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Ice sheet radar echograms
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Ice sheet radar echograms

Antarctica Polar Stereographic LIMA with Flightiines - Getz Region
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Related work

General-purpose image segmentation
— [Haralick1985], [Kass1998], [Shi2000], [Felzenszwalb2004], ...

Subsurface imaging
— [Turk2011], [Allen2012], ...

Buried object detection
— [Trucco1999], [Gader2001], [Frigui2005], ...

Layer finding in ground-penetrating echograms
— [Freeman2010], [Ferro2011], ...



Tiered segmentation

e Layer-finding is a tiered segmentation
problem [Felzenszwalb2010]

— Label each pixel with one of [1, K+1],
under the constraint that if y < y’,
label of (x, y) < label of (x, y’)

i

* Equivalently, find K boundaries in each column

— Let L; = (I},...,1%) denote the row indices of the K region
boundaries in column i

— Goal is to find labeling of whole image, L = (L, ..., Ly)



Probabilistic formulation

* Goalis to find most-likely labeling given image I,

L™ = arg max P(L|I) = arg mla}xP(I|L)P(L)

Likelihood term models Prior term models how
how well [abeling well labeling agrees with
agrees with image typical ice layer properties



Prior term

Prior encourages smooth, non-crossing boundaries

PLyecc [[ Il P@ -8 slon)PEE™)

i€[2,n] kE[l,K']/, \

Zero-mean Gaussian penalizes Repulsive term prevents
discontinuities in layer boundary crossings; is O if
boundaries across columns ¥ < {¥~!and uniform otherwise




Likelihood term

* Likelihood term encourages labels to coincide
with layer boundary features (e.g. edges)

P(I|L) = H P(IL|L;)

— Learn a single-column appearance template T,
consisting of Gaussians at each position p, with i, 05

— Also learn a simple background model, with po, 0o
— Then likelihood for each column is,

Ip+l’“)|u ,0p)
P b

prel; ke [1,K] pETy




Efficient inference

Column1 Column2 Column3 Column4

Layer 1:

* Finding L that maximizes
P(L I I) involves inference  "°*
on a Markov Random Field .

— Simplify problem by solving each row of MRF in
succession, using the Viterbi algorithm

— Naive Viterbi requires O(Kmn?) time, for m x n echogram
with K layer boundaries

— Can use min-convolutions to speed up Viterbi (because of
the Gaussian prior), reducing time to O(Kmn) [Crandall2008]



Experimental results

* Tested with 827 echograms from Antarctica

— From Multichannel Coherent Radar Depth Sounder system
in 2009 NASA Operation Ice Bridge [Allen12]

— About 24,810 km of flight data
— Split into equal-size training and test datasets
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User interaction

Modify P(L) such that this label has probability 1



User interaction

\ v‘l.i"\;ﬁ';-z]‘;cdr“ ‘I ‘l' ‘||
nre

! SR T T A
| 1 ¥

Modify P(L) such that this label has probability 1



Sampling from the posterior

* Instead of maximizing P(L/I), sample from it




Quantitative results

 Comparison against simple baselines:
— Fixed simply draws a straight line at mean layer depth

— AppearOnly maximizes likelihood term only

Air-ice boundary || Ice-terrain boundary

Mean Err | Mean SE || Mean Err | Mean SE

Fixed 69.0 | 10955.9 89.7| 14975.2
AppearOnly 19.6| 2949.8 42.1 7686.2
Our approach 14.1| 1719.6 32.0 5078.9




Quantitative results

 Comparison against simple baselines:
— Fixed simply draws a straight line at mean layer depth
— AppearOnly maximizes likelihood term only

Air-ice boundary || Ice-terrain boundary

Mean Err | Mean SE || Mean Err | Mean SE
Fixed 69.0| 10955.9 89.7| 14975.2
AppearOnly 19.6| 2949.8 42.1 7686.2
Our approach 14.1| 1719.6 32.0 5078.9
— Further improvement with human interaction:
Ours, 1 pt 11.1 926.5 22.3 2652.5
Ours, 2 pts 10.1 718.6 18.3 1927.9

Ours, 3 pts 9.6 602.8 15.7 1470.2




Summary and Future work

 We present a probabilistic technique for ice sheet
layer-finding from radar echograms
— Inference is robust to noise and very fast
— Parameters can be learned from training data

— Easily include evidence from external sources

* Ongoing work: Internal layer-finding




Thanks!

More information available at:
http://vision.soic.indiana.edu/icelayers/
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