection algorithm in preparation for a real-time monitoring and recommendation

system. We also conduct a case study to demonstrate the characteristics of the two trends that we

observe.

1.5 CONTRIBUTIONS

We study the observational datasets generated by the users or their smart devices to distill credible

insights about the real world. Some of our contributions include: (1) describing a framework that

assembles the techniques for dealing with these large ‘user-sensed’ datasets while addressing the

inherent biases and noise as well as the geo-temporal characteristics; (2) building applications that

on one hand showcase the techniques in the framework and on the other hand answer the meta

research question which is: “to what extent can we mine the virtual world to understand the real

world?”, by addressing representative problems in each quadrant of all possible problems, with

regard to collective knowledge, natural phenomena, individual user behavior and large-scale user

behavior respectively.

To be specific about the four applications: (1) we investigate and visualize the geo-temporal

relationships between photo text tags, showing that these reveal connections between real world

concepts; (2) we analyze the geo-tags, timestamps, text tags, and visual content of 150 million online

photos to measure and quantify the occurrence of ecological phenomena, comparing against ground

truth at a continental scale; (3) we study the relationship between social media and e-commerce

websites, showing that signals from social media can predict aggregate consumer behavior; (4) we

study how simple behavioral statistics of mobile users over time can characterize and even uniquely

identify them.
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We hope the novelty as well as the framework’s techniques contextualized in the applications

can inspire and guide future data mining tasks on such datasets to reveal real world value in various

domains.

1.6 OUTLINE OF THE THESIS

We organize the remainder of this thesis as follows. In Chapter 2, we briefly survey the related work

and organize them with regard to our four applications. In Chapter 3, we describe the lightweight

framework for dealing with geo-temporal user-sensed datasets. In Chapters 4, 5, 6 and 7, we test

and further demonstrate the techniques in the framework with four data mining applications while

addressing research questions with regard to exploring and extracting geo-temporal knowledge,

estimating natural phenomena, characterizing mobile users and predicting aggregate consumer be-

haviors. We conclude this thesis in Chapter 8.

Our published papers and their corresponding chapters:

• Chapter 4

— Haipeng Zhang, Mohammed Korayem, Erkang You and David J. Crandall, Beyond Co-

occurrence: Discovering and Visualizing Tag Relationships from geospatial and Tem-

poral Similarities, in Web Search and Data Mining (WSDM) 2012 [123].

• Chapter 5

— Haipeng Zhang, Mohammed Korayem, David J. Crandall and Gretchen Lebuhn, Mining

Photo-sharing Websites to Study Ecological Phenomena, in World Wide Web (WWW)

2012 [122].

• Chapter 6

— Haipeng Zhang, Zhixian Yan, Jun Yang, Emmanuel Munguia Tapia and David J. Cran-

dall, mFingerprint: Privacy-Preserving User Modeling with Multimodal Mobile Device

Footprints, in Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP)

2014 [125].
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• Chapter 7

— Haipeng Zhang, Nish Parikh, Gyanit Singh and Neel Sundaresan, Chelsea Won, and

You Bought a T-shirt: Characterizing the Interplay Between Twitter and E-Commerce,

in Advances in Social Networks Analysis and Mining (ASONAM) 2013 [124].
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CHAPTER 2

RELATED WORK

First, at a higher level, we briefly survey some representative guiding work that studies the

dynamics between the web and mobile data and the real world (Section 2.1). We then organize the

specific related work according to the different focuses of the four proposed applications in four

areas: tagged data exploring and organizing (Section 2.2), event detection and prediction (Section

2.3), cross-platform user behaviors (Section 2.4), and mobile user inference (Section 2.5).

2.1 GUIDING WORK

There have been various studies that guide and inspire our research. Berners-Lee et al [9] foresee-

ingly address that Web science is not only about modeling the web itself. They encourage research

on understanding the society that uses the Web, reusing information in innovative ways, and creat-

ing beneficial new systems. In fields including economics and psychology, Surowiecki in his book

‘Wisdom of the Crowd’ [106] argues that aggregate decisions from large groups of people (collective

intelligence) are often more intelligent than the ones from individual members. Can Web users and

mobile users contribute to intelligent decisions or insights about the real world, if we aggregate the

vast amount of information from them wisely?
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Google Flu Trends1 by Ginsberg et al [38] demonstrates that the ‘collective intelligence’ can be

used to estimate real world events and benefit humankind. It aggregates geo-temporal distributions

of Google search queries to provide up-to-date national and regional estimates of influenza-like

illness activity ahead of official data that lags the estimates by 1-2 weeks. They notice that the usage

frequency of certain search queries strongly correlates with the presence of flu-like illness indicated

by conventional data from health agencies. They discover and aggregate the top correlated queries to

fit a linear regression model to accurately estimate the flu activity. However, critics have pointed out

recently that the service overestimated peak flu levels from August 2011 to September 2013 [13,67].

They suggest that the possible overfitting problem results from selecting best matches among 50

million queries to fit 1152 data points and that algorithm changes behind the search engine itself

might also contribute to the mistakes. To avoid this, it requires the mining approach to be more

robust and adaptive. Suggestions from the critics include incorporating other near-real-time data

sources and calibrating the service frequently [67].

There is work on understanding fundamental human social patterns and structures, by analyzing

the web data and mobile phone data. Crandall et al [22] mine a large social photo sharing data set

to quantify the probability that two people have a social tie given their co-occurrences in time and

space. They show that a very small number of co-occurrences can result in a high probability of a

social tie, with a probabilistic model accounting for this effect. Eagle et al [32] mine the everyday

mobile phone communication, location and proximity data collected from 94 people to infer the

friendship structure comparing with self-reported data, with high accuracy. As shown in these two

studies, large scale web data can potentially reveal macroscopic phenomena while mobile phone

data usually comes in very high resolution with various dimensions that can depict user’s daily life

patterns at a finer grain.

Researchers also study social media websites as channels where large amounts of information

is instantly shared and spread across the globe. Kwak et al [64] study the topology of Twitter
1http://www.google.org/flutrends/
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and its information diffusion, suggesting that Twitter is a medium for breaking news as if its users

are monitoring the world. Novel applications have been developed along this direction. Sakaki et

al [92] propose that tweets with geo-temporal attributes can been seen as sensory information, from

which real world events such as earthquakes and typhoons can be detected. These lead us to think

whether real world events can be further quantified at large scales and at finer grains by leveraging

other features and ground truth data with high resolution and coverage.

Along the temporal dimension, social user behaviors are studied to understand how their char-

acteristics change over time. Mislove et al [75] estimate the temporal mood variations across the

U.S. by examining the tweets. Further efforts are made to associate them with real world human be-

haviors. Golder and Macy [40] suggest this temporal mood varies with work, sleep, and daylength

patterns while Bollen et al [12] perform causality analysis on Twitter mood trends and stock market

indices which result from societies’ collective decision making. These all inspire our intuition of

examining social media user behaviors and the e-commerce consumer behaviors from the temporal

perspective.

As these annotated (tagged) datasets grow to large scales, it becomes important to organize

the pieces. During this process, patterns and knowledge are usually revealed. Crandall et al [23]

and Kennedy et al [61] discover popular landmarks and their representative images by incorporat-

ing features extracted from timestamps, geotags, textual tags and images to organize online photo

sharing datasets. Sigurbjörnsson and Van Zwol [99] create a tag suggestion system based on tag

co-occurrence to help users better annotate and organize the content. We continue the efforts in

organizing and exploring the tagged data by applying novel tag similarity measurements from geo-

temporal perspectives other than tag co-occurrence.
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2.2 TAGGED DATA EXPLORING AND ORGANIZING

Tags on social sharing systems have been studied extensively. Here we review the work most rel-

evant to our project described in Chapter 4 that studies tag semantics and relationships in photo

collections.

Clustering tags based on co-occurrences. Much work has been based on photo tag co-occurrences,

mostly in the context of tag suggestion systems. Garg and Weber [37] use tag co-occurrences

to suggest additional tags for a new image. Sigurbjörnsson and Van Zwol [99], as discussed in

Section 2.1, take a similar approach but also conduct a study of tagging behavior on Flickr. Liu et

al [70] rank tags by performing Pagerank-like random walks on tag graphs where the edge weights

are frequency of co-occurrence. Shepitsen et al [97] use TF-IDF to build trees of del.icio.us and

Last.Fm tags, and then partition them into homogeneous clusters. Begelman et al [7] partition tag

graphs using spectral clustering. Markines et al [74] measure the semantic relationships among

users, resources and tags based on co-occurrence. These papers inspired our idea of clustering tags,

but our work differs in that we use features other than co-occurrence, instead looking for tags with

second-order connections like similarities in spatial and/or temporal distributions.

Temporal and geospatial properties of tags. Timestamps and geo-tags of photos have been used

to study temporal and geospatial distributions of individual tags. Jin et al [53] measure the usage

of hand-selected Flickr tags over time to make predictions such as the future sales of products and

the outcome of elections. Serdyukov et al [95] predict where a photo was taken given its tags.

Rattenbury et al [91] use burst detection techniques to find tags with significant peaks in time and

space, while Moxley et al [79] build on this work by using entropy analysis on a quadtree data

structure to improve performance. Chen el al [17] model tag occurrences as points in a 3D geo-

temporal space, and then use wavelet transform-based techniques to find tags with bursts in both

temporal and spatial distributions, and then cluster these tags using DBSCAN. Ahern et al [3]
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cluster photos to find dense areas based on geo-tags and find representative tags for the areas using

TF-IDF, while Moxley et al [78] use a similar approach to rank local tags. As mentioned in Section

2.1, Crandall et al [23] and Kennedy et al [61] find both distinctive tags and images for clusters of

photos found based on geo-tags. While these papers analyze geospatial and temporal attributes of

photos to study individual tags or similarity between “event” tags with significance in geospatial and

temporal distributions which consist of a small portion of all the tags, we instead use these features

to compare general tags with one another.

Studies of query logs, tweets and news articles. Temporal and geospatial patterns have been studied

to discover concept relationships in other domains, including tweets, news articles, and queries in

search engine logs. Vlachos et al [112] use frequency-space analysis of search query time series to

identify bursts and semantically-similar queries. Chien and Immorlica [18] use similar techniques

but perform an experimental evaluation, and find that for 70% of the queries, at least three of the

top ten keywords identified by temporal similarity are semantically related. The geospatial distribu-

tions of search engine queries were studied by Backstrom et al [5], who estimate geographic centers

and dispersions of queries. Vadrevu et al [110] use the co-occurrence of a query term with place

names in a region to determine whether the query is related to this region. Very recently, Mohebbi

et al [76] developed a tool which takes a web query from the user and finds the queries with cor-

related temporal or spatial distributions. They quantize the weekly time series usage data and the

state-by-state series usage data of individual queries into vectors to represent temporal and spatial

distributions, and then apply K-means clustering and an approximate nearest neighbor algorithm

to look up similar vectors efficiently. Yang and Leskovec [121] cluster Twitter hashtags and short

phrases in news documents to identify their temporal patterns and the dynamics of human attention

they receive. Radinsky et al [88] extend Explicit Semantic Analysis to represent concepts as time

series of word occurrences in the New York Times archive. While search queries, tweets and news

articles have different properties than Flickr tags and are thus not directly relevant to our work, we
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use these papers as inspiration, and in particular borrow the idea of using clustering to reveal the

shared topics or semantics of groups of tags.

Spatial clustering and co-location pattern mining. Spatial clustering, as discussed by Ng and

Han [81] and Sander et al [93] groups together similar spatial data points based on their loca-

tions. It differs from our work as it clusters spatial data points while ours clusters high dimensional

feature vectors extracted from the geographical distributions of the text tags. Spatial co-location

pattern mining [33, 34, 50, 117] shares a more similar task to ours which is to “find spatial features

frequently located together in spatial proximity” [50], where the spatial features in our case are text

tags. Clustering is not used by Xiao et al [117], while Huang and Zhang [50] and Estivill-Castro et

al [33,34] take different clustering approaches. Our work differs in clustering different geographical

feature vectors extracted from vast user-generated content, showing that with the help of a straight-

forward clustering method, high quality semantics can be effectively generated from the wisdom of

the crowd.

Visualizing tag clusters. The usual method to visualize tags is to draw tag clouds [59], while

Dubinko et al [29] visualize interesting Flickr tags that evolve over time through animations. In our

project, we introduce visualizations of the temporal semantics of tag clusters by plotting time series

representing their usage along time, and the geospatial semantics of tag clusters in a 3-D space over

a map to represent their usage across space. We also show that the visualizations can help humans

understand subtle semantic relationships.

Connections between tags. Perhaps the closest related work to ours in spirit is that of Wu et al [116],

who compute the “Flickr distance” between a pair of tags by computing the visual similarity of

photos having those tags, and then cluster tags based on this score. Our work is similar in that it

defines connections between tags using a property other than co-occurrence, but is complementary

in that we define similarity metrics based on metadata like timestamps and geo-tags instead of the

visual content of images. This both allows us to discover connections that may not be apparent
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from visual features, and also allows our techniques to scale to much larger datasets (having tens of

millions of photographs) because processing metadata is much more efficient than visual analysis.

2.3 EVENT DETECTION AND PREDICTION

A variety of recent work relevant to our project described in Chapter 5 has studied how to apply

computational techniques to analyze online social datasets in order to monitor and predict the real

world events.

Crowd-sourced observational data. Some studies have shown the power of social networking sites

as a source of observational data about the world itself. Like us, Jin et al [53] use Flickr as a source

of data for prediction, but they estimate the adoption rate of consumer photos by monitoring the

frequency of tag use over time. They find that the volume of Flickr tags is correlates with with

sales of two products, Macs and iPods. They also estimate geo-temporal distributions of these sales

over time but do not compare to ground truth, so it is unclear how accurate these estimates are.

Xu et al [118] estimate time, locations and counts of roadkills using tweets. However, the lack of

quantitative ground truth also makes it hard to evaluate the estimation performance. In contrast, we

evaluate our techniques against a large ground truth dataset, where the task is to accurately predict

the distribution of a phenomenon (e.g. snow) across an entire continent each day for several years.

Crowd-sourced geo-temporal data. Other work has used online data to predict geo-temporal distri-

butions, but again in domains other than ecology. Perhaps the most striking is the aforementioned

work of Ginsberg et al [38], who estimate the spread of flu-like illness. DeLongueville et al [24]

study tweets related to a major fire in France, but their analysis is at a very small scale (a few dozen

tweets) and their focus is more on human reactions to the fire as opposed to using these tweets to

estimate the fire’s position and severity. In perhaps the most related existing work to ours, Singh et

al [102] create geospatial heat maps (dubbed “social pixels”) of various tags, including snow and
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greenery, but their focus is on developing a formal database-style algebra for describing queries

on these systems and for creating visualizations. They do not consider how to produce accurate

predictions from these visualizations, nor do they compare to any ground truth.

2.4 CROSS-PLATFORM USER BEHAVIORS

Recent research has studied user behaviors on e-commerce websites and social media websites,

which is relevant to our project described in Chapter 7. We introduce the work on e-commerce user

behaviors as well as the work on the connection between the two kinds of platforms.

User behaviors on e-commerce websites. User behaviors on e-commerce websites alone have been

analyzed in order to build better services for users and increase the profits for the websites. Much

of the work has been based on understanding the search query logs. Parikh and Sundaresan [85]

develop a near real-time burst detection system to suggest trending queries for the buyers and sellers.

Singh et al [100,101] study user behaviors in a situation where their initial queries return no matches

and build a system to rewrite these queries to increase recall. User behaviors with regard to online

auctions have been another theme of research, including cross-bidding [4], last-minute bidding

[82], shilling [96] and effect of seller reputation on price [49]. Instead of only focusing on the

e-commerce domain itself, we also examine the social media domain to quantify the correlations

and explore what drives the sales on e-commerce websites.

Connection between social media and e-commerce. The studies at the intersection of social media

and e-commerce bring interesting findings. Guo et al [44] analyze the internal social network of

buyers and sellers on a Chinese e-commerce website, to model how much a buyer will pay for a

transaction with a trusted seller. The focus is on the structure of the internal social network and the

price of trust, rather than analyzing trends and user behaviors on an open social media platform and

a global e-commerce website as we do in this paper. Byers et al [14] study the daily deal websites
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including Groupon and their ties with social media websites such as Facebook and Yelp. On the non-

social side of their research, they analyze the incentives for users to purchase and use the parameters

of the deal to predict the sales. On the social side, they examine how daily deals affects merchants’

reputation on Yelp and they suggest that word-of-mouth recommendations on Facebook benefit

daily deal sites. The deals that they study are a special form of e-commerce offering the consumers

with localized discounted merchandise in a relatively short period of time while we conduct a study

of more general user behaviors in both domains at a large scale and in a long run. Moreover, instead

of studying information diffusion in social media, we focus on analyzing the temporal attributes of

the information, which reflect users’ instant interest and demand.

2.5 MOBILE USER INFERENCE

There has been work on inferring mobile users’ context and characteristics using data collected from

the phone, which is relevant to our project described in Chapter 6.

Inferring user’s physical context. There are studies on inferring users’ physical context and char-

acteristics, such as identifying physical activities from accelerometer data [65], estimating user’s

environmental contexts such as crowdedness from Bluetooth [113] and noise-level using the mi-

crophone [71]. These studies however focus on analyzing only unimodal physical sensors to infer

specific types of daily contexts and activities. We analyze multimodal heterogeneous sensor data

including WiFi, GPS, cell tower, and Bluetooth collected in non-laboratory settings.

Inferring user’s behaviors and social context. On the social and behavioral analysis side of mo-

bile data mining, a recent focus is on continuously monitoring user’s daily social contexts, such

as characterizing individual human mobility patterns with cell tower registering information [41],

inferring emotions from audio [87], detecting mood from communication history and application

usage patterns [68], predicting user’s personality using various phone usage data [19, 25] and esti-
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mating users’ profile and sociability level using Bluetooth crowdedness [120].

Privacy implications. The inferred context and characteristics of mobile users, as well as the in-

formation required for the inference, could raise privacy concerns. Communication logs and web

browsing histories are intuitively personal and sensitive [45,57] while there is other information that

users may not want to share even though the purpose is as simple as discovering the users’ interests

for recommendation systems. For example, Barkhuus and Dey [6] demonstrate that though people

are not overly concerned on average about location-based services, a moderate portion of the par-

ticipants (5 out of 16) are still ‘concerned’ or ‘highly concerned’. Some concerns are reasonable:

according to Yan et al [119], semantic locations such as home and office can be detected given

users’ GPS locations. Geolocations could further reveal mobile users’ identities that are sensitive

in nature [10]. We hope our work on using simple behavioral statistics to identify mobile users can

draw some interest from the privacy research community to discuss the privacy implications here.

2.6 SUMMARY

In this chapter, we first briefly discussed the work on utilizing the Web and mobile data to study

the real world that guides and inspires our work on a higher level. We then looked into the specific

related work with regard to our four data mining applications. Section 2.2 surveyed the line of work

in tagged data exploring and organizing that is relevant to our project that investigates and visualizes

the geo-temporal relationships between photo tags to be described in Chapter 4. In Section 2.3, we

reviewed literature on event detection and prediction and we describe our project that measures and

quantifies the occurrence of ecological phenomena by analyzing online photos in Chapter 5. In

Section 2.4, we discussed the previous work on cross-platform user behaviors that is relevant to

our project on discovering signals from social media websites for predicting aggregate consumer

behavior on e-commerce platforms as to be described in Chapter 7. In Section 2.5, we reviewed

related work on mobile user inference and correspondingly, we describe our work on characterizing
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and identifying mobile users using simple behavioral statistics in Chapter 6.
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CHAPTER 3

A FRAMEWORK FOR ANALYZING

USER-SENSED DATA

Various ad-hoc approaches have been applied in different data mining tasks on geo-temporal

user-sensed datasets. We pick the ones from existing literature that are of general significance and

organize them into a lightweight framework with application scenarios. This framework assembles

essential components that are shared across many such applications. These components include:

geo-temporal pattern extraction, comparison, clustering, visualization and external phenomenon

detection. They will be contextualized in following chapters when referred to. This chapter also

extends and complements the previous chapter where we review literature relevant to the applica-

tion areas while in this chapter we are presenting relevant work to the technical approaches in the

framework. We hope this framework, as a possible guide or reference, can facilitate fast prototyping

of data mining projects on user-sensed data with geo-temporal attributes to yield accurate insights

related to the real world.
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3.1 GEO-TEMPORAL PATTERN EXTRACTION

Many datasets including crowd-sourced user generated content and user behavioral data have time

stamps and geo-tags. Extracting geo-temporal patterns with simplicity and efficiency is usually an

initial step for many research projects on such datasets. We will describe binning approaches that

fit into the three research scenarios in Section 4, 5 and 7 and the results prove the feasibility and

effectiveness of the approaches in return.

3.1.1 QUANTIZATION OF GEO-TAGS

Binning. We are interested in geographical distributions of geo-referenced user sensed data as the

user activities and observations can be mapped to locations. Because the distribution of social media

users/mobile users over the world is highly non-uniform, with most of their activities concentrated

in cities, many areas of the world have very few activities. Thus, one of the efficient and straightfor-

ward ways of extracting the distributions is to aggregate the geo-referenced entries (photos, tweets,

etc) together into coarse geospatial buckets instead of clustering the entries directly. (The quantiza-

tion process also helps reduce the impact of noise in the geo-tags.) To do this, we divide the world

into n bins, each with s degrees of latitude by s degrees of longitude. We assign each of the bins

a unique index number in the range [1, n], and define a quantization function qG(g) that maps a

latitude-longitude coordinate g into the index number of the corresponding geo-bin. Each bin can

then record the occurrences of phenomenon of interest after which a vector is produced. These phe-

nomena might have different overall frequencies of occurrence. For tasks where we are interested

in the distributions instead of the overall frequencies of occurrence, normalization is necessary. For

example, we can divide the value in each bin by the sum across all bins (L1 norm) such that each bin

records the percentage of occurrence it takes up among all bins. Figure 3.1 shows the heatmap of

the geospatial distributions of Flickr tags “corn” and “coconut” over North America from a dataset

of 44 million geo-tagged Flickr photos. Greater intensity in the geo-bin color indicates more users
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Figure 3.1: Geographic distributions for tag “corn” (left) and “coconut” (right).

applied the tag to photos taken in the very bin. Note that the bins do not have the same surface area

because degrees of longitude become closer together near the poles; this tends not to be a problem

in practice because the vast majority of user sensed datasets are closely associated with human ac-

tivities near the middle latitudes. An equal-area partitioning of the globe [42] could address this

issue.

Hierarchical binning. Predefined geo-bin size affects the geospatial distributions being captured,

e.g., New York City and Los Angeles might both fall into the North America bin at a continental

bin size granularity while they would be different bins at a state granularity. In order to achieve

hierarchical and efficient indexing of the bins, the quadtree can potentially be applied. It is a tree

data structure where each internal node has four child nodes. It is used to partition a 2D space by

recursively dividing it into four regions where the data points can be geo-tags. If a region is above its

max capacity, it splits. In a special case, each split generates four equal-sized subregions. Figure 3.2

shows a quadtree with a max capacity of 2 and equal splits. A denser region has nodes of higher

levels. Moxley et al [79] use quadtree to find Flickr places tags which have a tight distribution on

a location by computing a sum of entropy over multiple levels. We describe this method here as

we believe it can be a possible extension to the regular binning method described above and used in

Chapter 4.
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Figure 3.2: A quadtree with a max capacity of 2.

3.1.2 QUANTIZATION OF TIMESTAMPS

As with the quantization of geo-tags, we can aggregate the timestamps into coarse temporal bins.

Let qT (τ) be a quantization function that maps a timestamp τ into one of m temporal bins for a

stream that begins at timestamp 0 and ends at timestamp N , returning a bin index in the range

[1,m]. This quantization function could be designed to operate at different levels of granularity,

for example mapping timestamps to hours of the day, days of the week, months of the year, etc.

Similar to hierarchical geo-binning, we can use a binary tree to partition the one dimensional space,

by recursively dividing it into 2 (equal-sized) subspaces. Here the data points are timestamps.

3.2 PATTERN COMPARISON AND CLUSTERING

One common yet important step in research relevant to geo-temporal datasets is to compare the geo-

temporal patterns and quantify the pairwise relationships. Following that, we can perform clustering

algorithms to find interesting groups with shared characteristics.

Similarity measurement. When we have extracted the vectors representing the geo-temporal pat-

terns, we can compute their pairwise similarity using simple metrics such as Manhattan distance,

Euclidean distance, histogram intersection distance and chi-squared distance [26]. They quantify

how similar two patterns are. However, we are sometimes interested in the relationships between

two vectors: how do changes in one vector correspond to changes in another? For this purpose,

Pearson product-moment correlation coefficient measures the linear correlation between two ran-
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dom variables. Unlike the aforementioned similarity measurements, the coefficient is between +1

and -1, with 1 being total positive correlation, 0 being no correlation and -1 being total negative

correlation. The Pearson product-moment correlation coefficient for vector X and Y is defined as

the covariance of X and Y divided by the product of their standard deviation:

P (X,Y ) =
cov(X,Y )

σXσY
=

∑n
i=1(xi − x̄)(yi − ȳ)√

1
n

∑n
i=1(xi − x̄)2

√
1
n

∑n
i=1(yi − ȳ)2

(3.1)

where X = x1, x2, ..., xn, x̄ is mean of X , cov(X,Y ) calculates the covariance and σX is the

standard deviation of X . When Pearson coefficient is applied to measuring the similarity between

time series, it can be modified as a function of a temporal shift — the two time series can be similar

in shape but with shifts along time. We define it here as also suggested in [88]. We assume streams

X and Y begin at timestamp 0 and ends at timestamp N . First, let UX (ts, te) be a function that

extracts a vector X for X , from starting timestamp ts to ending timestamp te. Similarly, UY(ts, te)

extracts a vector Y for Y . The cross-correlation is defined as:

f(X ,Y,∆t) =

 P (UX (∆t,N), UY(0, N −∆t)),∆t ≥ 0

P (UX (0, N − |∆t|), UY(|∆t|, N)),∆t < 0
(3.2)

If ∆t ≥ 0, the starting point of X is shifted to a later time stamp and meanwhile the end point of Y

is shifted to an earlier time stamp to ensure that the two resulting vectors have the same dimension.

If ∆t < 0, the starting point of Y is shifted to a later time stamp and the end point of X is shifted to

an earlier time stamp. We can further calculate the lag (shift) in a temporal shift range ([−S1,S2])

that best aligns the two time series, or in other words, maximizes the cross-correlation. The lag lX ,Y

is computed as:

lX ,Y = argmax
∆t∈[−S1,S2]

f(X ,Y,∆t), (3.3)

where positive lX ,Y suggests X lags Y by lX ,Y while negative lX ,Y suggests Y lags X by |lX ,Y |.
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Two time series being compared may sometimes have different scales. In this case, the Dynamic

Time Warping algorithm implemented with a dynamic programming approach [8] can measure their

similarity by finding a minimal optimal match between the two time series.

Clustering. With the geo-temporal vectors extracted and the similarity metrics chosen, K-means

and spectral clustering techniques can cluster these vectors to reveal geo-temporal patterns and

knowledge [121, 123]. For datasets with geolocations, the data mining tasks sometimes involve

clustering the geolocations to find the places of interest (e.g. the most photographed places or the

user’s home/work locations). Clustering techniques such as K-means used in [3], DBSCAN in

Chapter 6 and mean shift used in [23] are usually applied for this purpose. While K-means tends to

discover geographical clusters of convex shapes, DBSCAN, as a density-based clustering method,

can discover clusters with more arbitrary shapes.

3.3 VISUALIZATION

We describe visualization approaches that make the geo-temporal tagged data understood more

easily.

geospatial visualization. After quantization of geo-tags, we often want to interpret the process

geospatial data. One common practice is to make the quantity in each geo-bin better understood

visually, by utilizing colors and shapes overlaid on a 2D or a 3D map to create “heatmaps”. In Fig-

ure 3.1, two heatmaps show the geographic distributions for tag “corn” and “coconut” respectively,

where the intensity of green color is a function of the value in the corresponding geo-bin. In this

case, the value is the number of unique users who applied this tag in this bin. Similarly, heatmaps

in 3D can be produced. Figure 3.3 displays a schematic map of North America, with colored peaks

in 3D space, indicating the usage of tags related to the Toronto and Niagara area. The heights of

peaks, as well as the intensity of the red color, correspond to the tag usage in the area underneath.
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Figure 3.3: Tag usage for “toronto”, “niagara”, “niagarafalls”, “cntower”, “falls”, “ontario”, “cana-
dian”, “canada”, “streetcar”, visualized in a 3D heatmap. Best viewed in color.

Figure 3.4: Tag usage for “4th”, “fourthofjuly”, “4thofjuly”, “independenceday”, “july4th”, “fire-
works”, “july”, visualized as time series. Best viewed in color.

This redundancy in the representation may help delivering the information.

Temporal visualization. The time series extracted by the simple temporal binning method can be

visualized by plotting the values along the temporal dimension, where curves for multiple time

series can be displayed within one graph showing the trends. Figure 3.4 shows the temporal usage

of a set of tags that appear relevant to United States’ Independence Day, the usage of which peaks

on July 4th. In the graph, the X-axis corresponds to time while the Y-axis corresponds to the tag

usage.

Tag clouds. Besides this, drawing tag clouds is the usual method to visualize tags, their frequencies

and co-occurrences [59]. This method can potentially be applied to visualize other weighted graphs.
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3.4 EXTERNAL PHENOMENON DETECTION AND ESTIMATION

There has been a lot of work on utilizing the signals from user-sensed data to detect the phenomena

of interest and estimate their magnitude. We explain the mechanism of phenomenon detection from

a Bayesian point of view and describe how the confidence scores calculated by applying a simple

probabilistic model can be fit into a regression model to estimate the magnitude of the phenomena.

A simple probabilistic model. We introduce a simple probabilistic model and use it to derive a

statistical test that can deal with some noise and bias in the user-sensed data. Any piece of observa-

tional data (e.g. a Tweet, a photo or a search query) either contains the evidence of the phenomenon

of interest (event e) or does not contain any evidence of the phenomenon of interest (event ē).

We assume that the piece of data generated at a time and place with the phenomenon has a fixed

probability P (e|phen) of containing the evidence of the phenomenon. We also assume that obser-

vational data generated at a time and place without the phenomenon have some non-zero probability

P (e|phen) of containing evidence of the phenomenon; this incorporates various scenarios including

incorrect timestamps or geo-tags and misleading visual or textual evidence.

Let m be the number of data pieces (e.g. tweets, Flickr photos, search queries) containing

evidence of the phenomenon (event e), and n be the number of data entries without evidence of the

phenomenon (event ē), generated at a place and time of interest. Assuming that each data piece is

captured independently, we can use Bayes’ Law to derive the probability that a given place has the

phenomenon of interest given its number of data pieces with the evidence or without the evidence,

P (phen|em, ēn) =
P (em, ēn|phen)P (phen)

P (em, ēn)
(3.4)

=

(
m+n
m

)
pm(1− p)nP (phen)

P (em, ēn)
, (3.5)

where em and ēn denote m occurrences of evidence e and n occurrences of evidence ē respectively,

and where p = P (e|phen) and P (phen) is the prior probability of the phenomenon of interest. A
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similar derivation gives the posterior probability that the time and place (temporal geo-bin) does not

contain the phenomenon,

P (phen|em, ēn) =

(
m+n
m

)
qm(1− q)nP (phen)

P (em, ēn)
, (3.6)

where q = P (e|phen). Taking the ratio between these two posterior probabilities yields a likelihood

ratio,

P (phen|em, ēn)

P (phen|em, ēn)
=

P (phen)

P (phen)

(
p

q

)m(1− p
1− q

)n

. (3.7)

This ratio measures the confidence that the phenomenon of interest actually happened in a given

time and place, given pieces of observational data. We may classify a data piece into an event

of positive evidence e or an event of negative evidence ē by leveraging textual or visual features,

depending on the specific data being dealt with. The confidence score can then be thresholded to

decide the binary existence of the phenomenon.

The above derivation is based on the assumption that the data pieces are generated independently

of one another, which is generally not true in reality. One particular source of dependency is that

data (tweets, Flickr photos) from the same user are highly correlated with one another. In order

to prevent active users from spamming the datasets, instead of counting m and n as numbers of

data pieces, we let m be the number of users having at least one data piece with evidence of the

phenomenon, while n is the numbers of users who did not generate any data with evidence of the

phenomenon.

Regression-based methods. The confidence scores or other values estimated from the data some-

times not only indicate the presence or absence of the phenomenon of interest, but also linearly

correlate with the magnitude of the phenomenon (e.g. degree or quantity of natural phenomena,

box-office revenue of movies). As a result, we can fit linear regression models with the confidence

40



scores as predictors and one simple example can be written as:

Y = βX + ε, (3.8)

where X is the predictor and Y is the magnitude of the phenomenon of interest. β and ε are the

regression coefficient and the error term that can be estimated using measured data. It can be further

extended to a multiple linear regression model if there is more predictors:

Y = β1X1 + β2X2 + ...+ βnXn + ε. (3.9)

Regression-based methods have various applications in phenomenon detections and predictions

that leverage user-sensed data. In Chapter 5, we will detail some related techniques applied to the

detection and estimation of ecological phenomena. There is work on predicting future reports that

reflect current status. Ginsberg et al [38] observe that the usage of certain search queries is highly

correlated with the presence of influenza-like illnesses reported in official data. They fit a multiple

linear regression model with the usage of top correlated queries as predictors and use it to estimate

the regional presence of these illnesses one or two weeks ahead of the official data. In [53], the

authors extend an autoregressive model with index estimated from Flickr photos to predict product

sales. In order to predict box-office revenue of movies and Billboard song rankings, Goel et al [39]

fit multiple linear regression models on publicly available data as well as Yahoo search counts,

while in [20] researchers predict near-term values of economic indicators such as automobile sales

and unemployment claims.

Other classifier-based methods. Other than fitting the regression models on a few estimated values

such as the confidence scores, we may incorporate more information to build labeled feature vectors

for classifiers such as Support Vector Machines, Naive Bayes, and Decision Trees to detect or quan-

tify the phenomenon of interest, depending on the application scenarios. For example, as described
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in Section 5, in order to detect the natural phenomena snow using tagged Flickr data, we can build

a feature vector based on the tag usage distribution for a day and place, where the label is ‘snow’ or

‘no snow’ judged from satellite ground truth data. Aforementioned classifiers can be trained using

such vectors to make binary predictions about the existence of snow.

Case-based methods. There is a line of work on learning from news archives to predict future events

by Radinsky et al [89, 90]. They extract past event chains from news articles and further generalize

the event entities (e.g. actors, actions, locations) using world knowledge ontologies. From these

past event chains, conditioned probabilities are learned. Future events are then generalized and their

outcomes are predicted based on the learned probabilities.
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CHAPTER 4

TAGGED DATA EXPLORATION FOR REAL

WORLD KNOWLEDGE

Tagged crowd-sourcing datasets have grown to large scales, opening up opportunities to monitor

the real world geo-temporally. Given the abundance of geo-temporal signals provided by the geo-

tags and timestamps, can we discover geo-temporal relationships between photo tags that reveal

connections between real world concepts? As motivated in Section 1.4.1, this chapter gives an

answer to this question. By answering this question, we will also show that the virtual world reflects

the real world, as a first step towards answering our meta research question.

Researchers study the relationships between keyword tags on social sharing websites to improve

tag suggestion systems and to discover the connections between the concepts the tags represent at a

semantic level. Existing approaches mainly rely on tag co-occurrences. In this project, we show how

to find connections between tags by comparing their distributions over time and space, discovering

tags with similar geographic and temporal patterns of use. Geospatial, temporal and geo-temporal

distributions of tags are extracted and represented as vectors which can then be compared and clus-

tered. Using a dataset of tens of millions of geo-tagged Flickr photos, we show that we can cluster

Flickr photo tags based on their geographic and temporal patterns, and we evaluate the results both

qualitatively and quantitatively using a panel of human judges. A case study suggests that our
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visualizations of temporal and geographic distributions help humans recognize subtle semantic re-

lationships between tags. This approach to finding and visualizing similar tags is potentially useful

for exploring any data having geographic and temporal annotations.

4.1 DISCOVERING TAG RELATIONSHIPS

We assume that we have a dataset of online objects (e.g. photos), each of which has a user id of the

person generating the object (e.g. the photographer), a timestamp specifying when the object was

created, a geo-tag specifying latitude-longitude coordinates for the object, and a set of zero or more

text tags. To define this formally, it is useful to think of tagging events – individual acts of a user

tagging a photo with a text tag. The information associated with a particular event includes the tag

that was applied, the photo to which the tag was applied, the user who uploaded the tagged photo,

the geographic location of the tagged photo, and the timestamp indicating when the photo was taken.

Letting T be the set of all possible text tags, then the set of tagging actionsA = {a1, a2, ..., aq} can

be defined as a set of tuples of the form ai = (ui, ti, τi, gi), where ui is a user, ti ∈ T is a tag, τi is

a timestamp, and gi ∈ R×R is a geo-tag (latitude-longitude coordinate).

Given a collection of tagged objects, our goal is to cluster the tags based on their geospatial

and temporal properties. To do this, we first extract a geospatial or temporal signature for each tag

and represent it with a corresponding feature vector, and then we cluster the feature vectors using

an unsupervised algorithm like k-means [72]. In addition to finding the geospatial and temporal

distributions of each tag, we also compute a feature vector based on the cross-product of these two

attributes, which allows us to represent a tag’s joint geo-temporal distribution – i.e. the “motion”

of how a tag’s spatial distribution changes over time. The following three subsections explain the

geospatial, temporal, and motion feature vectors in turn.
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4.1.1 GEOSPATIAL FEATURE VECTORS

Since different types of tags have different geographical distributions, our first feature aims to char-

acterize the geographical distribution of a tag. As is discussed in Section 3.1, the geographic dis-

tribution of the world’s photos is highly non-uniform, with hot spots of the photographic activity,

usually in cities. It is thus useful to aggregate photos together into coarse geospatial buckets in-

stead of clustering using raw geo-tags. We apply the geospatial binning technique described in the

aforementioned section. To show how it fits into this application scenario and to be coherent, we

elaborate it here. We first divide the world into n bins and each one has the size of s degrees of

latitude by s degrees of longitude. We assign each bin a unique index number in the range [1, n],

and define a quantization function qG(g) that maps a latitude-longitude coordinate g into the index

number of the corresponding geo-bin. In the results presented in this thesis, we use s = 1 degree,

which corresponds to grid cells of roughly 100 km × 100 km at the middle latitudes.

To compute a geospatial feature vector for tag t, we first count the number of unique users who

have used that tag in each geo-bin g,

UG(g, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t, g = qG(gi)} ||. (4.1)

We count the number of users who applied a tag within a geographic area instead of the number of

photos in order to prevent high-activity users from biasing the distribution [3]. (This can be thought

of as giving each user a single “vote” for whether or not a tag applies to a given geographic area.)

Then we normalize the vector to get the geospatial feature vG(t) of tag t,

vGi (t) =
UG(i, t)√∑n
j=1 U

2
G(j, t)

. (4.2)

Normalization is necessary since tags sharing similar geospatial distributions might have different

overall frequencies of occurrence. While other work has found that L1 normalization works better
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Figure 4.1: Geographic distributions for tag “beach” (left) and “mountains” (right).

in high dimensional spaces [27, 80], we found that L2 normalization works better in our context.

(For example, for the clustering results presented in Section 5.2, we found that L2 norm generates

clusters that have more uniform and moderate sizes. When clustering 2000 tags into 50 clusters,

L1 norm produces 17 singletons (clusters that contain only one tag) while L2 norm produces no

singletons. L1 norm cluster sizes also have much greater variation: their standard deviation is 127.8

while the standard deviation of L2 norm is 54.1.)

As an example, Figures 4.1 visualizes the normalized matrices for tags “beach” and “mountains”

over North America, in which greater intensity indicates that more users applied the tag to photos in

a given geo-bin. Notice that the Appalachian and Rocky Mountain ranges are immediately apparent

in the “mountains” map, while the “beach” map highlights the coastline of North America.

4.1.2 TEMPORAL FEATURE VECTORS

Tags also have different temporal distributions, because some tags (and semantic concepts) are

much more popular at certain times than others — for example, we might expect “beach” to be used

more often during the summer than in the winter, while “restaurant” might occur more often during

the meal times of the day. As with the geographic feature vectors described above, with temporal

features it is also useful to aggregate photos together into coarse temporal bins. Let qT (τ) be the

quantization function described in Section 3.1.2. It maps a timestamp τ into one ofm temporal bins

and returns a bin index in the range [1,m]. For any tag t, we then build an m-dimensional vector,
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Figure 4.2: Number of unique Flickr users active in North America, for each 2-week period of the
year.

again counting the number of unique users who have used the tag in each temporal period p,

UT (p, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t, p = qT (τi)} ||, (4.3)

and then normalize to produce an m-dimensional temporal feature vector vT (t),

vTi (t) =
UT (i, t)√∑m
j=1 U

2
T (j, t)

. (4.4)

In this project we primarily use a quantization function that maps timestamps into one of 26 two-

week periods of the year: January 1-14, January 15-28, etc. We disregard the specific year and as

a result, all the data is merged together into a single year – for example, photos taken on January

1, 2008 and January 1, 2009 will be mapped to the same cell. In addition to the 26-dimensional

2-week vectors, we also create 7-dimensional day-of-week vectors and 24-dimensional hour-of-day

vectors.

Flickr users are significantly more active at certain times of the year than others, as illustrated

in Figure 4.2: note that nearly twice as many users take photos during the first two weeks of July

(period 14) than in early February (period 3). To correct for this effect, in practice we normalize

the temporal counts for tag t and period p, UT (p, t), by the total number of photos taken in North

America during p, before applying L2 normalization to produce vT . Figure 4.3 shows the process

of obtaining temporal feature vectors.
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Figure 4.3: Computing temporal feature vectors.

4.1.3 GEO-TEMPORAL (MOTION) FEATURES

Finally, we also want to produce a signature for a tag based on its joint geo-temporal distribution –

that is, how the geospatial distribution of the tag varies over the course of a year (or equivalently,

how the temporal distribution varies with spatial location). We call these geo-temporal signatures

our “motion” features. Given geospatial and temporal quantization functions qG and qT (described

above) that map geo-tags into one of n bins and timestamps into one of m bins, a motion feature

vector has one bin per entry in the cross product of these two sets of indices, ormn dimensions total.

More precisely, we define a motion quantization function that maps a geo-tag gi and timestamp τi

to a bin index in [1,mn],

qM (gi, τi) = m× (qG(gi)− 1) + qT (τi), (4.5)

then count the number of unique users who used a given tag t in each geo-temporal bin,

UM (m, t) = || {ui|(ui, ti, τi, gi) ∈ A, ti = t,m = qM (gi, τi)} ||, (4.6)

and take the L2 norm (as above) to define a final motion feature vector, vM . For the experiments in

this project, this vector has mn = 124, 800 dimensions. As with the geospatial feature vectors, we

remove empty dimensions (geo-temporal cells having no photos) as an optimization.
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4.1.4 CO-OCCURRENCE FEATURES

For comparison purposes, we also define similarity metrics using using two more traditional tech-

niques. First, the pairwise co-occurrence between two tags t1 and t2, co occur(t1, t2), is computed

by simply counting the number of photos that are tagged with both t1 and t2.

A disadvantage of this simple co-occurrence measure is that it favors pairs of tags that occur

very often, since very frequent tags will co-occur more often than infrequent tags even if they are

unrelated. Thus we include a second baseline feature, mutual information, which overcomes this

problem by normalizing the co-occurrence measures by the overall frequency of the tags [7],

mutual info(t1, t2) = log

(
co occur(t1, t2)

occur(t1)× occur(t2)

)
(4.7)

where occur(t) is the total number of photos having tag t. This score can be thought of as a measure

of the independence of the two tags: it is minimized if the two tags are completely independent

(never co-occur), and is maximized if the tags are strongly correlated (always co-occur).

4.2 EXPERIMENTS AND VISUALIZATIONS

To test our techniques for characterizing tags based on geospatial and temporal signatures, we used

a dataset of geo-tagged, time-stamped photos downloaded from Flickr through the site’s public API

interface, using a crawling technique similar to that described in [23]. We collected the following

information for each photo: the geo-tag (latitude and longitude) of where the photo was taken, the

timestamp of when it was taken, and the set of textual tags (if any) associated with the photo. From

this collection of nearly 80 million photos, we selected only the photos in North America (which we

defined to be a rectangular region spanning from 10 degrees north, -130 degrees west to 70 degrees

north, -50 degrees west). Other details about the data can be found in Section 1.3.

We then computed the top 2000 most frequent text tags (ranked by the number of different users
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who used the tag) in North America. (We chose this relatively small number of tags so that our

geo-temporal distributions would have substantial mass not dominated by noise (each of these tags

has been used by at least 1,200 unique Flickr users), and to make human evaluation tractable. Note

that the majority (66.7%) of photos on Flickr are tagged with at least one of these 2,000 tags since

Flickr tag frequency follows a long tailed distribution [99].) For each of these tags, we extracted the

geospatial feature vectors, temporal feature vectors and motion vectors described in Section 5.1.1.

In preparation for geospatial feature vector extraction, we filtered the data by removing photos with

geotag precision less than about city-scale (according to the precision reported by Flickr), resulting

in a datset with about 44 million photos. For the temporal feature vectors, we removed photos with

inaccurate or suspicious timestamps (including photos supposedly taken in the future or distant

past), resulting in about 41 million photos; for the motion feature vectors, both of these filters were

applied, yielding about 39 million photos.

4.2.1 TAG RELATIONSHIPS

We can use the similarity metrics defined in Section 5.1.1 to find pairs of similar tags. Given a tag

t′, we can find a list of related tags using each of the distances defined above, including geospatial,

temporal, and geo-temporal. To do this, we compute the feature vectors vG(t), vT (t), and vM (t)

for each tag t, and then compute the pairwise Euclidean distances between these vectors and those

of t′. The tags are ranked according to their distances to t′ in ascending order, and the k tags with

lowest distance are found. For the co-occurrence and mutual information features, we compute the

similarity for each tag t using the co occur(t, t′) and mutual info(t, t′) functions, and then rank the

tags in increasing order of similarity.

As an example, Table 4.1 shows the lists of tags that are most similar to the tag “cherryblossoms”

under the various measures of similarity. The first column shows the 20 most similar tags accord-

ing to the geospatial similarity metric. Most of these tags are strongly related to Washington, DC
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Table 4.1: Top 20 most similar tags to “cherryblossoms” using different similarity metrics. The
columns rank the tags according to (from left): geospatial, temporal, motion (geo-temporal), co-
occurrence, and mutual information.

geospatial Temporal Motion Co-occurrence Mutual information
1. president 0.321 cherry 0.451 cherry 0.291 washingtondc 4568 blossoms -10.577
2. whitehouse 0.321 blossoms 0.505 blossoms 0.417 dc 3443 cherry -11.004
3. monument 0.323 blossom 0.612 blossom 0.546 spring 2319 washingtonmonument -11.355
4. smithsonian 0.324 easter 0.636 jefferson 0.673 washington 2089 buds -12.289
5. memorial 0.324 spring 0.638 kite 0.868 flowers 1969 washingtondc -12.456
6. georgetown 0.325 april 0.654 washingtonmonument 0.908 blossoms 1367 dc -12.580
7. washingtonmonument 0.327 magnolia 0.735 monument 0.990 pink 1007 hearts -12.622
8. dc 0.327 buds 0.758 magnolia 0.998 trees 979 jefferson -12.657
9. lincolnmemorial 0.328 washingtonmonument 0.813 spring 1.026 canon 754 blossom -12.659

10. wwii 0.331 tulip 0.822 bloom 1.042 cherry 753 spring -12.760
11. washingtondc 0.332 jefferson 0.837 memorial 1.057 tree 703 lions -12.785
12. jefferson 0.367 egg 0.858 lincolnmemorial 1.085 usa 610 pink -12.845
13. arlington 0.370 tulips 0.862 washingtondc 1.086 flower 560 bloom -12.884
14. lincoln 0.372 bloom 0.868 dc 1.091 washingtonmonument 552 petals -12.955
15. mall 0.392 break 0.869 whitehouse 1.092 water 498 poppy -13.051
16. capitol 0.401 poppy 0.870 mall 1.096 2007 415 flowers -13.263
17. soldier 0.407 eggs 0.883 festival 1.103 unitedstates 412 drops -13.283
18. war 0.421 bud 0.895 tulip 1.106 festival 379 branches -13.327
19. cherry 0.429 kite 0.922 government 1.121 nature 377 japan -13.381
20. capital 0.448 olympics 0.924 capital 1.122 brooklyn 347 shell -13.385

(which is of course famous for its annual cherry blossom festival in April), including “president,”

“whitehouse,” “smithsonian,” and “lincolnmemorial,” among others. The second column shows

tags having high temporal similarity, including “easter,” “spring,” “april,” and “magnolia”. The list

of tags under motion similarity appear to be a mixture of geographically similar tags and tempo-

rally similar tags. In contrast, the co-occurrence list has arguably much lower quality: “canon,”

“water,” and “usa” are popular tags that also co-occur with many other tags, and are not particularly

relevant to “cherryblossoms.” Mutual information gives more meaningful results compared to raw

co-occurrence, but some tags such as “lions” and “drops” cannot be interpreted easily and do not

have clear geospatial or temporal relationships to chery blossoms. Moreover, the mutual informa-

tion list missed tags like “whitehouse,” “april”, and “kite” which were picked up by the temporal

and geospatial analyses. These tags do not frequently co-occur with “cherryblossoms” on the same

photos, but do share similar geospatial and/or temporal patterns.

4.2.2 CLUSTERING TAGS

The analysis in the last section can be used to compute the similarity between any arbitrary pair

of tags, but it is difficult to visualize or quantify the performance of these results directly because
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there are so many possible pairs. In past work, tag similarity results have been summarized by

grouping tags into a small number of similar clusters, typically using co-occurrence information

(e.g. [18]). We follow a similar strategy and cluster Flickr tags according to each of our three types

of distance metrics (temporal, geospatial, geo-temporal) as well as traditional co-occurrence and

mutual information measures.

For each feature vector type, we clustered the 2000 tags using k-means [72]. Squared Euclidean

distance was used to measure distances between vectors. Since k-means clustering is sensitive to the

initial choice of centroids, we ran k-means five times with different random initial cluster centers

and chose the best result (in this case, choosing the clustering with the minimum total vector-to-

centroid distance). Of course, this clustering algorithm requires an a priori choice of the number of

clusters (k). For the purposes of this project, where our primary focus is on presenting techniques

for comparing tags based on their geospatial and temporal distributions and not on presenting an

end-to-end system for tag analysis, we simply set k to a value (50) that gave reasonable results in

our subjective judgment. Various techniques exist for selecting k automatically based on properties

of a dataset (see e.g. [105]) and these techniques could easily be applied to our work.

As we show in the next few sections, the overall “shape” of the geospatial and temporal dis-

tributions varies dramatically from tag to tag and cluster to cluster: some clusters contain tags that

are diffuse across space and time (like “canon”, “geotagged”, “blackandwhite”, etc.), while other

distributions are very “peaky” (“newyorkcity”, “washingtondc”, etc.), and others are somewhere

in between (“usa”, “newengland”, etc.). It is thus useful to compute a statistical measure of the

peakiness of a distribution, in order to compactly characterize its overall “shape”. We measure the

peakiness of a vector v by computing its second moment,

second moment(v) = v · v =
n∑

i=1

v2
i , (4.8)

and measure the peakiness of a cluster of tags C as the average second moment of the vectors that
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it contains,

∑
v∈C second moment(v)

|C|
. (4.9)

Peaky distributions will have higher second moment values, while distributions close to uniform will

have low second moment. (Note that the second moment of a discrete probability distribution is the

likelihood of sampling twice from the distribution and drawing the same value both times.) The

second moment gives a statistic by which to rank clusters, as clusters with high average peakiness

usually have bursts in temporal distributions or geospatial distributions which indicate particularly

interesting clusters.

We present sample results and visualizations for several sample tag clusters in the following

sections. Due to space limitations we do not show all the tag clusters generated from the three

different perspectives, but these and other detailed results are available at http://vision.soic.

indiana.edu/tagclusters.

(a) (b) (c)

Figure 4.4: Visualizations of sample clusters produced by analyzing similarity of geospatial distri-
butions. The clusters seem to correspond to (a) tags related to New York City, (b) tags related to
cities with popular zoos and airports, and (c) tags related to national parks and outdoor areas. Best
viewed in color.

GEOGRAPHICAL CLUSTERS

Figure 4.4 shows visualizations of several tag clusters produced by analyzing geospatial distribu-

tions. The visualizations were created by taking a cluster centroid and converting it back to a two-
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(a) (b) (c)

Figure 4.5: Visualizations of three clusters produced by analyzing similarity of temporal distribu-
tions: (a) tags related to spring, (b) tags related to winter, (c) tags related to gatherings of friends.

dimensional matrix: i.e. for each geo-bin, we find the corresponding latitude-longtiude coordinates

for the bin center and plot them together with their values in a 3D space over a schematic map of

North America. The result is a topographical visual effect with the heights of the peaks as well as

the intensity of red color indicating the usage of the tags in the cluster at corresponding locations

underneath. The figure shows three sample clusters. Figure 4.4(a) consists of tags from the New

York City area. Some not very obvious tags are: “soho” which is a shopping area in New York City,

“bull” which is the Wall Street Bull and “ground” which relates to Ground Zero referring to World

Trade Center site. This cluster is ranked 10th out of 50 clusters by second moment. Figure 4.4(b)

visualizes the cluster in which most tags are related to zoos and animals and others are related to

airports. As a result, the visualization peaks at major US cities with famous zoos and airports. It is

ranked 37th. Figure 4.4(c) displays the cluster of tags that occur predominantly in national parks.

This cluster is ranked 27th.

Images that record the visualizations of all the 50 geospatial clusters are available at the above

website. The top ranked clusters by second moment are more concentrated geographically. From

these top clusters, we see state clusters, city clusters, zoo clusters, park clusters, northern city clus-

ters, coastal area clusters and so on. For lower ranked clusters, the tags are more geographically

distributed, such as a cluster of rural regions and a cluster of urban regions.
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Top 10 temporal clusters
# 2nd

Tags in cluster tags moment
1 4th fourthofjuly 4thofjuly independenceday july4th 7 0.578
2 january newyearseve 2 0.5
3 turkey thanksgiving november 3 0.355
4 august 1 0.2785
5 iris may dandelion graduation memorialday 5 0.269
6 costume costumes halloween 3 0.223
7 christmastree christmaslights christmas ornament holidays 9 0.215
8 pride june 2 0.206
9 fallcolors pumpkins autumn fall foliage 7 0.190

10 irish march 2 0.144

Top 10 geographical clusters
# 2nd

Tags in cluster tags moment
1 toronto niagara niagarafalls cntower falls 9 0.415
2 golden cablecar francisco sanfrancisco sf 27 0.402
3 los angeles santamonica la losangeles 8 0.397
4 broadway brooklyn empire cab empirestatebuilding 34 0.394
5 strip paris vegas las lasvegas 10 0.379
6 seattle needle pugetsound spaceneedle wa 8 0.374
7 chicago bean searstower illinois il 7 0.366
8 ma massachusetts boston cambridge newengland 6 0.332
9 prairie pennsylvania pa philadelphia philly 58 0.287

10 911 liberty chelsea wtc worldtradecenter 14 0.276

Top 10 motion (geo-temporal) clusters
# 2nd

Tags in cluster tags moment
1 losangeles angeles santamonica los la 7 0.021
2 taxi broadway empirestatebuilding brooklyn empire 38 0.01693
3 tx texas austin houston dallas 5 0.01691
4 chicago searstower bean illinois il 7 0.01679
5 vegas lasvegas las bellagio strip 10 0.01671
6 alberta calgary banff 3 0.01606
7 francisco sanfrancisco goldengatebridge goldengate berkeley 30 0.0158
8 pa philadelphia philly pennsylvania 4 0.0157
9 statueofliberty liberty newjersey jersey nj 13 0.0148

10 ski skiing snowboarding tahoe fdsflickrtoys 73 0.0138

10 randomly-chosen co-occurrence clusters
#

Tags in cluster tags
1 sea ocean beach boat island 41
2 coast waves sun shore pier 41
3 washington statue museum sculpture washingtondc 41
4 people model female face hair 43
5 vacation travel trip desert arizona 41
6 water canada winter sky nature 41
7 trees mountains mountain hiking hike 41
8 party wedding friends love dance 40
9 light city night bed sleep 39

10 geotagged us building architecture canon 41

10 randomly-chosen mutual info. clusters
#

Tags in cluster tags
1 rails rail railway train railroad 36
2 independenceday july4th fourthofjuly 4th weird 39
3 marriage rings groom love couple 38
4 plane jet aviation aircraft planes 38
5 furry sleepy pet kitten fur 38
6 jeans jacket socks shoes feet 39
7 furniture toilet sink seat couch 34
8 tide waves surf ocean wave 41
9 rockies rockymountains peak glacier summit 38

10 sail port harbor docks sailing 37

Figure 4.6: Comparison of clusters produced by different similarity metrics: temporal (top left),
geospatial (top right), and geo-temporal (center). Clusters judged to be temporally significant by
human judges are printed in blue boldface, while clusters judged to be geographically related are
printed in red boldface italics. Clusters are sorted in decreasing order of second moment. For com-
parison, also shown are clusters produced by co-occurrence (bottom left) and mutual information
(bottom right). For each cluster, up to 5 top ranked tags are displayed. Relevancy was judged by
users without visualizations being shown.

TEMPORAL CLUSTERS

Figure 4.5 shows visualizations of three of the clusters produced by the temporal similarity metric.

For each temporal cluster, we plot the cluster centroid as well as the distributions of the individ-

ual tags within the cluster, with each point representing the usage in the corresponding two-week

period. Figure 4.5(a) displays the cluster with a strong peak during spring. The thick black curve

cooresponds to the cluster centroid while the other curves correspond to the signals for individual

tags. This cluster is ranked 11th out of 50 clusters by second moment. Figure 4.5(b) visualizes a
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cluster with a shallow peak during the winter season. Most tags are related to winter vacations in

warm locales. This cluster is ranked 34th. The cluster in Figure 4.5(c) (ranked 48th by second mo-

ment) seems to correspond to family gatherings, with slight temporal peaks around Thanksgiving

and Christmas. There are also some year tags (e.g. “2008”, “2009”, etc.) which appear frequently

around New Year’s Day. Visualizations of all 50 temporal clusters are available at the website above.

We see that top ranked clusters of tags have sharp bursts in smaller time windows and lower ranked

clusters have more general seasonal patterns.

We also clustered the 7-dimensional day-of-week vectors and 24-dimensional hours-of-day vec-

tors. Due to space constraints we do not present detailed results, but instead mention a few inter-

esting findings. For day-of-week vectors, we are able to see weekday clusters such as “work office

desk students commute” and weekend clusters such as “live sushi gallery concert macys highschool

moma”. For hours-of-day clusters, we see clusters peak at different time of the day, such as a morn-

ing cluster, “early sunrise dawn morning,” and a nighttime cluster, “lightning concert longexposure

campfire nighttime nightphotography exposure live”.

GEO-TEMPORAL CLUSTERS

Tags within a motion cluster typically share either geospatial and temporal similiarites, or both.

Cluster “vegas lasvegas las bellagio strip paris casino nevada fountains flamingo” captures Las Ve-

gas and its hotels and casinos which has a counterpart in geographical clusters. It is ranked 5th out

of 50. Cluster “christmas holiday xmas holidays christmastree christmaslights december decora-

tions ornament decoration cookies gift santa fireplace” captures Christmas which has a counterpart

in temporal clusters and is ranked 31st. We observe that top ranked clusters are more likely to

have obvious geographic connections while the clusters having temporal patterns are ranked in the

middle. All the motion clusters can also be found at the website above.
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4.2.3 EVALUATION

We evaluated the idea of finding similar tags using geospatial and temporal features by comparing

the clustering results from our proposed methods with those of the co-occurrence based techniques.

Because it is difficult to define the quality of a tag cluster objectively, we involved humans in our

experiments to judge the geospatial and temporal relevance of the clusters we found. We then used

the human judgment as ground truth to compute the precisions and recalls when the task is to retrieve

semantically meaningful clusters in time and/or space by thresholding the average second moment

values. The goal of this evaluation was to test whether our techniques produce coherent tag clusters

that correspond to intuitive geospatial and temporal concepts, and how these clusters compare to

traditional techniques that use co-occurrence.

CLUSTERING BASED ON TAG CO-OCCURRENCES

As a baseline we used the method based on tag co-occurrence described in [7] to cluster the top

2000 tags into 50 clusters for a fair comparison. In particular, we constructed an undirected graph

of tags, weighted the edges between tags by metrics of their co-occurrences and removed weak

edges by thresholding the weights. We then applied a graph partitioning program, KMETIS [58],

to partition the graph into clusters. We tried two different methods to weight the edges, one by raw

co-occurrence counts and the other by mutual information (defined in Section 5.1.1). As a result,

we generated two sets of 50 clusters: co-occurrence clusters and mutual information clusters. For

each cluster, we ranked its tags by the numbers of edges inside the cluster: tags with more edges are

considered to be more representative.

GROUND TRUTH FROM HUMAN JUDGMENT

To conduct the human judgment study at a large scale, we used Amazon’s Mechanical Turk service,

asking users to judge the geospatial coherence and temporal coherence of clusters produced by
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the various similarity metrics that we propose. To improve the quality of the human judgment,

we required users to be in the United States (so that they would be familiar with North American

geography and cultural events) and have a good (>=95%) historical approval rate. For each cluster

discovered by our methods, we selected its ten top ranked tags to present to the user.

For each geospatial, motion, co-occurrence and mutual information cluster, we asked the users

to judge its geographical relevance among the following three options: “more than 50% of its tag

representatives represents a specific geographic area such as NYC”, “more than 50% of its tag

representatives represents an abstract geographic concept such as ocean,” or “not geographically

relevant.” Similarly, for each cluster we also asked the users to judge its temporal relevance accord-

ing to the scale: “more than 50% of its tag representatives represents a specific temporal event such

as Thanksgiving”, “more than 50% of its tag representatives represents a broad temporal indication

such as spring”, “not temporally relevant”. For both the geospatial and temporal relevance ques-

tions, if at least 80% of the users choose the first or second option for a cluster, we consider it to

be geospatially or temporally relevant respectively. We put the clusters in 16 batches of 25 clusters

per assignment and each batch was assigned to up to 20 Mechanical Turk users. On average, each

cluster was judged by 19.9 users. Users were shown only the top ten tags associated with each clus-

ter. We conducted two independent sets of experiments, one in which the 20 users were not shown

the visualization graphs described above, and another in which a separate group of 20 users were

shown the visualizations, to quantify how useful the visualizations might be in practice.

EVALUATION RESULTS AND A CASE STUDY

The evaluation found that geospatial and motion clustering were more effective in finding geograph-

ically relevant clusters than the other techniques: 29 (58%) of the geographical clusters were found

to be geographically relevant by the human judges, compared to 30 (60%) of motion clusters, 11

(22%) of the co-occurrence clusters, and 11 (22%) of the mutual information clusters. A case study
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(a) (b) (c)

Figure 4.7: Sample geographical clusters judged to be not geographically relevant with high average
second moment by users who were not shown the visualizations. The clusters correspond to (a) tags
related to San Diego, (b) tags related to cities and states, and (c) tags related to Northern California
Wine Country. Best viewed in color.

(a) (b) (c)

Figure 4.8: Sample temporal clusters judged to be not temporal relevant with high average second
moment by users who were not shown the visualizations. The clusters correspond to (a) tags related
to the Presidential election, (b) tags related to autumn, (c) tags related to Jan and Feb.

of some geo-temporal clusters judged not to be geo or temporally relevant showed the visualizations

gave hints to people and helped understand the not-so-obvious semantics behind the clusters. For

the geographical clusters, among the top 31 clusters ranked by average second moment, 28 were

judged to be geographically relevant. We examined the 3 clusters that were judged to be “not geo-

graphically relevant,” and even these appeared to have interesting geographical semantics that were

likely not obvious to the human judges. Visualizations for these 3 clusters are shown in Figure 4.7.

The cluster in Figure 4.7(a) has an obvious peak in San Diego. The terms “polarbear” and “border”

may not be immediately associated with San Diego, but in fact they refer to the San Diego Zoo’s

famous polar bears while the tag “border” refers to the Mexican border which is just a few miles

away. In Figure 4.7(b), most tags are state or city names. They are in one cluster as their geograph-

ical distributions are very concentrated resulting in very peaky geo vectors which are not far from
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each other as measured by Euclidean distances. In Figure 4.7(c), there is a peak in Northern Cali-

fornia and the tags are related to wine. Northern California is famous for its wine industry (Wine

Country). Some other lower ranked clusters judged to be “not geographically relevant” also show

some geographical signal, such as the cluster displayed in Figure 4.4(b), which highlights zoos and

airports.

Temporal clustering also found more temporally-relevant clusters than other techniques: 13

(26%) of the clusters produced by the temporal similarity metric were found to be temporally rele-

vant, versus 5 (10%) of motion clusters and only 1 (2%) of the co-occurrence clusters and 6 (12%)

of the mutual information clusters. We examined the temporal clusters judged not to be tempo-

rally relevant and found that some did have temporal patterns that were hard to observe when only

the text tags were presented to users. We present three such clusters in Figure 4.8. The cluster in

Figure 4.8(a) has bursts around important dates for the Presidential election. The cluster in Fig-

ure 4.8(b) has an autumn pattern and includes mostly insects and plants that are active or increasing

in autumn. Finally, the cluster in Figure 4.8(c) has a January and February pattern, with tags re-

lated to the Chinese New Year and the Super Bowl. Some other such examples can be found in

Figure 4.5(b) and Figure 4.5(c) which were also judged to be “not temporally relevant”.

In all of these cases, the visualizations of geographical and temporal clusters were helpful for

us to discover the hidden semantics behind the tag clusters and the results from the control group

where the users were presented with these visualizations verified the expected improved under-

standing of the semantics. The results only differed in a way that some of the clusters that were

previously judged to be “not geographically relevant” or “not temporally relevant” were judge to be

“geographically relevant” or “temporally relevant”. For geographical clusters, 2 more high-ranked

clusters (ranked 11 and 31 by second moment) mentioned above and visualized in Figure 4.7(a)

and Figure 4.7(c) were judged to be “geographically relevant”, which gave in total 62% of the 50

clusters judged to be “geographically relevant”. For temporal clusters, 6 more clusters (ranked in
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top 21) were judged to be “temporally relevant”, which gave in total 38% of the clusters judged to

be “temporally relevant” and 18 out the 22 top ranked clustered were “temporally relevant”. Clus-

ters displayed in Figures 4.8(a) and (b) and Figure 4.5(b) and (c) were examples of the 6 clusters.

Though the cluster in Figure 4.8(c) was still judged to be “not temporally relevant”, 65% of the

users judged it to be “temporally relevant”, comparing with the previous 40%. On average, for

each geographical cluster, 66.7% of the users judged it to be “geographically relevant”, comparing

with the previous 64.4%; for each temporal cluster, 56.9% of the users judged it to be “temporally

relevant”, comparing with the previous 49.7%.

Motion clustering found both geographically and temporally relevant clusters. However, no mo-

tion clusters were judged to be both geographically and temporally relevant. Mutual information

clustering and co-occurrence clustering found the same number of geographically relevant clusters,

but mutual information clustering found 5 more temporally relevant clusters. Using this measure-

ment, mutual information clustering performed better in finding temporally relevant clusters than

co-occurrence clustering.

A subset of the evaluation results are shown in more detail in Figure 4.6. The figure shows the

top 10 clusters produced by the geospatial, temporal, motion, co-occurrence, and mutual informa-

tion analyses, and indicates which of these clusters were found to be geographically or temporally

significant by the panel of human judges without visualizations being shown.

GEOGRAPHICALLY AND TEMPORALLY RELEVANT CLUSTER RETRIEVAL

We observed that the average second moment of the geospatial, temporal, and motion clusters ap-

pears to be a good indicator of whether a cluster will be judged to be geographically or temporally

relevant. We quantified this relevance by studying a retrieval problem, in which the task is to find

relevant clusters using different average second moment thresholds. Clusters are considered to be

retrieved if their average second moment is equal to or above a certain threshold. We can then sum-
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Figure 4.9: Precision-recall curves for retrieving geographically (left) and temporally (right) rele-
vant clusters.

marize the results in terms of standard precision and recall statistics. The precision and recall for

geographically relevant cluster retrieval is computed as:

precision =
|R ∩G|
|R|

recall =
|R ∩G|
|G|

(4.10)

where R is the set of retrieved clusters and G is the set of clusters judged to be geographically

relevant. The precision and recall for temporally relevant cluster retrieval are computed in a similar

way.

Figure 4.9(left) shows the precision-recall curves for retrieving geographically relevant clusters,

in which the average second moment threshold decreases from left to right on each curve. For

example, for geographical clusters in geographically relevant cluster retrieval, when the average

second moment threshold is 0.04, both the precision and recall are 93.1%. Motion clusters per-

formed slightly worse at high recalls. When geographical relevancy was judged by users shown the

visualizations for geographical clusters, the retrieval has the best performance. When the recall is

90.3%, the precision reaches 96.6%.

Figure 4.9(right) shows the precision-recall curves for retrieving temporally relevant clusters.

The precisions and recalls for temporal clusters are worse than geographically relevant cluster re-

trieval. When the average second moment threshold is 0.07, the precision is 71.4% and recall is
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76.9%. Motion clusters performed much worse, because (as we discussed above) for motion clus-

ters the average second moment does not have strong correlation with temporal relevance. In the

ground truth, only 5 clusters were judged to be temporally relevant and their average second moment

ranks ranged from 13 to 33. As future work, it would be interesting to study alternative statistics

other than second moment that may perform better for motion clusters. Similarly with the geo-

graphically relevant cluster retrieval, when relevancy was judged by users shown the visualizations,

the retrieval improves for temporal clusters. When the recall is 68.4%, the precision reaches 92.9%.

4.3 CONCLUSION

In this project, we proposed techniques to measure the semantic similarity of tags by comparing

geospatial, temporal, and geo-temporal patterns of use. We used these techniques on a large dataset

from Flickr to cluster tags using geo-temporal distributions and proposed novel methods to visualize

the resulting clusters. An evaluation and case study showed the overall high quality of the semantics

mined by our approach, and that the second moment served as a simple filtering measurement that

achieved promising performance in selecting geographically- and temporally-relevant clusters. A

case study suggests that our visualizations of tag semantics can help people understand subtle geo-

temporal relationships between tags. These show that the geo-temporal connections between tags

reveal the connections between real world concepts.

There are many possible improvements and future directions for this research. Currently, we

are using only North American data and clustering the top 2000 most used tags into 50 clusters. It

would be interesting to apply our approach within a more flexible framework, deciding the number

of tags and the number of clusters in an automatic way. As suggested in Section 3.1, bin sizes affect

the geospatial distributions being captured. One extreme example is that New York City and Los

Angeles both fall into the North America bin at a continental granularity while they are in different

bins at a state granularity. The hierarchical binning described in Section 3.1 allows flexible bin
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sizes as well as hierarchical and efficient indexing of the bins. We believe it can address the bin size

issue. Besides, it would also be interesting to build a tag recommendation system that integrates our

techniques, using multiple kinds of tag similarity metrics to improve results and give corresponding

visualizations to the user. Finally, our approach could be applied to other collections of objects with

geographical and temporal attributes, such as data from Wikipedia or Twitter.
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CHAPTER 5

REAL WORLD PHENOMENON DETECTION

As discussed in Chapter 1, latent in user-sensed datasets are observations of the world. This was

further demonstrated in Chapter 4, where the latent helped us reveal connections between real world

concepts and show that the virtual world reflects the real world. Aggregating these observations

across millions of social sharing users could lead to new techniques for large-scale monitoring of the

state of the world and how it is changing over time. However, the estimation techniques sometimes

cannot be well evaluated without large-scale fine grained ground truth data. We want to design new

techniques for monitoring the world which can also be well evaluated.

In this project we step towards that goal, showing that by analyzing the tags and image features

of geo-tagged, time-stamped photos we can measure and quantify the occurrence of ecological

phenomena including ground snow cover, snow fall and vegetation density as motivated in Sec-

tion 1.4.2. We compare several techniques for dealing with the large degree of noise in the dataset,

and show how machine learning can be used to reduce errors caused by misleading tags and am-

biguous visual content. We evaluate the accuracy of these techniques by comparing to ground truth

data collected both by surface stations and by Earthobserving satellites. Besides the immediate

application to ecology, our study gives insight into how to accurately crowd-source other types of

information from large, noisy social sharing datasets.

65



5.1 OUR APPROACH

We use a sample of nearly 150 million geo-tagged, timestamped Flickr photos as our source of

user-contributed observational data about the world. We collected this data using the public Flickr

API, by repeatedly searching for photos within random time periods and geospatial regions, until

the entire globe and all days between January 1, 2007 and December 31, 2010 had been covered.

We applied filters to remove blatantly inaccurate metadata, in particular removing photos with geo-

tag precision less than about city-scale (as reported by Flickr), and photos whose upload timestamp

is the same as the EXIF camera timestamp (which usually means that the camera timestamp was

missing). Other information about this data can be found in Section 1.3.

For ground truth we use large-scale data originating from two independent sources: ground-

based weather stations, and aerial observations from satellites. For the ground-based observa-

tions, we use publicly-available daily snowfall and snow depth observations from the U.S. National

Oceanic and Atmospheric Administration (NOAA) Global Climate Observing System Surface Net-

work (GSN) [1]. This data provides highly accurate daily data, but only at sites that have surface

observing stations. For denser, more global coverage, we also use data from the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) instrument aboard NASA’s Terra satellite. The satellite

is in a polar orbit so that it scans the entire surface of the earth every day. The MODIS instrument

measures spectral emissions at various wavelengths, and then post-processing uses these measure-

ments to estimate ground cover. In this project we use two datasets: the daily snow cover maps [46]

and the two-week vegetation averages [66]. Both of these sets of data including an estimate of the

percentage of snow or vegetation ground cover at each point on earth, along with a quality score

indicating the confidence in the estimate. Low confidence is caused primarily by cloud cover (which

changes the spectral emissions and prevents accurate ground cover from being estimated), but also

by technical problems with the satellite. As an example, Figure 1.2 shows raw satellite snow data

from one particular day.
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5.1.1 ESTIMATION TECHNIQUES

Our goal is to estimate the presence or absence of a given ecological phenomenon (like a species of

plant or flower, or a meteorological feature like snow) on a given day and at a given place, using only

the geo-tagged, time-stamped photos from Flickr. One way of viewing this problem is that every

time a user takes a photo of a phenomenon of interest, they are casting a “vote” that the phenomenon

actually occurred in a given geospatial region. We could simply look for tags indicating the presence

of a feature – i.e. count the number of photos with the tag “snow” – but as discussed in Section 1.2,

sources of noise and bias make this task challenging, including:

— Sparse sampling: The geospatial distribution of photos is highly non-uniform. A lack of

photos of a phenomenon in a region does not necessarily mean that it was not there.

— Observer bias: Social media users are younger and wealthier than average, and most live in

North America and Europe.

— Incorrect, incomplete and misleading tags: Photographers may use incorrect or ambiguous

tags — e.g. the tag “snow” may refer to a snowy owl or interference on a TV screen.

— Measurement errors: Geo-tags and timestamps are often incorrect (e.g. because people forget

to set their camera clocks).

A statistical test. As described in Section 3.4, we apply the simple probabilistic model as well as

the statistical test derived from it which can deal with some such sources of noise and bias. We

adapt the general model and use the particular case of snow here. Any given photo either contains

evidence of snow (event s) or does not contain evidence of snow (event s̄). We assume that a given

photo taken at a time and place with snow has a fixed probability P (s|snow) of containing evidence

of snow; this probability is less than 1.0 because many photos are taken indoors, and outdoor photos

might be composed in such a way that no snow is visible. We also assume that photos taken at a

time and place without snow have some non-zero probability P (s|snow) of containing evidence of

snow; this incorporates various scenarios including incorrect timestamps or geo-tags and misleading
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visual evidence (e.g. man-made snow).

Here m is the number of snow photos (event s) and n is the number of non-snow photos (event

s̄) taken at a place and time of interest. With the deriving steps detailed in Section 3.4, we have the

ratio that can be thought of as a measure of the confidence that a given time and place actually had

snow, given photos from Flickr:

P (snow|sm, s̄n)

P (snow|sm, s̄n)
=

P (snow)

P (snow)

(
p

q

)m(1− p
1− q

)n

. (5.1)

A simple way of classifying a photo into a positive event s or a negative event s̄ is to use text tags.

We identify a hand-selected set S of tags related to a phenomenon of interest. Any photo tagged

with at least one tag in S is declared to be a positive event s, and otherwise it is considered a negative

event s̄. For the snow detection task, we use the set S={snow, snowy, snowing, snowstorm}, which

we selected by hand.

The above derivation assumes that photos are taken independently of one another, which is

generally not true in reality. One particular source of dependency is that photos from the same user

are highly correlated with one another. To mitigate this problem, instead of counting m and n as

numbers of photos, we instead let m be the number of photographers having at least one photo with

evidence of snow, while n is the numbers of photographers who did not upload any photos with

evidence of snow.

The probability parameters in the likelihood ratio of equation (5.1) can be directly estimated

from training data and ground truth. For example, for the snow cover results presented in Sec-

tion 5.2, the learned parameters are: p = p(s|snow) = 17.12%, q = p(s|snow) = 0.14%. In other

words, almost 1 of 5 people at a snowy place take a photo containing snow, whereas about 1 in 700

people take a photo containing evidence of snow at a non-snowy place.

Figure 1.2 shows a visualization of the likelihood ratio values for the U.S. on one particular

day using this simple technique with S={snow, snowy, snowing, snowstorm}. High likelihood ratio
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values are plotted in green, indicating a high confidence of snow in a geospatial bin, while low

values are shown in blue and indicate high confidence of no snow. Black areas indicate a likelihood

ratio near 1, showing little conference either way, and grey areas lack data entirely (having no Flickr

photos in that bin on that day).

5.1.2 LEARNING FEATURES AUTOMATICALLY

The confidence score in the last section has a number of limitations, including requiring that a set

of tags related to the phenomenon of interest be selected by hand. Moreover, it makes no attempt to

incorporate visual evidence or negative textual evidence — e.g., that a photo tagged “snowy owl”

probably contains a bird and no actual snow. We use machine learning techniques to address these

weaknesses, both to automatically identify specific tags and tag combinations that are correlated

with the presence of a phenomenon of interest, and to incorporate visual evidence into the prediction

techniques.

Learning tags. We consider two learning paradigms. The first is to produce a single exemplar

for each bin in time and space consisting of the set of all tags used by all users. For each of

these exemplars, the NASA and/or NOAA ground truth data gives a label (snow or non-snow). We

then use standard machine learning algorithms like Support Vector Machines and decision trees to

identify the most discriminative tags and tag combinations. In the second paradigm, our goal instead

is to classify individual photos as containing snow or not, and then use these classifier outputs to

compute the number of positive and non-positive photos in each bin (i.e., to compute m and n in

the likelihood ratio described in the last section).

Learning visual features. We also wish to incorporate visual evidence from the photos themselves.

There is decades of work in the computer vision community on object and scene classification

(see [107] for a recent survey), although most of that work has not considered the large, noisy photo

collections we work with here. We tried a number of approaches, and found that a classifier using a
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simplified version of GIST augmented with color features [48, 108] gave a good trade-off between

accuracy and tractability.

Given an image I , we partition the image into a 4 × 4 grid of 16 equally-sized rectangular

regions. In each region we compute the average pixel values in each of the red, green, and blue

color planes, and then convert this color triple from sRGB space to the CIELAB color space [51].

CIELAB has a number of advantages, including separating greyscale intensity from the color chan-

nels and having greater perceptual uniformity (so that Euclidean distances between two CIELAB

color triples are approximately proportional to the human perception of difference between the col-

ors). For each region R we also compute the total gradient energy E(R) within the grayscale plane

Ig of the image,

E(R) =
∑

(x,y)∈R

||∇Ig(x, y)|| (5.2)

=
∑

(x,y)∈R

√
Ix(x, y)2 + Iy(x, y)2, (5.3)

where Ix(x, y) and Iy(x, y) are the partial derivatives in the x and y directions evaluated at point

(x, y), approximated as,

Ix(x, y) = Ig(x+ 1, y)− Ig(x− 1, y), (5.4)

Iy(x, y) = Ig(x, y + 1)− Ig(x, y − 1). (5.5)

For each image we concatenate the gradient energy in each of the 16 bins, followed by the 48 color

features (average L, a, and b values for each of the 16 bins), to produce a 64-dimensional feature

vector. We then learn a Support Vector Machine (SVM) classifier from a labeled training image set.
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5.2 EXPERIMENTS AND RESULTS

We now turn to presenting experimental results for estimating the geo-temporal distributions of two

ecological phenomena: snow and vegetation cover. In addition to the likelihood ratio-based score

described in Section 5.2 and machine learning approaches, we also compare to two simpler tech-

niques: voting, in which we simply count the number of users that use one of a set S of tags related

to the phenomenon of interest at a given time and place, and percentage, in which we calculate the

ratio of users that use one of the tags in S over the total number of users who took a photo in that

place on that day.

5.2.1 SNOW PREDICTION IN CITIES

We first test how well the Flickr data can predict snowfall at a local level, and in particular for cities

in which high-quality surface-based snowfall observations exist and for which photo density is high.

We choose 4 U.S. metropolitan areas, New York City, Boston, Chicago and Philadelphia, and try

to predict both daily snow presence as well as the quantity of snowfall. For each city, we define

a corresponding geospatial bounding box and select the NOAA ground observation stations in that

area. For example, Figure 5.1 shows the the stations and the bounding box for New York City. We

calculate the ground truth daily snow quantity for a city as the average of the valid snowfall values

from its stations. We call any day with a non-zero snowfall or snowcover to be a snow day, and any

other day to be a non-snow day. Figure 5.1 also presents some basic statistics for these 4 cities. All

of our experiments involve 4 years (1461 days) of data from January 2007 through December 2010;

we reserve the first two years for training and validation, and the second two years for testing.

Daily snow classification for 4 cities. Figure 5.2(a) presents ROC curves for this daily snow versus

non-snow classification task on New York City. The figure compares the likelihood ratio confi-

dence score from equation (5.1) to the baseline approaches (voting and percentage), using the tag

set S={snow, snowy, snowing, snowstorm}. The area under the ROC curve (AUC) statistics are
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NYC Chicago Boston Philadelphia
Mean active Flickr users / day 65.6 94.9 59.7 43.7
Approx. city area (km2) 3,712 11,584 11,456 9,472
User density (avg users/unit area) 112.4 52.5 33.5 29.6
Mean daily snow (inches) 0.28 0.82 0.70 0.35
Snow days (snow¿0 inches) 185 418 373 280
Number of obs. stations 14 20 41 26

Figure 5.1: Top: New York City geospatial bounding box used to select Flickr photos, and locations
of NOAA observation stations. Bottom: Statistics about spatial area, photo density, and ground
truth for each of the 4 cities.

0.929, 0.905, and 0.903 for confidence, percentage, and voting, respectively, and the improvement

of the confidence method is statistically significant with p = 0.0713 according to the statistical

test of [111]. The confidence method also outperforms other methods for the other three cities (not

shown due to space constraints). ROC curves for all 4 cities using the likelihood scores are shown

in Figure 5.2(b). Chicago has the best performance and Philadelphia has the worst; a possible ex-

planation is that Chicago has the most active Flickr users per day (94.9) while Philadelphia has the

least (43.7).

These methods based on presence or absence of tags are simple and very fast, but they have

a number of disadvantages, including that the tag set must be manually chosen and that negative

correlations between tags and phenomena are not considered. We thus tried training a classifier

to learn these relationships automatically. For each day in each city, we produce a single binary

feature vector indicating whether or not a given tag was used on that day. We also tried a feature

selection step by computing information gain and rejecting features below a threshold, as well as

adding the likelihood score from equation (5.1) as an additional feature. For all experiments we used

feature vectors from 2007 and 2008 for training and tested on data from 2009 and 2010, and used

a LibLinear classifier with L2-regularized logistic regression [35]. Table 5.1 presents the results,
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(a) (b) (c) (d)

Figure 5.2: ROC curves for binary snow predictions: (a) ROC curves for New York City, comparing
likelihood ratio confidence score to voting and percentage approaches, (b) ROC curves for 4 cities
using the likelihood scores, (c) ROC curves from SVM classifiers with different features for New
York City, and (d) ROC curves for 4 cities using the logistic regression (LibLinear) classifier with
tags, information gain and confidence features. (Best viewed in color.)

showing that information gain (IG) and confidence scores (Conf) improve the results for all cities,

and that the classifier built with both IG and Conf generally outperforms other classifiers, except

for Boston. Figure 5.2(c) shows ROC curves from different classifiers for NYC and Figure 5.2(d)

compares ROC curves for the 4 cities using the classifier using both feature selection and confidence.

Note that the machine learning-based techniques substantially outperform the simple likelihood

ratio approach (compare Figures 5.2(b) and (d)).

Table 5.1: Daily snow classification results for a 2 year period (2009-2010) for four major
metropolitan areas.

Features Accuracy Precision Recall F-Measure Baseline
NYC

Tags 0.859 0.851 0.859 0.805 0.85
Tags+Conf. 0.926 0.927 0.926 0.917 0.85

Tags+IG 0.91 0.906 0.91 0.898 0.85
Tags+IG+Conf. 0.93 0.93 0.93 0.923 0.85

Boston
Tags 0.899 0.897 0.899 0.894 0.756

Tags+Conf. 0.93 0.929 0.93 0.929 0.756
Tags+IG 0.91 0.911 0.91 0.91 0.756

Tags+IG+Conf. 0.923 0.923 0.923 0.923 0.756
Chicago

Tags 0.937 0.938 0.937 0.935 0.728
Tags+Conf. 0.949 0.952 0.949 0.948 0.728

Tags+IG 0.938 0.938 0.938 0.938 0.728
Tags+IG+Conf. 0.953 0.954 0.953 0.953 0.728

Philadelphia
Tags 0.849 0.851 0.849 0.815 0.805

Tags+Conf. 0.912 0.917 0.912 0.903 0.805
Tags+IG 0.903 0.899 0.903 0.897 0.805

Tags+IG+Conf. 0.927 0.926 0.927 0.924 0.805
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Figure 5.3: Time series of actual daily snow (left) and score estimated from Flickr (right) for New
York City, 2007-2010.

Predicting snow quantities. In addition to predicting simple presence or absence of a phenomenon,

it may be possible to predict the degree or quantity of that phenomenon. Here we try one particular

approach, using our observation that the numerical likelihood score of equation (5.1) is somewhat

correlated with depth of snow (R2=0.2972) — i.e., that people take more photos of more severe

storms (see Figure 5.3).

Because snow cover is temporally correlated, we fit a multiple linear regression model in which

the confidence scores of the last several days are incorporated. The prediction on day t is then given

by, 
∑T

i=0 αi log(conft−i) + β if conft ≥ 1

0 otherwise

(5.6)

where conft represents the likelihood ratio from equation (5.1) on day t, T is the size of the temporal

window, and the α and β parameters are learned from the training data. We found that increasing the

spatial threshold T generally improves performance on the 4 cities, but that no additional improve-

ment occurred with T > 3. We can measure the error of our predictions with the root-mean-squared

error between the time series of our predictions and the actual snow data (following [53]). We

achieve an RMS error of between about 1 and 1.5 inches across the 4 cities; Philadelphia has the

largest error (1.44), followed by Boston (1.26), New York (1.15), and Chicago (1.06). As an ex-

ample, Figure 5.4 presents a visual comparison of the prediction time series versus the actual snow

74



Figure 5.4: Actual daily amount of snow compared to prediction, for Chicago and T = 3. Predicted
values are shown as red dots, and actual values are vertical lines.

time series for Chicago.

An alternative way of evaluating the snow quantity estimates is to view it as a multi-way classi-

fication tasks. We follow an existing snowfall impact scale [103] and quantize daily snow quantity

into 7 buckets: no snow, 0-1 inches, 1-4 inches, 4-10 inches, 10-20 inches, 20-30 inches, or more

than 30 inches. We then build a classification model to predict the snow ranges for the four cities

using number of snow users. We also include the numbers of snow users from the previous three

days as extra features. We use Naive Bayesian classifier [54] (which performed best on this task).

These multi-way classification results are better than a majority class baseline, with 7-way correct

classification rates at 87.5% for Philadelphia, 87.9% for New York, 84.0% for Boston, and 83.7%

for Chicago (versus baselines of 80.5%, 85.1%, 75.6%, and 72.9%, respectively).

5.2.2 CONTINENTAL-SCALE SNOW PREDICTION

Predicting snow for individual cities is of limited practical use because accurate meteorological

data already exists for these highly populated areas. In this section we ask whether phenomena

can be monitored at a continental scale, a task for which existing data sources are less complete

and accurate. We use the photo data and ground truth described in Section 5.2, although for the

experiments presented here we restrict our dataset to North America (which we defined to be a

rectangular region spanning from 10 degrees north, -130 degrees west to 70 degrees north, -50

75



degrees west). (We did this because Flickr is a dominant photo-sharing site in North America,

while other regions have other popular sites — e.g. Fotolog in Latin America and Renren in China.)

The spatial resolution of the NASA satellite ground truth datasets is 0.05 degrees latitude by

0.05 degrees longitude, or about 5 × 5km2 at the equator. (Note that the surface area of these bins

is non-uniform because lines of longitude get closer together near the poles.) However, because

the number of photos uploaded to Flickr on any particular day and at any given spatial location

is relatively low, and because of imprecision in Flickr geo-tags, we produce estimates at a coarser

resolution of 1 degree square as suggested in Section 3.1, or roughly 100 × 100km2. To make

the NASA maps comparable, we downsample them to this same resolution by averaging the high

confidence observations within the coarser bin. We then threshold the confidence and snow cover

percentages to annotate each bin with one of three ground truth labels:

— Snow bin, if confidence is above 90 and coverage above 80,

— Non-snow bin, if confidence is above 90 and coverage is 0,

— Unknown bin, otherwise.

Our goal is to predict whether or not each geospatial bin had snowcover on each day, given the

photos from Flickr.

Retrieving snow or non-snow bins. In many real applications, ecologists would be satisfied in

finding bins for which the phenomenon is present, rather than actually classifying all bins. It is

thus useful to view this problem as a retrieval task, in which the goal is to identify bins likely to

contain the phenomenon, or likely not to contain it. We thus turn to evaluating the performance of

our estimation techniques using precision-recall curves with the same notations as in equation 4.10,

precision = |R∩G|
|R| recall = |R∩G|

|G| ,

where R is the set of retrieved bins and G is the set of correct bins according to the ground truth.

Precision-recall curves are also easier to interpret in situations where the classification baselines are
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(a) (b) (c)

Figure 5.5: Precision and recall curves for retrieving snow (top) and non-snow (bottom) instances,
where an instance is a single geospatial bin on a single day, using different techniques: (a) compar-
ing the voting, percentage, and statistical confidence estimation techniques, (b) comparing different
temporal smoothing strategies, (c) using classifiers to reject falsely-tagged snow images using visual
and textual features.

so high, as in our case.

Figure 5.5(a) shows precision-recall curves for retrieving bins and days containing snow (top)

and those not containing snow (bottom). In total, these curves involve classifying 701,280 exemplars

(each of which is a single geospatial bin on a single day), of which 11.0% have ground truth. 82.2%

of the bins with ground truth are no-snow bins, while snow bins account for 17.8%. We observe

that the confidence method performs significantly better than the other two methods for retrieving

snow bins, achieving about 98% precision at 0.2% recall, and about 80% precision at 1% recall. For

retrieving non-snow bins the three techniques are almost the same, and all three perform better than

the random baseline.

While the precisions in these curves are high, the recall values are alarming low. The main

reason for this is that large areas of North America, particularly most of Canada and Alaska, have
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sparse populations resulting in a very limited number of photos uploaded in these areas. We showed

in the last section that accurate snow estimates can be inferred for highly populated cities; the

low recalls here are because of low photographic density in much of the continent. Restricting to

specific subsets significantly increases the density of observations: for example, the average number

of photos per bin over our four years of data is nearly ten times larger for the northeast US compared

to all of North America (70,398 vs 8,134). The performance is significantly better in these more

densely populated areas; for example, in the Northeast US the precision is 96.3% at a recall of

19.5% for snow retrieval, and 99.9% precision at 9.1% recall for non-snow retrieval. Moreover,

recall would naturally improve as our dataset grows; our sample of 150 million images is less than

3% of the photos on Flickr, and thus the recall would improve significantly if we had access to the

entire dataset.

Temporal smoothing. For many phenomena (including snow), the existence of an event on one day

is strongly correlated with its existence on the next day. Thus one way of addressing the sparsity of

Flickr photos in some locations is to propagate evidence forward and backward in time. To do this,

we apply a Gaussian filter on the Flickr confidence values for each bin in an attempt to achieve better

recalls. We vary the degree of smoothing by using Gaussians with different variance values. We

tried smoothing with many different parameters, including smoothing both forward and backwards

in time, or in only one direction. Figure 5.5(b) shows curves for several of the best combinations

that we found, including the raw confidence score (blue X’s), 3 days before and after with variance

1.0 (brown triangles), 2 days before with variance 0.5 (red squares), 3 days before with variance

1.0 (blue circles), 5 days before with variance 5.0 (purple stars), and 3 days after with variance

1.0 (yellow +’s). We find that temporal smoothing three days before and after with variance 1.0

significantly improves performance for both snow and non-snow retrieval, increasing snow retrieval

precision by about 7 percentage points at 1% recall.

Voting. Voting performs worse than the statistical confidence given by the Bayesian likelihood

78



Figure 5.6: Precision vs number of votes for snow predictions using the voting method.

ratio, but it is an interesting technique to study in more detail because of its simplicity. Voting

simply counts the number of users who have annotated at least one photo in a given bin and day

with a snow-related tag. Figure 5.6 plots precision versus the number of votes for snow retrieval.

The shape of these curve illustrates why crowd-sourced observations of the world can be reliable,

if enough people are involved: as the number of votes for snow increases, it becomes progressively

less likely that these independent observations are coincidental, and more likely that they are caused

by the presence or absence of an actual phenomenon. It is interesting to notice that when there are 7

or more snow voters, snow prediction precision becomes 100%, while the same is true for non-snow

prediction when the number of non-snow voters reaches 33 if there are no snow voters in the bin.

Case study of false positives. To understand the failure modes of estimating attributes about the

world from Flickr photos, we performed a case study of false positives — bins and days in which

our Flickr mining predicted the presence of snow, but the NASA ground truth indicated that there

was no snow cover. In particular, we studied snow false positives at the operating point at which

the likelihood ratio method gives a precision of 74.1% and a recall of 1.2% (i.e. when the threshold

is 4). At this operating point, 34,323 total predictions are made (each corresponding to a single

geospatial bin on a single day), 2,208 of which have valid ground truth. Of these 2,208 bins, 1,636
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Table 5.2: Taxonomy of manually-labeled false-positive photos (which have at least one snow-
related tag despite being taken at a snowless time and place according to the ground truth).

Class Description # Photos Percentage
little or distant photos with trace amount of snow or snow in the distance 585 33.0%
man made photos with snow made by humans, (e.g. at a ski slope) 152 8.6%
no snow photos without snow 737 41.5%
snow photos with significant snow 279 15.7%
not sure other photos 21 1.2%

(74.1%) are correctly classified, while the 572 false positive bins have a total of 1,855 photos tagged

with one of the snow terms (despite the fact that they were taken at places and times in which the

NASA satellite did not record snow). We manually examined these 1,855 false positive photos and

classified them into 5 different classes according to their visual content, as shown in Table 5.2.

Nearly 60% of these photos do actually appear to contain some snow; of these, 33% either show

trace amount of snow or snow in the distance (usually on a distant mountain peak), and 8.6% have

man-made snow that would not show up on the NASA maps (like in a zoo or ski slope), while only

about 16% include a significant amount of natural snow. About 40% of the photos tagged with a

snow-related term do not appear to contain any snow at all; these are caused by mis-tagged images

or snow-related tags that are used to describe something else (like the interference on a TV screen).

Figure 5.7 shows some sample false positives from each class.

(a) (b) (c) (d)

Figure 5.7: Sample photos that were not taken at a place and time with snow according to the
ground truth, but that were uploaded with a snow-related tag: (a) photo with trace amounts of snow,
(b) photo with distant snow, (c) photo with man made snow, and (d) photo with no snow (but with a
“snowy egret”).

For images that seem to contain natural snow, there are several possible explanations for why the

ground truth does not indicate snow cover at that time and place. One is that the satellite passes over
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at an unknown time of day, so it is possible that snowfall occurred after the satellite’s observation

was taken. Another cause are photos with incorrect time stamps or geo-locations; we assume that

such errors occur frequently, although it is hard to quantify the frequency just by looking at the

photos. Other photos clearly contain snow, but the amount is so little that it might not be visible

from the satellite (e.g. Figure 5.7(a)), or the snow is so far in the distance that it is in a different

geospatial bin (e.g. Figure 5.7(b)).

There are some cases where the Flickr evidence for snow is overwhelming, but the NASA

ground truth does not indicate snow. This could be caused by the timing issue described above, or

by satellite resolution and confidence issues. For example, on February 21, 2008, 5 Flickr users

reported snowfall in New York. This bin is marked as a no-snow bin in the ground truth because the

vast majority of it has zero snow coverage according to the satellite, but there is a small area within

the bin that has low confidence (due to cloud cover) and probably corresponds to a snow squall.

Machine learning for tag selection. Many of the above error modes can be addressed by training

classifiers on textual tag and visual images features. As discussed in Section 5.1.1, we are interested

in two learning paradigms: the first is to learn combinations of tags that classify geospatial bins well

according to the NASA ground truth, while the second task is to reduce false positives by rejecting

photos that are tagged with a snow term but do not actually contain snow.

In the first task, we want to learn to classify whether a given bin contains snow on a given day,

based on a binary feature vector encoding the set of tags used by all users in that bin on that day.

We tried four different classifiers to address this problem: REPTree, a fast decision tree learner

which builds a decision tree using information gain and variance and prunes it using reduced-error

pruning [47], Support Vector Machines (SVMs) [16], Discriminative Multinomial Naive Bayes

(DMNB) [104] and LibLinear classifier with L2-regularized logistic regression [35]. To reduce the

large number of features (a total of 404324 tags), we compute information gain and keep all features

(13442 tags) with information gain greater than zero. Figure 5.8 presents ROC curves for this task,
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Figure 5.8: ROC curves for classifying whether a geo-bin has snow on a given day, comparing the
LibLinear classifier with various tag features to the confidence method using hand-selected tags.

showing that the learned classifier outperforms the likelihood ratio from equation (5.1), and that

feature selection with information gain and using the confidence ratio as an additional feature all

improve performance.

Next we try the second learning paradigm, in which our goal is to examine photos that have

a snow-related tag, and use the other tags as well as visual features to decide whether or not they

actually contain snow. For example, the classifier might learn that a photo with “snowy” should

be discarded if it also contains the tag “egret,” since that photo is likely of a bird and not of actual

snow. For training these classifiers, we had a human judge evaluate 1,855 images and to annotate

them as to whether or not they actually contain evidence of snow.

We used decision trees for this task because it is easy to understand and interpret what features

the classifier is using. In initial experimentation, we found that many of the most discriminative

features were place names, like “sandiego” or “canada.” These geographic tags are understandably

strongly correlated with snowfall, but we would like our classifier to base its decisions on the content

of an image (because, for example, climate change might cause snowfall in San Diego some day,

and we would like our classifier to be able to detect this). To avoid selecting these tags, we first

divide North America into four regions (northeast, northwest, southeast, southwest) and get the
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Figure 5.9: ROC curve for classifying whether photos contain snow, using decision trees with var-
ious features: AllTags includes all tags, IntersTags excludes tags corresponding to specific geo-
graphic areas, and AllTags+Time and IntersTags+Time include the month of the year as an addi-
tional feature.

intersection of the sets of tags used in these four regions. We then use only this set of intersected

tags (“IntersTags”) for building the decision tree. Besides tags, we also tried including the photo’s

timestamp month as an additional feature.

ROC curves are presented in Figure 5.9. We see that the time feature helps in improve the

results, as does using all tags instead of just the spatially-intersected ones. The baseline (majority

class) is 86.3%. It is interesting to examine the top few levels of the trained decision tree, to get

a sense for which tags are most discriminative. The top decision node is “summer:” if this tag is

present, then the photo is classified as not snow. If summer is not present, then the next few layers

look at tags like “mountain,” “clouds,” “ski,” “geese,” and “egret.”

Machine learning to suppress false positives. Finally, we consider using the photo classifier as a

filter while computing the likelihood ratios of Section 5.1.1, in order to reject photos that are marked

with a snow tag but do not contain snow, using both visual and textual features. For the textual

features, we use the decision tree classifier just described. For visual features, we trained an SVM

using the GIST-like visual features described in Section 5.1.1, on the same hand-labeled dataset of

about 2,000 images explained above. As with all other experiments, the training and testing sets
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were kept separate by training on data from 2007-2008 and testing on data from 2009-2010. For the

photos in these latter two years, we use our decision tree to try to filter out false positives (photos

tagged “snow” but not containing snow), and then re-compute the likelihood ratio confidence score.

We find that using a classifier to reject false positives based on tags increased precision by nearly

10 percentage points, as shown in Figure 5.5(f): at 1% recall, precision increased from about 84%

to to about 93% for snow retrieval. For the visual features, we find a significant but more modest

improvement, from about 84% to 86% at this level of recall.

5.2.3 ESTIMATING VEGETATION COVER

Another important measure of the ecological state of the planet is vegetation cover. We perform

greenery versus no greenery predictions similarly to snow and no snow predictions using the Flickr

confidence threshold method discussed in Section 5.1.1. As with snow, the ground truth is obtained

from down-sampling and thresholding the NASA MODIS greenery data which has the same res-

olution as the snow cover data with similar coverage and quality (confidence) values. The Flickr

greenery confidence values of bins are obtained in a similar way as with snow, except that we use

a different set of target tags, including “tree,” “trees,” “leaf,” “leaves”, and “grass.” One important

difference between the NASA greenery and snow datasets is that the greenery data is an average

of daily observations spanning 16 days. Thus our goal is to predict the geospatial distribution of

greenery for each 16-day period of the year.

We require a bin to have no less than 50% greenery coverage and above middle quality to be

considered as a ground truth bin. We report experiments using two different definitions of non-green

bins: those having less than 1% coverage, and those having less than 5% coverage. For the 50%

and 1% threshold combination, 25.6% of the bins with ground truth are greenery bins, while for

the 50% and 5% threshold combination, 15.8% of the bin with ground truth are greenery bins. As

shown in Figure 5.10, both curves outperform a random baseline for greenery prediction, but the
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Figure 5.10: Greenery precision-recall curves using two different ground truth thresholds.

Figure 5.11: ROC curve for classifying greenery of bins, using tag features and LibLinear classifier.

estimates are not as accurate as those observed during in snow predictions. There seem to be several

reasons for this drop in performance. One is that the boundary between greenery and no greenery

seems more vague than the snow/no-snow boundary. Moreover, the greenery ground truth data has

a much coarser temporal resolution (16 days). Finally, it’s less clear which tags should be used to

estimate greenery; using color analysis of the visual content of images may be a better approach,

which we leave for future work. We also tried a learned classifier to predict greenery/non-greenery

bins based on the set of tags used by all users in each bin and on each day. We used the LibLinear

classifier [35] because it performed well in case of snow classification. Figure 5.11 presents the

ROC curve for this classification task, showing an equal-error rate of about 91.6%.
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5.3 CONCLUSION AND FUTURE WORK

In this project, we propose using the massive collections of user-generated photos uploaded to so-

cial sharing websites as a source of observational evidence about the world, and in particular as

a way of estimating the presence of ecological phenomena. As a first step towards this long-term

goal, we used a collection of 150 million geo-tagged, timestamped photos from Flickr to estimate

snow cover and greenery, and compared these estimates to fine-grained ground truth collected by

earth-observing satellites and ground stations. We compared several techniques for performing the

estimation from noisy, biased data, including simple voting mechanisms and a Bayesian likelihood

ratio. We also tested several possible improvements to these basic methods, including using tem-

poral smoothing and machine learning to improve the accuracy of estimates. We found that while

the recall is relatively low due to the sparsity of photos on any given day, the precision can be quite

high, suggesting that mining from photo sharing websites could be a reliable source of observational

data for ecological and other scientific research. In future work, we plan to study additional features

including using more sophisticated computer vision techniques to analyze visual content. Also we

plan to study a variety of other ecological phenomena, including those for which high quality ground

truth is not available, such as migration patterns of wildlife and the distributions of blooming flow-

ers. To solve or partially solve the data sparsity problem, we plan to incorporate data from multiple

sources including: (1) other social media platforms such as Twitter, Instagram and Facebook, (2)

surveillance camera datasets collected by researchers, such as the Archive of Many Outdoor Scenes

(AMOS) dataset [52]. The former source provides data with comparable attributes to the Flickr

dataset and may naturally contributes to a denser dataset. For example, tweets have timestamps and

sometimes geolocations. Besides the textual content from which we can extract keywords or even

obtain the keyword hashtag directly, for some tweets the images are also available. However, this

may not solve the whole problem, as these platforms may also have biased user distributions. The

latter source, which consists of web cameras located around the world may help fill in the gap in the
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data from social media platforms. As most of these cameras are stable, they provide observations

of fixed locations over time as opposed to photos from social media users that come and go. This

consistency may help us get coherent estimates for these locations.
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CHAPTER 6

MODELING MOBILE USERS

We studied the physical world in the last two chapters, by addressing two representative prob-

lems. We now study the human world as it is the users that generates all these user-sensed datasets

and it is natural to try to understand the users and even benefit them. Many of these users are

from mobile devices [36, 109] and we choose to study mobile users in this project. There have

been studies characterizing the mobile users by finding the connections between them – e.g. users

who have similar behaviors may share similar hobbies or interests. These user attributes are usu-

ally inferred using fine-grained and direct information such as time, location, app usage and web

browsing history. This leads us to think whether the inference can still be accomplished with far

less information. As motivated in Section 1.4.3, we ask this question: can we use simple and in-

direct behavioral statistics to model mobile users? We demonstrate that statistics such as entropy

calculated from WiFi, Bluetooth, app usage, cell tower readings collected from user’s phone, can

be useful in uniquely identifying the user. With this descriptive power, personalized service can be

built upon simple user behavioral statistics. We also discuss its privacy implications.
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6.1 FEATURE COMPUTATION AND USER IDENTIFICATION

We focus on designing simple frequency and entropy-based statistical features from users’ mobile

footprints and evaluate the features’ performance in user identification. We show the feature vectors

have the descriptive power to captures the characteristics of a users that differentiate this user from

other users.

6.1.1 FREQUENCY BASED FEATURES

The number of devices and cell towers that are observed by a phone throughout the day provides

information about the owner’s environment. For example, a phone in a busy public place will likely

observe many wireless devices while a phone in a moving car observes different cell towers over

time. Meanwhile, a user’s app usage patterns throughout the day tell us something about his or her

daily routine. We thus propose simple frequency-based features that measure how much activity

of four different types (WiFi, Cell towers, Bluetooth, and App usage) is observed at different time

intervals throughout the day. More specifically, we divide time into T -minute time periods, and

make observations about the phone’s state every M minutes, with M < T so that there are multiple

observations per time period. In the i-th observation of time period t, we record: (1) the number

of WiFi devices that are observed (W t,i), (2) the number of cell phone towers that the phone is

connected to (Ct,i), (3) the number of bluetooth devices that are seen (Bt,i), and the number of

unique apps that have been used over the last m minutes (At,i). We then aggregate each of these

observation types to produce four features in each time period:

F t
W =

∑
i

W t,i, F t
C =

∑
i

Ct,i, F t
B =

∑
i

Bt,i, and F t
A =

∑
i

At,i. (6.1)

A feature incorporating all of these features is simply the vector F t = [F t
W F t

C F t
B F t

A].
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6.1.2 ENTROPY BASED FEATURES

While the simple frequency features above give some insight into the environment of the phone, they

ignore important evidence like the distribution of this activity. For example, in some environments

a phone may see the same WiFi hotspot repeatedly through the day, while other environments may

have an ever-changing set of nearby WiFi networks. To illustrate this, Figure 6.1 compares observed

frequency versus anonymized device IDs for two users across each of the four observation types, for

a period of 10 days. We can observe that User 2 is less active in WiFi and cell mobility compared

to User 1, but has more Bluetooth encounters and uses more diverse apps.

We thus propose using entropy of these distributions as an additional feature of our user vectors.

The entropy feature summarizes the distribution over device IDs in a coarse way. For WiFi, let W t
j

denote the number of times we observe wifi hotspot j during time period t. Then we define the WiFi

entropy during time period t as,

Et
W = −

∑
j

W t
j

F t
W

log
W t

j

F t
W

. (6.2)

Entropy features for Cell towers, Bluetooth, and Apps (Et
C ,Et

B , andEt
A, respectively) are computed

in the same way, and we define a multimodal entropy feature vectorEt = [Et
W Et

C Et
B Et

A], which

Figure 6.1: Comparison of activity histograms for 2 users over 10 days. Y-axes are frequencies;
X-axes are WiFi, Cell, Bluetooth, and App IDs.
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incorporates all four perspectives.

6.1.3 CONDITIONAL ENTROPY AND FREQUENCY BASED FEATURES

In our system, we calculate the above entropy and frequency features conditioned on time and

location. Intuitively at different times and at different locations, users have different patterns of

application usage and surrounding devices (Bluetooth, WiFi, cell, etc.). For example, two users

might have similar overall apps usage but one user always uses apps in the mornings, while the other

uses them only in the afternoon. Two other users might have similar overall Bluetooth entropies

but one might have more surrounding devices at work while the other observes the variety at a

coffeeshop. Conditioning on time and space is thus useful to better differentiate users.

Conditional features on time. For the frequencies and entropies conditioned on time, we

differentiate on time of a day and day of a week. Currently we distinguish between three fixed daily

time intervals, mornings (0:00 - 8:59), working hours (9:00 - 17:59) and evenings (18:00 - 23:59),

and two types of days, weekdays (Mon through Fri) and weekends (Sat and Sun). This gives five

time periods over which we compute the conditional features. Future work might explore adaptive

intervals instead.

Conditional features on location. We also compute frequency and entropy features condi-

tioned on location. For each user, we filter and cluster their geo-locations in order to identify the

top-k significant locations. From data collected at these k locations, we compute the conditional

entropies and frequencies. There are two steps in finding significant locations: Segmentation and

Clustering. In the segmentation step, we find periods of time when the phone appears to be sta-

tionary, by looking for time intervals when the IDs of surrounding devices are stable. In particular,

we divide the data streams into 10-minute time frames and for each time frame, we record the IDs

of the WiFi, Bluetooth and Cell towers. For adjacent time frames, we compute Jaccard similarity

of the corresponding sets of IDs, J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|, where S1 and S2 are sets of
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(a) (b)

Figure 6.2: Time segmentation and location clustering: (a) Finding stationary times using WiFi. (b)
Location clustering using all (top) and only stationary (bottom) data.

device IDs. If the similarity is larger than a threshold, we say that the device is stationary during the

two time frames. Figure 6.2(a) illustrates finding stationary and non-stationary periods according to

WiFi readings. Similarly, we perform this on Bluetooth and Cell readings and take the union of all

stationary time periods.

We then apply the DBSCAN clustering algorithm to the stationary segments in order to identify

important locations. Figure 6.2(b) shows the clustering results on the same data with and without

non-stationary points. We see that noisy signals (e.g., location points moving along highways) have

been removed by keeping only stationary data, which generates better and fewer clusters. We choose

k = 2 and statistics from the ith location will be compared with that from the location of the same

rank across users.

6.2 EVALUATION

We define a user identification problem in order to test whether the features can uniquely charac-

terize users. We pose this as a classification problem: can we build a multi-class classifier trained

on the entropy and frequency feature vectors labeled with user IDs, such that it tells which user a

certain vector belongs to?
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6.2.1 DATA COLLECTION AND EXPERIMENTAL SETTINGS

To collect data for our evaluation, we deployed an Android app called EasyTrack based on the

Funf Open Sensing Framework [2]. This app has a customizable configuration with 17 data types,

including WiFi, Bluetooth, cell tower, GPS, call log, app usage etc. We successfully recruited

22 users to install EasyTrack and collected their mobile footprints for about 2 months with some

variation across users. Details about the data and its collection can be found in Section 1.3.

We first test the initial user identification performance using different time frame lengths. We

uniformly sample the instances to make sure that the same number of instances is used to build the

classifier for each time frame length. As shown in Figure 6.3a, when the length of time frame in-

creases, the classification accuracy generally improves, despite possible variations caused by week-

day/weekend patterns. This suggests that in this range, longer time frames better capture the unique-

ness. Since the data collection time span is about two months, longer time frames decrease the total

number of time periods and thus there are fewer features for training the classifiers. In the following

experiments, we fix the time period at 10 days.

With a 10-day time frame, we reach 107 time frames in total from 22 users. On average, each

user has 4.86 time frames. The range is [2, 8] and the standard deviation is 2.2. In total, we

have 64 features. We test combinations of features (multi-modal entropies/frequencies, conditional

entropies/frequencies) on multiple classifiers including Naive Bayes, decision tree, SVM and Mul-

tilayer Perceptron. We report the results from the Multilayer Perceptron, which were best. The

learning rate is 0.3, momentum is 0.2, the number of hidden layers is set to #features+#classes
2

where #features is 64 and #classes is 22, which is the number of users. The number of epochs

is set to 500. We use 10-fold cross validation for training and testing. We use accuracy as a perfor-

mance measurement which is defined as #of correct predictions
#of instances .
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(a) Accuracy for 22 users with different time frame
lengths, with the basic entropy features.

(b) Classification accuracy with different # of users
for basic frequency and entropy features.

(c) Average classification accuracy with different
number of users for different entropy feature com-
binations.

(d) Average accuracy improvement for all features,
compared to baseline frequency. Absolute average
accuracy is marked on the top of each bar.

Figure 6.3: User identification classification results.

6.2.2 USER IDENTIFICATION PERFORMANCE

We tested on varying numbers of users from 4 to 22, and observe that as the number of users

increases, the average accuracy drops but is still significantly better than random guessing (see

Figure 6.3b and Figure 6.3c). In these experiments, we randomly sample 10 from the
(

22
n

)
possible

combinations (where n is the number of users being tested), apply 10 fold cross validation on each

of the samples, calculate the accuracy and then get the average over the 10 samples. On average,

each sample group has 63 instances.

Performance of standalone frequency and entropy features. For basic multimodal frequency

and entropy features, each vector has 4 dimensions, corresponding to WiFi, cell tower, Bluetooth,

and apps, respectively. We compare their classification results as shown in Figure 6.3b. Both

frequency and entropy features outperform the random baseline significantly. Entropies have better

performance for large numbers of users compared to frequencies: mean accuracy with entropies

drops 22 percentage points from 4 users to 22 users, versus a 35 point drop using basic frequencies.
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Performance of conditional features. We also compared various types of conditional fea-

tures (Figure 6.3c). When features including basic multi-modal entropies, location entropies and

time entropies are all combined, the performance is the best. Time features perform slightly better

than location features, perhaps because there are only 2 location-conditioned features but 5 time-

conditioned features. With all three kinds of features combined, the accuracy is 71.96% for 22 users

versus 91.54% for 4 users and 86.59% for 10 users. Though more features improve accuracy, more

computation is required as well, especially for the clustering required by location conditioning.

Performance of all features. Finally, we compute the performance with all features including

basic frequencies, entropies, and conditioned features. Figure 6.3d shows the performance improve-

ment against the basic frequency feature results shown in Figure 6.3b, with the absolute accuracy

marked on the top of each bar: 94.68% for 4 users, 93.14% for 10 users and remains 81.30% for 22

users.

6.3 DISCUSSION AND CONCLUSION

With regard to design, the lightweight and energy-efficient computation of features can be accom-

plished on mobile devices. The simple features (frequencies and entropies) show their effectiveness

in the user identification task. On one hand, this suggests their descriptive power – they capture the

characteristics of a user that differentiate him or her from other users. Future work includes associ-

ating simple behavioral statistical features with user attributes such as social patterns and habits by

finding the connections between users in order to build personalization applications. On the other

hand, as an identification task, it naturally brings in privacy implications as discussed in Section 2.5.

Throughout this thesis, we talk about collecting and analyzing user-sensed data for observing the

world. Users may be concerned about sharing sensitive data such as locations, app usage, web

browsing history and communication logs. In contrast, users may be less concerned about sharing

the simple statistics as described in this project. This data can be rich enough to produce useful
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information while its richness may still reveal too much information about the users that is deemed

to be sensitive and private. To make these features useful yet with privacy preserved, we propose

a ‘mFingerprint’ architecture in which users control whether to reveal the data or not. Figure 6.4

shows the overview of this four-layer architecture. The bottom layer collects various sensor readings

using hardware sensors that trace location (e.g., GPS, WiFi, and cell tower), proximity (Bluetooth

and microphone). Furthermore, soft sensor data such as application usage and web browser history

are also recorded. The second layer computes a set of statistical features from these digital foot-

prints. In this project, we particularly designed frequency and entropy based statistical features to

capture mobile device usage patterns. The first two layers are deployed on users’ mobile devices.

A device-side privacy control module warns the user about the potential privacy risks if these fea-

tures are revealed. The user then can decide whether to share these features with the third layer for

user learning which might happen outside of the device. The user learning layer includes modules

for building user models via the feature vectors, identifying users via classification methods, and

grouping users into meaningful clusters via unsupervised learning. The forth layer is the application

layer where various applications can be established, such as inferring user profile, logging mobile

behaviors, and creating personalized services and user interfaces. This layer may either be on the

device or on the server side. We hope the descriptive power of these simple features as well as this

proposed architecture can be of interest to the privacy research community and promote research on

improving the personalized services with privacy better preserved.
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Figure 6.4: The four-layer ‘mFingerprint’ architecture with privacy control.
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CHAPTER 7

TEMPORAL USER BEHAVIOR STUDY

In Chapter 6, we studied individual mobile users. In this chapter, we switch our focus onto

large-scale online human behaviors.

Most research on online behaviors, up until recently, has focused on social media behaviors and

e-commerce behaviors independently. In our study, we choose a particular global e-commerce plat-

form (eBay) and a particular global social media platform (Twitter). As motivated in Section 1.4.4,

we ask this question: do user-sensed datasets contain signals for predicting large-scale consumer

behaviors? We quantify the characteristics of the two individual trends as well as the correlations be-

tween them. We provide evidence that about 5% of general eBay query streams show strong positive

correlations with the corresponding Twitter mention streams, while the percentage jumps to around

25% for trending eBay query streams. Some categories of eBay queries, such as ‘Video Games’ and

‘Sports’, are more likely to have strong correlations. We also discover that eBay trend lags Twit-

ter for correlated pairs and the lag differs across categories. We show evidences that celebrities’

popularities on Twitter correlate well with their relevant search and sales on eBay. The correlations

and lags provide predictive insights for future applications that might lead to instant merchandising

opportunities for both sellers and e-commerce platforms. In preparation for future study, we adapt

a peak detection algorithm to better monitor the two streams and conduct a case study to further

understand the complex interplay.
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7.1 QUANTIFYING CORRELATIONS

We start with two datasets – Twitter tweets and eBay search query logs. The Twitter dataset contains

a sample of tweets, each of which has a short text of the Tweet itself, a user id of the person

composing the Tweet and a timestamp indicating when the Tweet was posted. The eBay dataset

contains a sample of eBay search query logs, each of which has a text query, a user id of the

person issuing the query, the number of resulting items the user clicks on, the number of bids the

resulting items receive from the user, the total number of price-fixed ‘Buy It Now’ (BIN) item the

user purchases and the total prices the user pays on these BIN items. The details about the datasets

can be found in Section 1.3.

We focus on keyword phrases appearing in tweets and eBay queries and for a keyword phrase,

we extract two time series of its mentions as a delegate of its popularity over time on Twitter and

eBay, respectively. For a keyword phrase such as ‘Barack Obama’ during a certain period of time,

in each time unit, we count the number of unique Twitter users with tweets containing this keyword

phrase as well as the number of unique eBay users (‘SEARCH’) with queries containing this key-

word phrase. For eBay dataset, besides the number of unique users in each time unit, we can also

compute the total number of clicks (‘VIEW’) and bids (‘BID’) on resulting items, the total number

of purchased BIN (‘BIN count’) items of the resulting item, the total BIN (‘BIN total’) and average

BIN prices (‘BIN avg’) of these items.

As suggested in [94] as well as in Section 3.2, we calculate the Pearson Correlation coefficients

between the normalized pairs of time series as well as the 2-tailed p-value for testing the null hy-

pothesis that the true correlation coefficient is equal to 0. In the following subsections, we will

describe the time series extraction and correlation calculation in detail.

7.1.1 EXTRACTION OF TIME SERIES

We extract time series which represent the keyword trends from the two datasets.
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A simplified scenario of a buyer using eBay is: the user issues a query and clicks on several

resulting items, then the user has the option to bid on some of them and she can also choose to

purchase some price-fixed items right away using ‘Buy It Now’ (BIN). For the experiment, we

define the set of all eBay user actions E = {a1, a2, ..., aq} as a set of tuples of the form ai =

(ui, qi, ti, vi, bidi, bini, pi), where ui is a user, qi is a query, ti is a timestamp, vi is the number of

unique items the user clicks on among the resulting items after issuing the query, bidi is the number

of bids the user places on the resulting items, bini is the number of BIN items the user purchases

among the resulting items and pi is the total amount of money the user pays for all the BIN items

that she purchases.

In order to get the time series of search mentions for a keyword phrase k from time ts to te

on eBay, we divide this period of time into m coarse temporal bins. For each bin, we count the

number of unique users who issued queries containing the keyword phrase. We iterate over the

eBay user action set E and the resulting eBay vector is denoted as UE . Let qT (ti, ts, o) be the

quantization function described in Section 3.1.2. It maps a timestamp ti into one of m temporal

bins with the starting time ts and temporal bin size o, returning a bin index in the range [1,m].

Function contain(qi, k) returns true if k is a substring of qi or otherwise false. (Please notice that

we reprocess qi and k by replacing consecutive non-alphanumeric characters with one space.) For

any keyword k, we then build an m-dimensional vector, counting the number of unique users who

issued search queries containing k in each temporal period b:

UE(b, k, ts, te, o) = ||{ui|(ui, qi, ti, vi, bidi, bini, pi) ∈ E ,

ti ≤ te, ti ≥ ts, contain(qi, k), b = qT (ti, ts, o)}||, (7.1)

where b is the bin index. Using this approach, we can also extract time series for ‘VIEW’, ‘BID’,

‘BIN count’, ‘BIN total’ and ‘BIN avg’ as mentioned above. We denote their quantization func-

tions as Uview
E , U bid

E , U bin c
E , U bin t

E and U bin a
E respectively.
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Similarly, we extract the time series of mentions for a keyword phrase k on Twitter. We build

an m-dimensional vector T from the Twitter user action set T using the quantization function

UT (b, k, ts, te, o) which counts the number of unique users who posted tweets containing k in each

temporal period b from ts to te.

As k and o are fixed for each comparison between eBay and Twitter, we drop them as inputs

for the quantization functions in this particular case. We also omit the index b. UE(ts, te) extracts

a vector E for eBay user action set E , from starting timestamp ts to ending timestamp te, where

Ei = UEi(ts, te). Similarly, UT (ts, te) extracts a vector T for Twitter user action set T . For all the

vectors extracted, we perform L1 normalization.

7.1.2 PEARSON’S CORRELATION CO-EFFICIENT AND A t-TEST

We compute the Pearson’s correlation co-efficient r = P (E, T ) between the eBay vector E and the

corresponding Twitter vector T for each keyword phrase. As mentioned in Section 3.2, it measures

the linear dependence between two datasets and gives a co-efficient in [−1, 1] with +1 indicating

exact positive linear relationship, -1 indicating exact negative linear relationship and 0 indicating no

correlation.

We perform Student’s t-test on Pearson’s r of the pair of vectors and the null hypothesis is

that they are uncorrelated (the actual r is 0). If the underlying variables follow a bivariate normal

distribution, the sampling distribution of Pearson’s r would have a Student’s t-distribution with

degrees of freedom n = 2. According to [60], this holds approximately for sample sizes that are

not small, even when the observed values are not normal. Therefore, even though E and T might

not have a bivariate normal distribution, we can still use the two-tailed p-value from the t-test as an

approximation of confidence of correlation.
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7.2 COMPUTING LAG

We quantify the evidence that one stream lags its counterpart in another domain by applying a

moving window method as suggested in Section 3.2. It finds a shift that maximizes the Pearson’s

r between the pair of streams (action sets). Though the evidence from one pair of streams is not

strong, when we compute the lags for a massive amount of keyword phrases, there would be enough

signals. We choose this method instead of the popular Granger causality test [43] as suggested in

[12], because fixed temporal bins are not suitable to capture and quantify the instant sudden changes

in popularity at a fine grain. For example, with the bin size fixed to one day, it might not be capable

of capturing the changes happen in one day, if one stream lags another by minutes or hours; if the

bin size is set to a couple of minutes or hours, there might not be enough counts in each bin; the

lag might also vary for different pairs of streams and different types of events which might only be

captured by windows moving at finer grains.

For each pair of streams, we shift one stream by a period of time ∆t to compute the vector

and calculate the Pearson correlation between the shifted vector and the other vector which is not

shifted. The ∆t which maximizes the Pearson’s r is defined to be the lag. We adapt the definitions

in Section 3.2 here. Before shifting, we want to compare the vectors that starts at time 0 and ends at

time N . The Pearson correlation co-efficient between the extracted eBay vector and Twitter vector

is calculated as:

f(E , T ,∆t) =

 P (UE(∆t,N), UT (0, N −∆t)),∆ ≥ 0

P (UE(0, N − |∆t|), UT (|∆t|, N)),∆t < 0
(7.2)

where one of the streams is shifted by ∆t.

With this adaptation, lag lE,T is computed as:

lE,T = argmax
∆t∈[−S1,S2],∆t∈Z

f(E , T ,∆t), (7.3)
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where positive lE,T suggests eBay lags Twitter by lE,T while negative lE,T suggests Twitter lags

eBay by |lE,T |.

7.3 EXPERIMENTS AND RESULTS

7.3.1 GENERAL CORRELATIONS

We select the top queries from the long tail distribution of eBay queries as general keyword phrases

that we monitor. For the top 150,000 queries on eBay (on July 11, 2012), we monitor the period

of time from January 1 2012 to March 31 2012 on eBay and Twitter. In this experiment, the eBay

dataset contains a large representative randomized sample of the queries logs and the Twitter dataset

includes 1% of the tweets posted on Twitter. We set thresholds on both daily query counts and daily

Twitter mentions to ensure the density of the vectors that we extract. For average eBay daily query

counts, we require the numbers to be no less than 20 and for average Twitter mentions, we set the

threshold to 5 per day. This gives us a list of 16,099 keyword phrases that can represent general

queries on eBay. For the convenience of later references, we name it as GeneralQueryList. For each

phrase in this list, we get two time series of daily mentions from both eBay and Twitter. For each

pair of time series, we compute the Pearson correlation coefficient r and the p-value of the t-test

with the null hypothesis that the two time series are generated from two uncorrelated systems.

The statistics in Table 7.1 suggest that around 5.25% of these queries can be considered as

having significant positive correlations with their counterparts on Twitter while only around 0.65%

show significant negative correlations at p = 0.0005. Here we consider several confidence lev-

els from 0.0001 to 0.01 and calculate the fractions of positively and negatively correlated keyword

phrase pairs. Notice that when we increase the confidence level, the ratio between positively corre-

lated pairs and negatively correlated pairs increases, suggesting the possible noises are removed.

In order to examine the correlations in behaviors across the two domains for different classes of
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Table 7.1: Fractions of correlated pairs of keyword phrases at different confidence levels. The ratio
between positively correlated pairs and negatively correlated pairs increases as the confidence level
increases, suggesting the possible noises are removed.

p-value pos corr neg corr pos/neg
0.01 8.52% 2.49% 3.42

0.005 7.34% 1.77% 4.14
0.001 5.75% 0.80% 7.18
0.0005 5.25% 0.65% 8.07
0.0001 4.35% 0.32% 13.59

Table 7.2: Top 5 eBay meta categories ranked by portions of queries with strong correlations at the
confidence level of 0.0005.

Category pos corr
Video Games 21.28%

DVDs & Movies 14.20%
Entertainment Memorabilia 13.47%

Sports Mem, Cards & Fan Shop 13.45%
Tickets 13.04%

queries, we break these queries into the 36 eBay meta categories1 and some categories have higher

portions of strongly correlated queries at the confidence level of 0.0005. As we may expect, the

categories such as ‘Video Game’ and ‘Sports Mem, Cards & Fan Shop’ which are more likely to

have sales driving news events such as a championship match and releasing of a video game appear

in the top 5 categories are shown in Table 7.2, as apposed to categories like ‘Home & Garden’ and

‘Pottery & Glass’. Among all the general queries, ‘Sports Mem, Cards & Fan Shop’ takes up 7.34%

which is a relatively large portion.

We then select the trending queries detected by the system described in [85] from the General-

QueryList mentioned above, resulting in 730 queries which we name as TrendQueryList. As shown

in Table 7.3, 24.93% of the trending keyword phrase pairs have very strong correlations, compared

to 5.25% for the general pairs. At 0.01, a relaxed level of confidence, almost 30% of them are

correlated. At the same level, the ratio between positively correlated pairs and negatively correlated

pairs is much higher than that in Table 7.1. When we break these trending queries into the eBay

meta categories, we find that some categories demonstrate much more correlations. 69.23% of the
1There are 36 meta categories at the top level of the eBay merchandise ontology composed by domain experts. The

list is available on www.ebay.com. A query is assigned to a category according to what the majority of users issuing
the same query clicked on and purchased historically.
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Table 7.3: For trending keyword pairs, fractions of correlated pairs of keywords at different confi-
dence levels. At the same level, the ratio between positively correlated pairs and negtively correlated
pairs is much higher than that in Table 7.1.

p-value pos corr neg corr pos/neg
0.01 29.58% 1.64% 18.03

0.005 28.21% 1.09% 25.88
0.001 25.61% 0.13% 197
0.0005 24.93% 0.13% 191.76
0.0001 22.46% 0% INF

Table 7.4: For trending keyword pairs, top 5 eBay meta categories ranked by portions of queries
with strong correlations at the confidence level of 0.0005.

Category pos corr
Sports Mem, Cards & Fan Shop 69.23%

Video Games & Movies 64.28%
Cell Phones & PDAs 52.94%

Entertainment Memorabilia 37.50%
Music 36.66%

queries in ‘Sports Mem, Cards & Fan Shop’ are strongly correlated at the confidence level of 0.0005

as shown in Table 7.4. Even for the ‘Music’ category which ranks at 5th, its percentage is 15%

higher than that of the top category in general queries.

7.3.2 LAG BETWEEN TWO STREAMS

From the GeneralQueryList, we get a list of pairs which are strongly correlated using a threshold

of Pearson’s r at 0.4 and that results in 690 queries which we name as CorrelatedQueryList. For

these queries, we calculate the lags in the shift range of [−5000, 5000] minutes with positive values

indicating eBay lags Twitter and vice versa.

In order to reduce noise, we require the increase in Pearson’s r to be at least 5% to be considered

that there is a lag. We then plot the histogram of the lags as shown in Figure 7.1. The average lag

value is 290 minutes (4.83 hours) and 61.30% of the 690 queries have positive lag values as opposed

to 50% if the lags are normally distributed around a mean value of 0, suggesting that for keyword

pairs correlated on a daily basis, eBay is lagging Twitter. For the pairs where eBay lags Twitter, the

average lag is 1214 minutes (20.2 hours) and the third quantile is 1441 minutes (24.0 hours).

Among the 36 eBay meta categories, ‘Clothing, Shoes & Accessories’ (‘Clothing’) and ‘Sports
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Figure 7.1: Histogram of the lags with the density curve for CorrelatedQueryList. The average lag
time of eBay from Twitter is 4.83 hours and 61.30% of the 690 queries have positive lag values.
Most of the lags are distributed on the positive half of the x-axis.

Mem, Cards & Fan Shop’ (‘Sports’) have more than 100 keywords out of the 690 keywords and

we choose to observe their lag patterns as shown in Figure 7.2 and Figure 7.3. For ‘Clothing’, only

45.6% have positive lag values, while for ‘Sports’ the percentage is 70.14%. This suggests that for

certain categories, the signal is stronger that Twitter is leading eBay.

Again we pick the trending queries from the CorrelatedQueryList and it gives us 164 keyword

phrases. The average lag value is 662 minutes (11.03 hours) and 76.82% of them have positive

lag values compared to 290 minutes and 61.30% for general queries. The histogram is shown in

Figure 7.4. Noticing that 10 keyword phrases have lags of over 4000 minutes, we plot two of them

here with shifted eBay curves in red marked with asterisks: one is a general keyword phrase ‘air

conditioner’ with a lag of 4950 mins (3.43 days) and the other is a more specific product keyword

phrase ‘droid 4’ with a lag of 4981 mins (3.45 days) as shown in Figure 7.5 and Figure 7.6. After

shifting, the Pearson’s r between Twitter and eBay for ‘air conditioner’ goes from 0.42 to 0.48 and

for ‘droid 4’, the value goes from 0.45 to 0.57 which suggests a margin of over three days for eBay

to respond to Twitter for these two keyword phrases. ‘droid 4’ is a Motorola cellphone released on

Feb 10, 2012 but 3 days before that, there were tweets and news articles about Verizon confirming

the releasing date which contributed to the Twitter burst on Feb 7.

In histograms in Figure 7.1, 7.2 and 7.4, the gaps between neighboring local maximas are usu-

ally around a day (1440 minutes), which might be related with the daily repetitions of users’ activity

pattern.
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Figure 7.2: Histogram of the lags in Sports from CorrelatedQueryList with the density curve. 74%
have positive lag values and as a result, the majority of lags is distributed on the positive side of the
x-axis.

Figure 7.3: Histogram of the lags in Clothing from CorrelatedQueryList with the density curve.
45.6% have positive lag values and the lags are distributed more evenly on both sides of 0.

7.3.3 CELEBRITY WATCHING

Celebrity news often trends in Twitter [64] and we want to know when celebrity news – deaths,

movies, arrests, games, etc. trends in one network what influence it has on the other network.

Some possible scenarios include: the news of a celebrity death triggers a book release, an Oscar

nomination is followed by sudden increases in sales of movies in which the celebrity starred, and

a celebrity retirement stimulates fans’ passion for memorabilia. Here we explore the relationships

between popularity of celebrities on Twitter and their related searches and sales on eBay. We make

Figure 7.4: Histogram of the lags for trending keywords with the density curve. 76.82% of them
have positive lag values, the majority of lags is also distributed on the positive side of the x-axis.
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Figure 7.5: Twitter trend, eBay trend and shifted eBay trend for ‘air conditioner’. The lag (shift) is
3.43 days.

Figure 7.6: Twitter trend, eBay trend and shifted eBay trend for ‘droid 4’. The lag (shift) is 3.45
days.

use of Forbes ‘The Celebrity 100’ list 2 which includes celebrities based on media visibility and

entertainment-related earnings.

From Nov 1, 2011 to Jun 27, 2012 (excluding 34 missing days), for each celebrity we compute

the daily statistics including number of searches (SEARCH), number of views (VIEW), number

of bids (BID), number of BINs (BIN count), total BIN price (BIN total) and average BIN price

(BIN avg) such that for each celebrity on the list, there will be 6 time series from eBay. For each

of the eBay time series, we compute the Pearson’s r between itself and its corresponding Twitter
2www.forbes.com/celebrities/list/, May 2012

Figure 7.7: Twitter trend and smoothed eBay average BIN price for ‘justin bieber’, with a smoothing
window size of 2. Comparing with no smoothing, the Pearson’s r goes from 0.183 to 0.233 with a
p-value of 0.0007. (Zero values are due to missing data.)
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Figure 7.8: Twitter trend and eBay trend for ‘whitney houston’. The bursts on both streams correlate
well on the day she passed away and the day for her funeral. Users’ interest drops slower on eBay
which suggests a different pattern of attention from Twitter.
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Figure 7.9: Twitter trend and eBay trend for ‘whitney houston’ with unit set to 60 seconds. Twitter
burst rises faster than eBay and peaks earlier as well. Users’ interest still drops quicker on Twitter
after the peak.

mention time series as well as the p-value of the t-test. We threshold on different confidence levels

to examine the percentage of positively correlated pairs and that of negatively correlated pairs and

the results are shown in Table 7.5.

It shows that only for BIN count at lower confidence levels, there are negatively correlated pairs.

It also suggests that for SEARCH and VIEW, the pairs are best correlated among the 6 statistics.

BID, BIN count and BIN total demonstrate moderate correlations and a possible explanation for

this is that sometimes users just want to check what is on eBay but will not necessarily make up

their minds purchasing.

The average BIN price (BIN avg) is relatively less correlated – only 5% are correlated at 0.01

confidence level. A possible reason for this is that it takes time for the price to reflect the changes in

109



Jan 03
Jan 08

Jan 13
Jan 18

Jan 23
Jan 28

Feb 02
Feb 07

Feb 12
Feb 17

Feb 22
Feb 27

Mar 0
3

Mar 0
8

Mar 1
3

Mar 1
8

Mar 2
3

Mar 2
8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p
e
rc

e
n
ta

g
e
 (

L1
 n

o
rm

) steve jobs
Twitter

eBay

Figure 7.10: Twitter trend and eBay trend for ‘steve jobs’. The first two big bursts on eBay are
related with the production of Steve Jobs action figures while the huge burst on Twitter is related
with his birthday. The relatively weak correlation suggests the interplay between two streams is
sometimes profound.

Table 7.5: For 100 celebrity keywords, fractions of correlated pairs of keywords at different con-
fidence levels. For SEARCH and VIEW, the pairs are best correlated among the 6 statistics. BID,
BIN count and BIN total demonstrate moderate correlations.

SEARCH VIEW BID BIN count BIN total BIN avg
p-value p corr n corr p corr n corr p corr n corr p corr n corr p corr n corr p corr n corr

0.01 46% 0% 44% 0% 14% 0% 16% 2% 12% 0% 5% 0%
0.005 45% 0% 43% 0% 11% 0% 14% 1% 11% 0% 3% 0%
0.001 39% 0% 38% 0% 10% 0% 11% 1% 9% 0% 1% 0%

0.0005 37% 0% 30% 0% 8% 0% 7% 1% 7% 0% 0% 0%
0.0001 37% 0% 30% 0% 8% 0% 7% 0% 7% 0% 0% 0%

popularity (the prices for BIN items are set when the sellers list the items) and the prices might be

insensitive in nature. In order to further understand this, we calculate the BIN avg on a certain day

as the average BIN price of n days in the future (BIN total/BIN count), together with the current

day. We show the average Pearson’s r in Table 7.6 where n ranges from 0 to 14 and the portions

of correlated pairs at different confidence levels for n ∈ [0, 4] in Table 7.7. From these two tables,

the average Pearson’s r peaks when n = 2 and at the same time, greater portion (9%) of pairs are

correlated at the confidence level of 0.01. It suggests that celebrities’ popularity impacts the average

prices of their related items in a 3-day window. Here we show one example for Justin Bieber, with

the window size 2 in Figure 7.7. Comparing with no smoothing, the Pearson’s r goes from 0.183 to

0.233 with a p-value of 0.0007.
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Table 7.6: Average Pearson’s r between Twitter mention time series and eBay averaged BIN price
time series in a (n+ 1)-day window. The average Pearson’s r peaks when n = 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
avg r 0.018 0.015 0.020 0.018 0.012 0.009 0.010 0.013 0.014 0.012 0.012 0.013 0.011 0.007 0.005

Table 7.7: For n ∈ [0, 4], portions of correlated pairs of keywords at different confidence levels.
When n = 2, a greater portion (9%) of pairs are correlated at the confidence level of 0.01.

n=0 n=1 n=2 n=3 n=4
p-value p corr n corr p corr n corr p corr n corr p corr n corr p corr n corr

0.01 5% 0 6% 0 9% 0 8% 1% 7% 0
0.005 3% 0 4% 0 8% 0 8% 0 7% 0
0.001 1% 0 4% 0 4% 0 4% 0 4% 0

0.0005 0 0 1% 0 3% 0 4% 0 2% 0
0.0001 0 0 1% 0 3% 0 4% 0 2% 0

7.3.4 PEAKINESS OF TWO STREAMS

The peakiness of a usage stream from a website reflects its users’ attention as well as the nature of

the platform itself. We measure the general peakiness of the eBay stream and the Twitter stream by

computing their average second moment as suggested in Chapter 4 and defined in equation 4.8.

For the GeneralQueryList mentioned in Section 7.3.1, we compute the average second moment

of their time series of mentions on eBay and Twitter. The value for eBay is 0.011 while the value

for Twitter is 0.016, suggesting that Twitter streams are more peaky than eBay streams. The reason

might be that as a form of news media, Twitter’s user attention spikes and drops more quickly.

7.3.5 PEAK DETECTION

In order to better track the two streams, we test an on-line peak detection algorithm described in

[73] on our datasets to monitor both live streams. Figure 7.11 shows the burst detection results

on Twitter and eBay time series for the keyword phrase ‘Chicago Bulls’ on a daily scale. The

huge Twitter peak on April 28 marked in yellow related to the injury of its star player Derrick Rose.

Though the corresponding eBay peak does not seem obvious as the injury does not necessarily drive

the increase in sales, the algorithm is still able to detect the subtle rise in popularity.

Peak detection serves as a step toward our future goal of understanding the complex interplay
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Figure 7.11: Peak detection results for the keyword phrase ‘Chicago Bulls’ in Twitter and eBay
streams. (Best view in color. Zero values are due to missing data.)

between the two streams. For example, with the peaks automatically captured, textual features can

be extracted from the tweets or eBay queries within the peak windows as suggested in [73]. These

textual features can potentially help us align the peaks across a pair of streams. Then we may further

classify the Twitter peaks into sales-driving peaks and non-sales-driving peaks.

7.4 CASE STUDIES

We select some cases to demonstrate the characteristics of the two trends that we observe. Two

celebrity keyword phrases, ‘Whitney Houston’ and ‘Steve Jobs’, are selected as they are both popu-

lar and easy to be mapped to real world news events. We also study the trends for American football

teams – New England Patriots and New York Giants during the 2011-2012 season as well as the

final game.

The ‘Whitney Houston’ streams shown in Figure 7.8 appear to have a very strong correlation

(Pearson’s r = 0.794, p-value = 5.44e-21). The bursts on both streams correlate well on the day

Whitney Houston passed away and the day for her funeral. But there are some differences in users’

pattern of attentions. Twitter is more bursty as a news media but after the burst, users have the

information and stop talking about it, while on eBay, users still remain interested in purchasing.
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We then examine the period from 00:00 to 05:00, Feb 12, 2012 during which public got to know

Whitney Houston passed away. As shown in Figure 7.9 where the unit is set to 60 seconds, we can

see how queries and tweets arrived at a finer grain and it suggests that Twitter burst rises faster than

eBay and peaks earlier as well. At this scale, we are still able to observe that users’ interest drops

quicker on Twitter after the peak suggesting that users remained interested in purchasing on eBay

after they knew the news.

For the ‘Steve Jobs’ streams shown in Figure 7.10, the correlation is not strong (Pearson’s

r = 0.118, p-value = 0.264). We observe that there are two big peaks in January for eBay while

the corresponding peaks on Twitter are relatively weaker which is not so usual as Twitter is often

more bursty than eBay. We manually look at the 240 tweets containing ‘Steve Jobs’ on January

3 corresponding to the first big burst on eBay. Over a third of them are about a Chinese factory

planning to make unauthorized lifelike replica of Steve Jobs3 and some of the tweets express the

willingness to purchase. Meanwhile, we check the eBay queries containing ‘Steve Jobs’ on the

same day, about 33% of them were related to action figures or bobble heads while the ratio for that

on Jan 1 is only 5%. For the second burst on eBay, we check the related tweets and eBay queries on

Jan 17. A third of the tweets were about the Chinese factory canceling the production of the action

figures and 50% of the eBay queries were related to the action figures. A news article4 pointed out

that people were still selling and buying the action figures on eBay and the highest price reached

$2500.

For the huge burst on Twitter on February 24, there is no obvious corresponding burst on eBay.

But when we check the tweets on that day, it turns out that it was Steve Jobs birthday and a lot

of people were memorializing him by Tweeting. All these indicate that the interplay between user

behavior on Twitter and that on eBay sometimes can be profound and this kind of correlations/non-
3www.foxnews.com/tech/2012/01/03/steve-jobs-action-figure-planned-for-february,

Fox News
4www.pcworld.com/article/248238/maker_of_steve_jobs_action_figure_kills_

project.html, PCWorld
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correlations could offer important insight on discovering the factors that drive sales on e-commerce

platforms.

We track the popularity of the American footballs teams New York Giants and New England

Patriots on eBay and Twitter. For these two American football teams and corresponding sports

events, the pattern seems to have more regularity. As shown in Figure 7.12, their daily popularity

during the football season (we examine from Jan 1 to Feb 12 2012) correlates with significance and

outcomes of games. The Giants won three rounds of playoff games on Jan 8, Jan 15, and Jan 22,

respectively and proceed to the major championship game – Super Bowl XLVI on Feb 5, against

the Patriots. For the Patriots, they won playoff games on Jan 14 and Jan 22 and met the Giants in

the final game. The games become more and more important as the playoff season proceeds, thus

later games receive more attention as it is reflected in the significance of the corresponding Twitter

and eBay peaks. The Patriots lost to the Giants in Super Bowl game on Feb 5. We notice that the

Patriots receive smaller Twitter and eBay peaks on that day and their eBay popularity drops quickly

to less than its popularity before the final game while the Giants’ eBay popularity drops slower after

the game. This suggests that eBay users remain interested in purchasing the items related to the

champion team after the event. Overall, the Giants receive more attention than the Patriots during

this 40-day period – they have about twice the number of mentions on both platforms comparing

with the Patriots.

As shown in Figure 7.13, we track the two teams’ popularity during the Super Bowl game at a

finer grain. We notice that touchdowns usually cause increases in popularity for the corresponding

teams on both platforms with eBay lags Twitter. The winning team enjoys much higher ‘end of

game’ Twitter and eBay peaks comparing with the losing team, again with eBay lags Twitter. During

this period of time, the Giants’ overall popularity is more than twice that of the Patriots on both

platforms.
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(a) Five correlated bursts are related to five winning games
for the Giants in 2012, including the Super Bowl game
against the Patriots on Feb 5.

(b) After two peaks corresponding to two winning games,
the Patriots lost the final game, resulting in a smaller final
peak comparing the Giants’ final peak.

Figure 7.12: Twitter and eBay trends for the keyword phrases ‘giants’ and ‘patriots’ corresponding
to two American football teams from Jan 1 2012 to Feb 12 2012.

7.5 CONCLUSIONS AND FUTURE WORK

In this project, we proposed techniques to quantify the correlations and lags between the trend on

social media and that on e-commerce. We also examined the individual characteristics of the two

streams through a case study and by measuring their peakiness. We discover evidence that:

• About 5% of the eBay query streams have strong positive correlations with their correspond-

ing Twitter streams. For trending queries, the percentage jumps to around 25%.

• Some categories of general queries are more likely to have such correlations. For example,

for the ‘Video Games’ category 21.28% of the query trends are strongly correlated and the

percentage is 14.20% for ‘DVDs & Movies’. It is also more significant for trending queries.

For example, the percentage is about 70% for queries from ‘Sports Mem, Cards & Fan Shop’.

• For correlated pairs of streams, eBay stream lags Twitter stream and for trending queries

and queries in categories such as ‘Sports’, the lag is more obvious and potentially useful for

predictive tasks.

• Celebrities’ popularities on Twitter correlate their search and sale trends on eBay. There is

also signals that they have an impact on the prices of the related merchandise.

• Twitter trend is more peaky than eBay trend.

To summarize, we observe that e-commerce activity correlates well with social media yet lags

it especially in certain domains like ‘Sports’ and ‘DVDs & Movies’. This is more prominent when
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(a) Giants’ touchdowns drives high peaks on Twitter, followed by increases in eBay search vol-
umes with lags. When the game is over, Giants as the winning team have peaks in both streams
and the eBay peak lags Twitter.

(b) Patriots’ touchdowns drives high peaks on Twitter, followed by increases in eBay search
volumes with lags. The game over peaks are much smaller comparing with Giants’ peaks.

Figure 7.13: Twitter and eBay trends for the keyword phrases ‘giants’ and ‘patriots’ from 23pm Feb
5 to 6am Feb 6 2012 GMT during the Super Bowl game.

users react to events and happenings. A possible reason which explains the correlation is that the

domain of sports and entertainment is eventful and attracts eyeball, making it more likely to generate

news of direct commercial values. A reason for the lags might lie in the nature of the two platforms,

one is a social media platform which generates and delivers latest news fast while the other one

serves the need for purchasing in response to the latest news. We believe that access to online social

streams can enable near real-time merchandising of relevant products.

In future work, we plan to predict the sales on e-commerce platforms, according to signals in

social media. Ultimately, the system will be able to detect events in social media, classify them into

sales-driving and non-sales-driving events and estimate the sales of corresponding products on e-

commerce platforms. With such a system, we can recommend relevant items for sellers and buyers
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well in advance to increase the transactions on e-commerce platforms. This will involve techniques

such as event detection, text mining and machine learning. A first step in this direction would be

focusing on the sub-domains (e.g. ‘Sports’ and ‘DVDs & Movies’) of queries which demonstrate

strong correlations and obvious lags, in order to build up a predictive model that can be generalized.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this thesis, we have studied the ‘user-sensed data’ generated by the users or their smart de-

vices, aiming to distill credible real world insights out of it. In order to achieve that and make

the process generalizable, we described a lightweight framework that assembles essential tech-

niques that are commonly used across many data mining applications that deal with the user-sensed

datasets, with a focus on their geo-temporal attributes. We then approach our meta research ques-

tion: “to what extent can we mine the virtual world to study the real world?”. As this is a relatively

large topic, we broke it down into quadrants with regard to the subjects of study and the method-

ologies of study. In each quadrant, we picked one representative problem to address and the topics

cover collective knowledge, natural phenomena, large-scale human behaviors and individual behav-

iors respectively. We created four novel data mining applications, with the framework as a reference.

In Chapter 2, we first surveyed representative work that guided or inspired our research. We

then went through work specifically related to the four questions that we were trying to answer.

In Chapter 3, we organized the assembly of relevant techniques into the aforementioned frame-

work to help fast prototyping of data mining projects on geo-temporal user-sensed data. The frame-

work includes the following components: geo-temporal pattern extraction, comparison, clustering,

visualization and external phenomenon detection. The techniques are later contextualized when

being applied in the four data mining applications described in following chapters.
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In Chapter 4, we discovered Flickr photo tag relationships by comparing their usage distribu-

tions over time and space, showing that these reveal connections between real world concepts in the

physical world. By doing this, we are able to tell why the tags are connected, from a geo-temporal

perspective. We clustered the tags based on their geo-temporal usage distributions and visualized

the clusters. Evaluations showed that high quality geo-temporal semantics are extracted and the vi-

sualizations helped human users better recognize subtle semantic relationships between tags. This

approach goes beyond the existing work that explores tag co-occurrences as a tag similarity mea-

sure. Potentially, it is useful for building tag suggestion systems as well as exploring any data having

geographic and temporal annotations.

In Chapter 5, as opposed to extracting collective knowledge and comparing with subjective

human judgments, we estimated natural phenomena and compared our results with large-scale fine

grained ground truth data. We measured and quantified the occurrence of ecological phenomena

including ground snow cover, snow fall and vegetation density by analyzing the textual and visual

features of geo-tagged, time-stamped photos. We evaluated several techniques for dealing with

the large degree of noise in the dataset, and improved the results by using machine learning to

reduce errors caused by misleading tags and ambiguous visual content. This study can be a possible

reference for other work that tries to accurately distill credible information from large, noisy social

sharing datasets.

In Chapter 6, we explored individual mobile user behaviors in the human world. Previous

research often utilized fine-grained and direct information such as time, location, web browsing and

app usage information to infer about the users. We demonstrated that indirect and simple statistics

such as entropy and frequency calculated from WiFi, Bluetooth, app usage, cell tower readings

collected from the user’s phone, can be useful in uniquely identifying the user. With this descriptive

power, features can be further associated with user attributes to build personalized services.
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In Chapter 7, we moved our focus from individual mobile users onto large-scale human be-

haviors and made one of the first efforts to bridge the research on social media user behaviors and

e-commerce user behaviors. We showed that there are signals from social media for predicting ag-

gregate consumer behavior. We demonstrated that about 5% of general eBay query streams strongly

correlate with the corresponding Twitter mention streams, while the percentage jumps higher for

trending eBay query streams and some specific eBay query categories. We also discovered that

eBay trend lags Twitter. We showed that celebrities’ popularities on Twitter correlate well with

their relevant search and sales on eBay. The correlations and lags provide predictive insights for

future applications on instant merchandising for both sellers and e-commerce platforms. For exam-

ple, we can potentially predict what merchandise is going to be trending on e-commerce platforms

using social media signals and inform relevant sellers or buyers about what to sell or buy ahead of

time. In this way, the e-commerce platforms could increase their transactions.

8.1 POTENTIAL PITFALLS

The applications that mine the user-sensed datasets, including the applications that we described in

this thesis, can fall into potential pitfalls due to design flaws and changes in the data.

We take Google Flu Trends (GFT) as an example. As described in Section 2.1, it finds the

search engine queries whose geo-temporal usage distributions correlate well with the estimates of

influenza-like illness activity released by the United States Centers for Disease Control and Preven-

tion (CDC) and aggregate their usage data to generate the estimates two weeks ahead of the release

of the official data. Though it is hard to define the ‘ground truth for flu activity’, the CDC estimates

can be considered systematic and reliable – CDC collects and compiles nationwide physician visit

data to produce the percentage of physician visits in which a patient presents with influenza-like

symptoms. Google Flu Trends does not always produce accurate estimates and sometimes they can

be off by large margins. For example, in 2009 summer, it underestimated the outbreak of flu where
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GFT’s estimate is half the official estimate [21]. In January 2013, it overestimated the outbreak

where GFT’s estimate doubles the official estimate [13, 67].

There has been a lot of discussions on the possible causes for these errors. As we mentioned

earlier in Section 2.1, there could be some initial design flaws including the possible overfitting

problem. The original GFT algorithm selected only 45 search queries out of 50 million candidates

as best matches to fit 1152 CDC data points and the researchers also reported that noisy queries

related to ‘high school basketball’ appeared in the top 100 matches [38, 67]. Another reason is

the user search behavior change. The underestimation in 2009 happened during summer which

was an unusual season for flu outbreaks and the users appeared to use different terms when they

were seeking flu-related information. The original GTF algorithm was trained on data with regular

seasonal flu outbreak patterns and failed to adapt to the this user behavior change [21]. While it is

hard to predict the changes user behavior, an agile system should be updated often and could alert the

researchers about the errors and changes. One other possible source of noise is the service provider

itself. The companies changes their services as parts of their business plans. However, when they

do so, the non-profitable research projects that rely on their data might be greatly affected, with or

without notifications. For example, in 2011, Google introduced related search terms to their search

result pages and similarly, in 2012, it started to return diagnoses for search terms containing flu

symptoms [67]. When the user clicks on the suggested terms, noise may brought into the GFT

analytics as these were not the user’s initial intentions.

The design flaws and potential changes in these user-sensed datasets may all result in pitfalls

for the data mining applications including ours introduced in this thesis. For example, two of our

projects rely on the user-sensed data from Flickr. There could also be user behavior changes and

service changes and its user distribution and general popularity are not under our control.
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8.2 VISION FOR FUTURE WORK

To reduce the risks of failure and even avoid these pitfalls, the applications need to be designed

agile and robust, apart from recalibrating the applications once in a while. As we mentioned in

Chapter 5, incorporating data from multiple sources may help us build such applications. First of all,

the application is designed based on data from multiple sources instead of one single source. If there

are changes in one source, the application may still rely on other sources. Secondly, among these

sources, we can include the sources that are more scientifically reliable with greater transparency

and public availability. This potentially helps us better calibrate the applications. Here we explicitly

list the sources that we believe are beneficial to include:

1. Data from multiple social media platforms

2. Conventional data

3. Volunteer-based crowd-sourced data

We will discuss them in the following subsections.

8.2.1 DATA FROM MULTIPLE SOCIAL MEDIA PLATFORMS

On one hand, as mentioned above, multiple sources may increase the data density and make the

application less sensitive to the changes in a single source. On the other hand, as we discussed

in Chapter 5, multiple social media platforms provide user-sensed data with similar attributes and

it may ease the difficulty in integrating the data. For example, timestamped text and images are

usually available from platforms such as Flickr, Twitter, Tumblr and Instagram and photo tags and

tweet hashtags are both short keyword phrases that could be comparable. Besides, most of these

services can record geolocations. They can all potentially contribute to geo-temporal user-sensed

datasets.

However, we shall still be careful in integrating data from multiple sources to avoid introducing

new bias and noises. For instance, a same person may be users on many social media platforms and
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we may need to de-anonymize users across different social media platforms [62] to prevent a user

from spamming the datasets. More systematic approaches to integrating the heterogeneous web

data (data fusion) may be applied for this purpose [11].

8.2.2 CONVENTIONAL DATA

The conventional data is compiled and released by domain experts at research institutes or govern-

ments. Some examples would be the CDC influenza-like illness activity data as we mentioned in

this chapter, the NASA satellite data and NOAA ground weather station data as we introduced in

Chapter 5 and the New York City Open Data released by the government1. In spite of the limitations

such as expenses and area of coverage mentioned in Chapter 1, it is usually consistent and less likely

to have bias and noises, comparing with the user-sensed data. We consider it more scientifically re-

liable the user-sensed data.

Incorporating this data may help improve the performance of the applications and make them

more tolerant to changes in these user-sensed datasets. It has been suggested that the GFT could

incorporate lagged CDC data into the regression model and the results are better than that from the

original GFT or the model based on the CDC data alone [67]. With regard to our projects discussed

in this thesis, the conventional data could also help. For example, the regional year-round snow data

may help us balance out some of the bias in the user behavior. In a place where it seldom snows,

traces of snow may get the users excited and taking snow photos.

8.2.3 VOLUNTEER-BASED CROWD-SOURCED DATA

Another possible source is the volunteer-based crowd-sourced data with open access from platforms

such as eBird2 and Flu Near You3. eBird, initiated by the Cornell Lab of Ornithology and National
1The New York City government releases various public datasets generated by government agencies and City

organizations to improve the government and facilitate research. The data covers meta topics such as city gov-
ernment, education, transportation, business, recreation, environment and health. It is accessible to the public at
https://nycopendata.socrata.com.

2http://ebird.org
3https://flunearyou.org
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Audubon Society in 2002, is a web platform allowing recreational and professional bird watchers

to report and access the information about the presence of birds. It thus provides geo-temporal bird

distributions at a continental scale. It is reported that its participants contributed over 3.1 million

observations in North America in March 20124. Figure 8.1(a) is a snapshot for the eBird website

that shows the distribution of the bird presence in North America on September 2, 2014. This not

only only benefits the bird watching community, but also helps research in biology and ecology. Flu

Near You is initiated by Boston Children’s Hospital in partnership with the American Public Health

Association and the Skoll Global Threats Fund to allow the public in North America to report

information related with flu weekly. Figure 8.1(b) is a snapshot from the Flu Near You website that

demonstrates the distribution of flu reports in the US during the week ending August 31, 2014. It

helps the public to track and prevent the flu and also provides data to relevant research communities.

(a) (b)

Figure 8.1: Sample geo-spatial data distributions from eBird and Flu Near You. (a) the distribution
of the bird presence in North America on September 2, 2014 from the eBird website, (b) the dis-
tribution of flu reports in the US during the week ending August 31, 2014 from the Flu Near You
website. Red dots: influenza-like illness; orange dots: symptoms; blue dots: no symptoms.

This data is contributed by citizen volunteers and its characteristics are somewhat in between

of the social media data and the conventional data. It is similar to the social media data in a sense

that it is crowd-sourced. However, as opposed to the passively collected data from social media,

this data is generated by volunteers who are more aware that they are contributing the data to the
4http://ebird.org/content/ebird/about/, About eBird.
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corresponding communities. They may thus take more responsibility and some of them have more

expertise in the relevant topics than the common social media users. This makes the data quality

better compared with the social media data though not necessarily as good as the conventional data.

Besides, its crowd-sourced nature may make up for the shortcomings of the conventional data. For

example, the volunteer-based crowd-sourced data is usually updated real time compared with the

conventional data that often takes longer time to compile and publish. Meanwhile, this data has far

less limitations on the labor resource thus may have much larger coverage.

8.3 EXPECTATIONS FOR THE INDUSTRY

As we have been mentioning throughout this thesis, a relatively large portion of the user-sensed

data comes from the industry. If the industry can work closely with the research communities,

many tasks would be made much easier and less prone to errors. The companies such as Twitter

and Flickr are already taking up their social responsibility – they share some of their public data at

no cost via their APIs to help application developers and researchers. Our research projects have

benefited from the data shared by the industry. But we think that there is still space for improvement

in the data sharing process such that various data mining projects can be robust and better avoid the

pitfalls that we discussed above. Here we want to advocate the expectations for the industry with

regard to:

1. Data quantity

2. Data standardization

3. Data transparency

We will discuss them in the following paragraphs.

Data quantity. We hope the industry can put less limitations on the amount of public data being

shared. Currently, there are often restrictions on the portion of public data from the Internet com-

panies that can be accessed at no cost. For example, though Twitter’s sample streaming API can be
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accessed for free, it provides only a 1% sample of the public tweets being generated on Twitter. 1%

of the all the tweets being generated per day is about 2 million. This amount may not always be

enough for the research projects. In the temporal user behavior study project described in Chapter 7,

to ensure the density of the time series vectors that we extracted, we had to put a threshold on the

daily Twitter mentions of our keywords. This greatly reduced the number of candidate keywords

that we wanted to track originally. If there were more data, these experiments would have been

performed at a larger scale. We encourage the companies to make more public data accessible –

though more does not always mean better, it does help in many cases.

Data standardization. We hope that different companies could have standardized APIs for accessing

and parsing their data. Currently, different companies have different APIs though most of their

functionalities are similar. For example, Twitter has the Twitter Search API for retrieving tweets

relevant to the query and Flickr also has an API for finding a list of photos that match the search

criteria. But they have different authentication methods and API request formats. Besides this

variety, these APIs change from time to time. This creates overhead for developers and researchers

– time and effort is spent on looking up various documents as well as adjusting the applications to

the API changes. Though unifying all the APIs with a single standard may be hard or unrealistic, we

will definitely be glad to see some parts of the API call processes be unified, such as authentication

method, request format and return data format.

Data transparency. We hope that the companies can provide more details about the data which

would help researchers better understand the data. For instance, it is not clearly documented by

Twitter how the 1% data from its streaming API is sampled from all the data being generated. There

have been studies on the characteristics of the sampled data trying to figure out whether this sample

can be representative for the overall user activity on Twitter [55, 77]. As the data is the ground for

many applications and studies, we believe it is important for the companies to give more details on

how the data is generated.
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Besides, we expect they could notify the researchers about the service changes that may poten-

tially affect the data being provided. Service changes may change the user behavior thus bring in

changes to the user-sensed data being generated. One example would be the Google service changes

as we mentioned in Section 8.1. They may lead a user to use search terms that was not the user’s

original intention. This may have affected the GFT’s estimates based on users’ search behavior.

Therefore, it will be helpful if developers and researchers can be notified about the changes in a

timely manner.

8.4 CONCLUSIONS

With abundance of the observational data generated by the users via the booming social webs and

mobile devices, we became interested in this meta research question: “to what extent can we mine

the virtual world to study the real world?”. To approach it, we divided all the possible problems

in this domain into quadrants with our criteria. For each quadrant, we picked one representative

problem and addressed them with novel solutions. With these efforts, we showcased the vast pos-

sibilities of mining the user-sensed data for real world insights. In summary, we (1) showed that

geo-temporal relationships between photo tags reveal real world concept connections; (2) quantified

ecological phenomena and compared our estimates with ground truth data at a continental scale; (3)

demonstrated that very simple behavioral statistics can characterize and identify mobile users; (4)

discovered that social media signals are useful for predicting aggregate consumer behavior. Be-

sides these, we assembled techniques for dealing with geo-temporal user-sensed data and they were

contextualized in the aforementioned data mining applications on multiple representative datasets

– we hope this thesis can serve as a guiding reference for future data mining applications on large,

noisy, biased, geo-temporal user-sensed datasets in order to distill credible real world values. For

future work, we hope to incorporate data from various sources in order to create robust and agile

applications. We are confident that with the continuous and joint efforts from research communities,
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industry and end users, there will be more and more exciting and even game-changing applications

that enhance quality of life and push the boundaries of our knowledge.
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