This Hand Is My Hand: A Probabilistic Approach to Hand Disambiguation in Egocentric Video =~
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generate (noisy) likelihood maps within each frame hand, green: your right hand, magenta: my left hand, cyan = my right hand.
= Model spatial constraints on hand position with a
fully-connected graph within each frame
= Model temporal constraints with edges between
corresponding parts in adjacent frames, and the
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Frames from our naturalistic videos, with participants playing cards, tic-tac-
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subject pairs in a lab setting (31 min of video)

* We additionally captured naturalistic videos of two 6. Future Work

adults using Google Glass (4.5 min) = More complex, naturalistic video data
* To evaluate our results, we manually annotated * Stronger appearance models

2,700 frames (about 1 frame/second) with ground- = Joint models of attention and hand/head motion

. truth bounding boxes of head and hands
The child’s view is extremely dynam/c. hands vary drast'lcal/y in size, Shape' g Acknowledgments: This work was funded in part by the National Science Foundation (CAREER 11S-1253549), the
and orientation, and hands come in and out of view and overlap frequently. National Institutes of Health (R01 HD074601 and R21 EY017843), the National Institute of Child Health and Human

Development (5T32HD7475-17), and the Indiana University Vice President for Research.




