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1. Overview 4. Results

* Geographic position is useful to organize photos, but most * |nstead, we estimate geo-informative properties of the * Accuracy on binary prediction (50% random baseline):
photos (~95% of Flickr) lack geo-tags. scene, that could narrow down position using GIS maps,
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, , , , — letting us potentially geo-locate images even in places that s

* Others have studied automatic geo-tagging using huge have never been photographed before! a
collections of geo-tagged reference images (e.g. [1],[2],[3],...). <

* But most photos are not from distinctive landmarks or i < 0
densely photographed areas, so matching may be hopeless. ] °

— Individual and joint nets had about the same accuracy.
— Also tested ternary (vs binary) labeling problem; mean
accuracy was 44.08% (vs 33% random baseline)
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* Specifically, we:
— build large-scale geo-informative attribute datasets
combining Flickr images and public GIS maps; Elevaion e tnden N ey
- learn models for geo-informative attributes with CNNs; and Pl =F = P Bl
— evaluate on realistic, large-scale image collections. opulation Density (2010) _ Population Density 2000) __ nfuntmortaity

Population Density (2000)

 Sample correct (boxed) and incorrect results:

High Low High Low High Low High Low High Low High

2. An automatically labeled dataset 3. Estimating geo-informative attributes e ‘
* From 200 million public geotagged Flickr photos, we sampled  Goal: Given an image, estimate its geo-informative e ma le B b W e B b e e
% Pasfre lar‘ld- | African American P | _ Aegate Household Income
~50,000 images attempting to avoid biases: attribute values, using models built from training data. T o e B
— Sampling is spatially uniform (i.e. not biased towards cities) — Specifically a binary problem for each attribute: high vs low Am v im he ;"Zpulaté”

— Limit contribution of any single photographer _ _ , KT 4 S

— No manual filtering based on content, position, etc. we jcraln C.onvolutlonal Neural Networks tor this task. .- TT——

— Fine-trained from AlexNet [4]

* Summary and conclusions:

— Propose geo-informative attributes to help geolocate the
(many) photos that cannot be matched.

* Also collected publicly-available GIS attribute maps. — Training via stochastic gradient descent with Caffe [5]

— Global or continent (North America) scale — Iterate until performance stagnated on validation set
— Includes binned geographic, demographic, economic,

“oricultural attributes * Compare against several baselines: — Build labeled datasets using geo-tagged images and GIS maps.
gricultu ibu . " SR . - -

- Multiple CNNs vs joint prediction with single multi-label net — CNNs outperform other techniques, sometimes even humans!
* For each Flickr image, we look up its attribute in the GIS map, — BoW HOG, GIST, and spatially pooled color histograms 1)) Hays and A fros. IM2GPS:escmating geographicnformation o 3 sinleimage. I CUPF, 2005 h

. . . . . 2] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In
to produce a labeled geo-informative attribute dataset. (SPCH) with linear SVMs ECCy, 2008 | TR
) [3] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using 3d point clouds. In ECCV, 2012.
(elusoyiie)) Suenjos ‘(puejiey) eSN-Sueyq — Human (MeChan|Ca| Tu rker) perfOrmance [4] A. Krizhevsky, |. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
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