

Predicting Geo-informative Attributes in Large-scale Image Collections using Convolutional Neural Networks

Stefan Lee, Haipeng Zhang, David Crandall

School of Informatics and Computing, Indiana University, Bloomington, IN

Overview

- Geographic position is useful to organize photos, but most photos (~95% of Flickr) lack geo-tags.
- Others have studied automatic geo-tagging using huge collections of geo-tagged reference images (e.g. [1],[2],[3],...).
- But most photos are not from distinctive landmarks or densely photographed areas, so matching may be hopeless.

Can you figure out where these random Flickr photos were taken?*

 letting us potentially geo-locate images even in places that have never been photographed before!

- Specifically, we:
 - build large-scale geo-informative attribute datasets combining Flickr images and public GIS maps;
 - learn models for geo-informative attributes with CNNs; and
 - evaluate on realistic, large-scale image collections.

2. An automatically labeled dataset

- From 200 million public geotagged Flickr photos, we sampled ~50,000 images attempting to avoid biases:
 - Sampling is spatially uniform (i.e. not biased towards cities)
- Limit contribution of any single photographer
- No manual filtering based on content, position, etc.
- Also collected publicly-available GIS attribute maps.
- Global or continent (North America) scale
- Includes binned geographic, demographic, economic, agricultural attributes
- For each Flickr image, we look up its attribute in the GIS map, to produce a labeled geo-informative attribute dataset.

*Top row: Istanbul, New Orleans, Kyoto, Portland; Bottom row: Carolina Beach (North Carolina), Berkeley, Kirkwood (Missouri), Surf City (North Carolina),

3. Estimating geo-informative attributes

- Goal: Given an image, estimate its geo-informative attribute values, using models built from training data.
 - Specifically a binary problem for each attribute: high vs low
- We train Convolutional Neural Networks for this task.
- Fine-trained from AlexNet [4]
- Training via stochastic gradient descent with Caffe [5]
- Iterate until performance stagnated on validation set
- Compare against several baselines:
 - Multiple CNNs vs joint prediction with single multi-label net
 - BoW HOG, GIST, and spatially pooled color histograms (SPCH) with linear SVMs
 - Human (Mechanical Turker) performance

4. Results

Accuracy on binary prediction (50% random baseline):

- Individual and joint nets had about the same accuracy.
- Also tested ternary (vs binary) labeling problem; mean accuracy was 44.08% (vs 33% random baseline)
- Sample correct (boxed) and incorrect results:

- Summary and conclusions:
 - Propose geo-informative attributes to help geolocate the (many) photos that cannot be matched.
 - Build labeled datasets using geo-tagged images and GIS maps.
 - CNNs outperform other techniques, sometimes even humans!

[1] J. Hays and A. Efros. IM2GPS: estimating geographic information from a single image. In CVPR, 2008. [2] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In

[3] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using 3d point clouds. In ECCV, 2012.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. [5] Caffe. http://caffe.berkeleyvision.org/