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own left | AP: 0.64 | AUC: 0.666
own right | AP: 0.727 | AUC: 0.742
other left | AP: 0.813 | AUC: 0.878
other right | AP: 0.781 | AUC: 0.809

Lee et al. [1], all 4 hand types
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Introduc/on	

EgoHands:	A	Large-scale	Hand	Dataset	

Hand	Type	Detec/on	

Hand-based	Ac/vity	Recogni/on	

Conclusion	and	Future	Work	

§  Hands	appear	very	o>en	in	egocentric	video	and	can	give	
important	cues	about	what	people	are	doing	and	what	they	

are	paying	aAen-on	to	
§  We	aim	to	robustly	detect	and	segment	hands	in	dynamic	

first-person	interac-ons,	dis/nguish	hands	from	another,	

and	use	hands	as	cues	for	ac/vity	recogni/on	
	

Our	contribu-ons	include:	

1.  Deep	models	for	hand	detec/on/classifica/on	in	first	
person	video,	including	fast	region	proposals	

2.  Pixelwise	hand	segmenta/ons	from	detec-ons	

3.  A	quan-ta-ve	analysis	of	the	power	of	hand	loca-on	and	
pose	in	recognizing	ac/vi/es	

4.  A	large	dataset	of	egocentric	interac/ons,	including	fine-
grained	ground	truth	for	hands	

§  We	recorded	first-person	video	from	two	interac-ng	

subjects,	using	two	Google	Glass	devices	
§  4	actors	x	4	ac-vi-es	x	3	loca-ons	=	48	unique	videos	
§  Pixel-level	ground	truth	annota-ons	for	15,053	hands	in	
4,800	frames	allow	training	of	data-driven	models	

§  We	showed	how	to	accurately	detect	and	dis-nguish	hands	

in	first	person	video	and	explored	the	poten-al	of	

segmented	hand	poses	as	cues	for	ac-vity	recogni-on	

§  We	plan	to	extend	our	ac-vity	recogni-on	approach	to	

finer-grained	ac/ons	and	more	diverse	social	interac/ons	
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(a)	Genera-ng	Region	Proposals	Efficiently		

§  Regions	are	sampled	from	

learned	distribu/ons	over	
region	size	and	posi-on,	biased	

by	skin	color	probabili-es	
§  Yields	higher	coverage	than	
standard	methods	at	a	frac-on	

of	the	computa-onal	cost	Hand	 coverage	 versus	 number	 of	 proposals	 per	 frame	
for	various	proposal	methods.	

§  A	CNN	is	trained	to	dis-nguish	regions	between	hand	types	
and	background	(defined	based	on	IoU	overlap	with	ground	

truth),	then	non-max	suppression	produces	detec-ons	

§  Lightweight	sampling	approach	proposes	

a	set	of	image	regions	that	are	likely	to	

contain	hands	(a)	
§  CNN	classifies	each	region	for	the	
presence	of	a	specific	hand	type	(b)	
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(b)	Hand	Type	Classifica-on	
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ours | AP: 0.807 | AUC: 0.842
SS | AP: 0.763 | AUC: 0.794
obj. | AP: 0.568 | AUC: 0.591

Performance	 on	 the	 main	 dataset	 split.	 Le1)	 Precision-Recall	 plot	 for	 hand	 detec-on	 using	 different	 proposal	 methods.	 Our	
proposed	approach	outperforms	the	baselines.	Center)	Precision-Recall	for	hand	detec-on	and	disambigua-on	with	comparison	to	

Lee	et	al.	[1].	“Own	hand”	detec-on	is	more	difficult	due	to	extreme	occlusions.	Right)	Some	detec-on	examples	at	0.7	recall.	

§  We	see	similar	performance	and	trends	for	cross-valida/on	
experiments	with	respect	to	actors,	ac-vi-es,	and	loca-ons	

Hand	Segmenta/on	
§  We	use	our	strong	detec-ons	to	ini-alize	GrabCut,	modified	

to	use	local	color	models	for	hands	and	background,	
yielding	state	of	the	art	results	for	hand	segmenta-on		

(Ours:	0.556	average	IoU,	Li	et	al.	[2]:	0.478	average	IoU)	

§  We	hypothesize	that	first-person	hand	pose	can	reveal	
significant	informa-on	about	the	interac/on	

§  To	test	this,	we	build	CNNs	to	classify	ac-vi-es	based	on	
frames	with	non-hands	masked	out:	

§  With	ground	truth	hand	segmenta-ons,	66.4%	accuracy	
§  With	our	hand	segmenta-ons,	50.9%	accuracy	
§  Aggrega-ng	frames	across	/me	futher	increases	accuracy	

Le1)	Examples	of	masked	hand	frames	that	are	used	as	input	to	the	CNN.	Right)	Classifica3on	accuracy	increases	as	more	frames	
are	considered.	Here,	we	sample	~1	frame	per	second	such	that	10	frames	span	roughly	10	seconds	of	video.	

Le1)	Some	sample	frames	from	the	data	with	ground	truth	hand	masks	superimposed	in	different	colors	(indica-ng		
different	hand	types).	Each	column	shows	one	ac-vity:	Jenga,	jigsaw	puzzle,	cards,	and	chess.	
Right)	Random	samples	of	ground	truth	segmented	hands.	

The	EgoHands	dataset	is	publicly	available:	hdp://vision.indiana.edu/egohands/	

More	ac-vity	recogni-on	evalua-on	can	be	found	in	our	ACM	ICMI	2015	paper:	
hdp://vision.soic.indiana.edu/hand-interac/ons/	
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