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Online Photo Sharing and Tagging

More than 5 billion photos on Flickr

Meta data: taken time, owner, upload time...

Text tags -> describe, organize and share photos
Camera/mobile phone with GPS -> geo location of photo

R g-.-' . Taken time: 2007.8.17
!Text tags: {snow zoo leopard potterparkzoo}

Geo location: 42.7179 -84.529
e Study tag relationships to extract knowledge and build
services (tag recommender systems, search engines)




Flickr Tag Attributes and Our Intuition
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Much previous research on tag relationships was based on tag co-
occurrences

Other than co-occurrences, geo and temporal patterns of tags might
also help measure tag similarities

Reveal tag semantics based on geo/temporal similarities by clustering
tags and visualizing clusters

Give a sense why tags are similar



Related Work

Clustering tags based on co-occurrences
— Tag suggestion: [Garg08] [Sigurbjornsson08] [Liu09]
— Tag clustering: [Shepitsen08] [Begelman06]
Temporal and geo-spatial properties of tags
— Burst detection, finding place/event tags: [Rattenbury07] [Moxley09]

— Cluster photos based on geotags and find representative text tags: [Crandall09]
[Kennedy07]

Visualizing tag clusters

— Tag cloud: [Kaser07], tag evolving over time through animations: [Dubinko07]
Spatial clustering and co-location pattern mining

— Spatial clustering: [Ng94], co-location pattern mining: [Xiao08] [Huang06]
Studies of query logs, tweets and news articles

— Temporal patterns of words in news articles, word semantics: [Radinsky11]

— Temporal patterns in search logs: [VlIachos04] [Chien05]

— Geo patterns in search logs: [Backstrom08]

— Geo and temporal patterns in search logs, similar queries: [Mohebbil1]

— Temporal patterns in tweets and news articles, dynamics of attentions: [Yang11]



Baseline Tag Similarity Measures
Based on Co-occurrences

e Raw tag co-occurrences on photos

newyorkcity  nyc 228173
newyorkcity  brooklyn 38378
indiana university 10824

 Mutual information between tag A and tag B,
based on co-occurrences [Begelman06]

p(4,B) )
p(4)p(B)

I(A, B) = log(



Tag Similarity Measures Based on Geo
and Temporal Tag Usage

e Extract geo/temporal/motion vectors from tag
usage data to represent every tag

 Measure the geo similarity between two tags
by the squared Euclidean distance between
their corresponding geo vectors

e Compute the temporal and the motion
similarities in a similar fashion



API

Data Set

e Metadata of a set of photos from North America,
until the end of 2009, downloaded through Flickr

e Over 30M geo-tagged photos
e Top 2000 tags from this dataset (ranked by

number of unique users)
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Extract Temporal Vectors

* Divide the usage data of a tag into k i-day periods
(bins), ignoring the year; each period(bin) records
# of unique users with the tag

* Form a k-D vector accordingly and normalize it

‘rain’ tag usage 26D vector Normalized 26D vector
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Extract Geo Vectors
e Heat map for the tag usage of ‘mountains’

nounta




Extract Geo Vectors
e Heat map for the tag usage of ‘beach’




Extract Geo Vectors
e Heat map for the tag usage of ‘ocean’




Extract Geo Vectors

e Divide North America into m*n §
g-deg by g-deg geo bins

e In the m*n tag usage matrix,
record the usage (# of unique
users) of a particular tagin the

) i 60 by 80 tag usage matrix for tag
corresponding geo bins ‘beach’, bin size 1-deg by 1-deg

e Convert the matrix into an
m*n-D vector and normalize it

4800-D usage vector



Extract Motion Vectors

Extract motion vectors to capture the
movement of tags, e.g. species migration

Divide the data into k i-day periods

For each i-day period, build an m*n-D geo
vector

Concatenate the k geo vectors into a k*m*n-D
motion vector and normalize it



Clustering Tags and Ranking Clusters

Cluster 2000 tags into 50 clusters, using 5 tag similarity
measurements: geo, temporal, motion, raw co-
occurrences and mutual information respectively

Cluster geo/temporal/motion vectors using k-means
[MacQueen67]

Partition raw co-occurrences and mutual information tag
graphs by KMETIS [Begelman06][Karypis96]

Rank geo, temporal and motion clusters by average
second moment, which measures the peakiness of their
distributions

a vector v’s peakiness: second_moment(v)=v-v
Sampling twice from a dist and getting the same value



Evaluation using MTurk

No objective ground truth; ask for subjective opinions from users

Qualified Amazon Mechanical Turk (MTurk) users judged the
geo/temporal relevancy of the clusters, given the tags within clusters

MTurk: a crowdsourcing Internet marketplace, users get paid to
finish tasks; in our case, each question answered by 20 users

The geo/temporal/motion clusters have more geo/temporal signals

Geographically relevant rate | Temporally relevant rate (#
(# geo relevant clusters/50) | temp relevant clusters/50)

Geo clusters 58%

Temporal clusters 26%
Motion clusters 60% 10%
Raw co-occurrence clusters 22% 2%
Mutual information 22% 12%

clusters



Evaluation using MTurk

e Clusters with high average second moment
values are more likely to be judged as
‘relevant’.

m # of relev. clusters in top 10 results

Geo clusters 9 clusters are geo relevant
Temporal clusters 7 clusters are temporally relevant
Motion clusters 9 clusters are geo relevant

* Average second moment is an indicator of
geo/temporal relevancy



Visualizations

e Geographically relevant geo clusters

rank | 6

tags | seattle needle pugetsound spaceneedle wa sound
fremont northwest




Visualizations

e Geographically relevant geo clusters

rank

28

tags

seaweed ocean waves pacific wave starfish sea seal
coast pacificocean tide cliff cliffs otter jellyfish aquarium
whale cove monterey




Visualizations

e Temporally relevant temporal clusters

rank |7

tags | christmastree christmaslights christmas ornament
holidays xmas decorations december snowman




Visualizations

e Temporally relevant temporal clusters

rank

12

tags

ice snow winter frozen snowboarding skiing ski cold
icicles snowstorm blizzard february
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Visualization and Evaluation

Wanted to see what happened when people
were shown the visualizations

Gave visualizations to users when they were

judging the relevancy just as possible
references; asked them to judge base on tags

m Geo relevant rate Temporally relevant rate
Geo clusters 58% -> (62% if with visualizations)

Temporal clusters 26% -> (38% if with visualizations)



Visualization and Evaluation

e Cases in which people changed their minds, after
they saw the visualizations

e (without vis.) not geo relevant. -> (with vis.) geo
relevant

diego sandiego polarbear border wine grapes vines barrel cows winery vineyard
cattle ranch



Visualization and Evaluation

(without visualizations) not temporally relevant -> (with
V|suaI|zat|ons) temporally relevant
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Second Moment and Retrieval

Threshold average second moment values to retrieve geo/temporally
relevant clusters from geo/temporal/motion clusters

geographically relevant cluster retrieval temporally relevant cluster retrieval
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Red curves show that when the ground truth is from the users given
the visualizations, the retrieval performance is better



Conclusions

e We measured the semantic similarity of tags by comparing
geo, temporal and geo-temporal patterns of use

— Clustered tags using the proposed measurement
— Visualized the geo and temporal clusters

e Evaluated the clusters using MTurk
— Clusters have high quality semantics

— Visualizations might be able to help users understand the geo-
temporal semantics

— Second moment is a simple measurement for selecting
geo/temp. relevant clusters

e Future direction

— Flexible framework that selects number of tags and clusters
automatically with scalable temporal and geo bin sizes

— Tag suggestion systems



Questions

Thank you!



