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1. Overview

* Motivation: Photo-sharing websites have huge collections of images with
(noisy, sparse) metadata like text tags, captions, timestamps and GPS.

How can we organize these collections automatically?

* Objective: Cluster images using vision and noisy multimodal metadata.

* Contributions:

1. General framework for loosely-supervised clustering for multimodal

data with missing and incomparable features, using latent CRFs.

2. Learn CRF parameters through metric learning and structured SVMs.

3. Evaluate on large-scale online image datasets.
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2. Multimodal Latent CRF Framework

* Generalize K-means by adding pairwise multimodal constraints:

Standard K-means...

...plus pairwise constraints... ...yields constrained K-means.

* Given instance features X with m different modalities, we solve for
cluster centroids p and cluster labels Y:

1. E-step: Fix , solve for Y jointly. Define a latent CRF to incorporate
multimodal features in a single clustering framework:
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2. M-step: Fix Y, solve for p using maximum likelihood estimation.

3. Parameter Learning

 Learning similarity metrics: We learn a similarity function for
each channel using pairwise supervision, by applying ITMLIY and
encoding distance metrics as diagonal Mahalanobis matrices.

* Learning coefficients for similarity terms: We learn similarity
terms with a small held-out dataset with ground truth labels.
— Formulate as a structured SVM learning problem:

Coefficients for similarity
terms in latent CRF
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Loss function

— Our loss function is the number of incorrect pairs (Rand
Index), which permits efficient loss-augmented inference.
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4. Experimental Results

« Datasets: 3 labeled Flickr datasets (Landmarks, Groups, Sport, 10k images each); 1 unlabeled dataset (Activity, 30k images)
* Visual features: Bag-of-words SIFT histograms; Metadata features: binary tag occurrence vectors, GPS coordinates
* Tested with three different types of supervision, assuming differing types of training data:

Weak supervision Loose supervision

' Use held-out set of pairs of images with same/different cluster annotations. Use ground-truth cluster labels for

Purity: (i.e., proportion of the most common ground truth category in each cluster) a subset of images.

Visual features Text features Visual+Text Proposed (V+T) Proposed (V+T+G) Fiickr Landmark
Landmarks | 0.1677 &£ 0.0134 | 0.3224 £ 0.0335 | 0.3449 £ 0.0383 | 0.4060 £ 0.0279 —
Groups 0.2508 + 0.0097 | 0.3696 £ 0.0263 | 0.3955 + 0.0341 | 0. 5 4 0.0389 0.4450 £0.0353 o
Sport 0.1483 +0.0101 | 0.3454 +0.0386 | 0.3524 £ 0.0387 | 0. 3 +0.0309 0.3965 +0.0182 N

Inverse purity: (i.e., proportion of the most common cluster in each ground truth category)
0. +0.0180 | 0.4907 +0.0344 | 0.5297 £0.0227 | 0.5611 +0.0210 ‘

Landmarks
Groups
Sport

0.6336 +0.0152 ‘

B

0.4066 + 0.0448 | 0.5893 +0.0275 | 0.5971 £0.0310 | 0.6010 + 0.0322
0.3707 £ 0.0411 | 0.6593 £0.0244 | 0.6789 £ 0.0175 | 0.6931 £ 0.0173

Classification Accuracy

0.7062 £0.0190
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Fiicks Sport

Weak supervision on another dataset
Use parameters trained on one dataset (Sport) to cluster another dataset (Activity).
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5. Summary and Conclusions
* Multimodal image clustering with visual features and sparse, noisy metadata, using latent CRFs.
« Learn feature distance functions and CRF parameters with varying degrees of supervision.
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