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Introduction Hand Type Detection Hand Segmentation

Lightweight sampling approach proposes |4 - = = We use our strong detections to initialize GrabCut, modified

* Hands appear very often in egocentric video and can give _
important cues about what people are doing and what they a set of image regions that are likely to s ] to use local color models for hands and background,
are paying attention to contain hands (a) B [H vielding state of the art results for hand segmentation

= We aim to robustly detect and segment hands in dynamic = CNN classifies each region for the T (Ours 0.556 average loU, Li et al. [2] 0.473 average |0U)
first-person interactions, distinguish hands from another, presence of a specific hand type (b) T Y, =y = | ’
and use hands as cues for activity recognition

Our contributions include:

Deep models for hand detection/classification in first i = Regions are sampled from
e T ——
person video, including fast region proposals = learned distributions over
Pixelwise hand segmentations from detections L /, region size and position, biased
. . . . 8 8F /', /,f”— D?rectSampI?ng _ . re .
A quantitative analysis of the power of hand location and S AT N by skin color probabilities
. o - - - Selective Search
pose in recognizing activities o7 | o | ® Yjelds higher coverage than
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A large dataset of egocentric interactions, including fine- # Window Proposals standard methods at a fraction

We hypothesize that first-person hand pose can reveal
significant information about the interaction

(b) Hand Type Classification To test this, we build CNNs to classify activities based on

frames with non-hands masked out:

grained ground truth for hands and ¢ | of the computational cost

" ACNN is trained to distinguish regions between hand types
and background (defined based on loU overlap with ground
truth), then non-max suppression produces detections
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—e—Using our Segmentations
—o—Using Ground Truth Segmentations
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= We recorded first-person video from two interacting * With ground truth hand segmentations, 66.4% accuracy
. . . Q04| \‘ 004 - . . o
subjects, using two Google Glass devices e * With our hand segmentations, 50.9% accuracy
LI . . . 027 \ 0.2 H—own left I AP: 0.64 | AUC: 0.666 u " - :
| 4 aCtOrS X 4 aCtIVItIES X 3 Iocahons — 48 unlque VIdEOS 0.1 _—ggslllAﬁ)Pogggzllpffgoc;gzz ‘, 0.1 k:gmrri%?ttllﬁgz:g_;z;“ﬁggz:gg;,sz Aggregatl ng frameS aCrOSS tlme fUther Increases aCCU racy
u Pixel_level ground truth annotaﬁons for 15’053 hands in 0 0.2 054Reca||056 08 1 % 02 054Reca|?56 0.8 1 | More activity recognition evaluation can be found in our ACM ICMI 2015 paper:

' http://vision.soic.indiana.edu/hand-interactions/

i Performance on the main dataset split. Left) Precision-Recall plot for hand detection using different proposal methods. Ouri
| proposed approach outperforms the baselines. Center) Precision-Recall for hand detection and disambiguation with comparison to !
. Lee et al. [1]. “Own hand” detection is more difficult due to extreme occlusions. Right) Some detection examples at 0.7 recall.

4,800 frames allow training of data-driven models

Conclusion and Future Work

" We see similar performance and trends for cross-validation

experlments with FESPECt to actors, activities, and locations We showed how to accu rate|y detect and disl'inguish hands
. All Hands ™ Own Left Own Right Other Left Other Right in ﬁrSt perSOn VideO 3 nd explcred the pOtenl'ia| Of
.807 813 .807
080 e segmented hand poses as cues for activity recognition
g 0.75 - 727 737 . . . o, .
I 700 e o8 We plan to extend our activity recognition approach to
g om0 finer-grained actions and more diverse social interactions
. Left) Some sample frames from the data with ground truth hand masks superimposed in different colors (indicating E’ﬁ E i :% o I I
! . different hand types). Each column shows one activity: Jenga, jigsaw puzzle, cards, and chess. "h1: i 0.55 -
' nght) Random samples of ground truth segmented hands. Sk r i 0.50 [1] S. Lee, S. Bambach, D. Crandall, J. Franchak, C. Yu, “This hand is my hand. A probabilitic approach to hand disambiguation in
. ' The EgoHands dataset is publicly available: http://vision.indiana.edu/egohands/ =] AT | Main Split Actor CrossVal Activity CrossVal Location CrossVal egocentric video”, CVPR Workshops 2014

[2] C. Li, K. Kitani, “Model recommendation with virtual probes for egocentric hand detection”, ICCV 2013
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