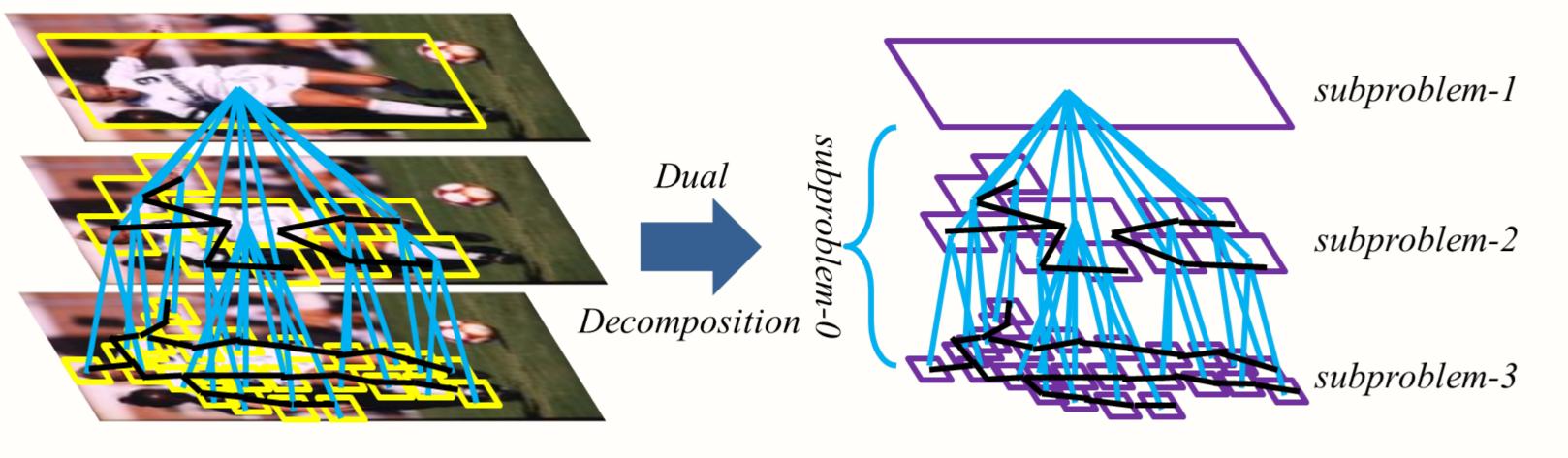
A Multi-layer Composite Model for Human Pose Estimation

Kun Duan¹, Dhruv Batra², David Crandall¹

¹Indiana University, Bloomington, IN; ²Toyota Technological Institute at Chicago, Chicago, IL

1. Overview

- Multi-layer composition of different tree-structured part-based models.
- Each layer captures human pose at a different scale.
- Dual Decomposition for efficient inference.
- Outperform state-of-the-art under different evaluation metrics.



4. Learning

Structural SVM formulation:

$$\min_{\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{m} \xi_m \qquad \text{weights} \quad \text{features}$$

 $\hat{S}(I,\mathbf{Y}) = \boldsymbol{\beta} \cdot \boldsymbol{\Phi}$

INDIANA UNIVERSITY

$$egin{aligned} eta \cdot \Phi(I_m, \mathbf{Y}_m) &\geq 1 - \xi_m & orall m \in ext{pos} \ eta \cdot \Phi(I_m, \mathbf{Y}) &\leq -1 + \xi_m & orall m \in ext{neg}, orall \mathbf{Y} \end{aligned}$$

5. Experiments

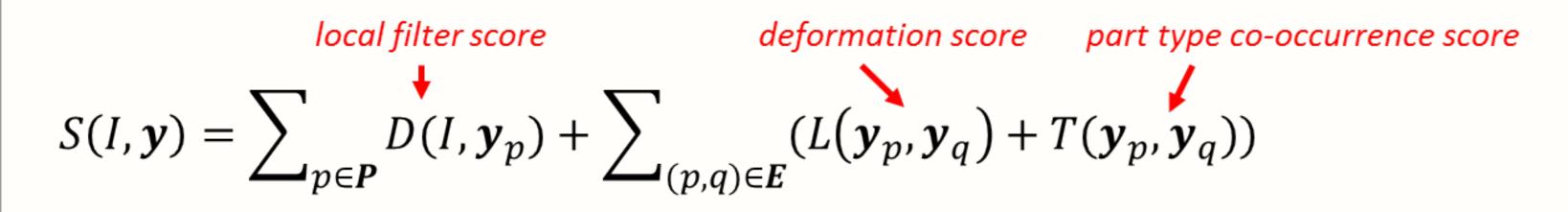
s.t.

- ► Datasets. We use Parse [2] and UIUC Sport [1] in our experiments. Evaluation criteria.

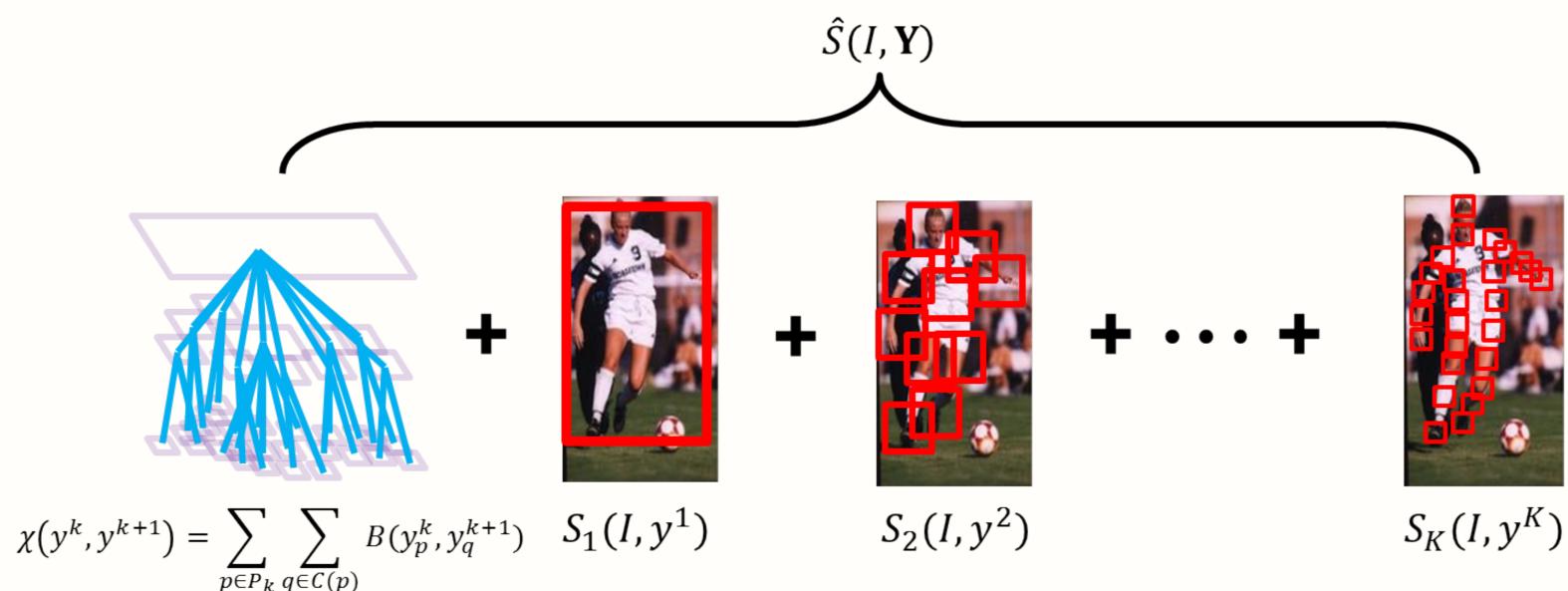
Figure 1: Our multi-layer composite part-based model.

2. Model

Single layer model. Our model is built on the *mixture of parts tree model* in Yang & Ramanan (CVPR11):



Multi-layer composite model. The proposed model generalizes the above model with multiple layers:



How to define correct part localization

1. Distance of *each* endpoint from ground truth 2. *Mean* distance between estimated and ground truth endpoints is less than a threshold. endpoint is less than a threshold.

How to compute final PCP score

A. Calculated for <i>each</i> image; Averaged on <i>all</i> .	B. Calculated only for correct person detections;
	Averaged and multiplied by detection rate.

Quantitative results.

(a) **Table 1**: PCP (1A) on Parse & UIUC Sport.

			-											
		Parse dataset						UIUC Sport dataset						
	Torso	UL	LL	UA	LA	Head	Total	Torso	UL	LL	UA	LA	Head	Total
Ramanan2006	52.1	37.5	31.0	29.0	17.5	13.6	27.2	28.7	7.3	19.2	7.5	20.6	12.9	15.1
Wang2011	_	_	—	—	_	-	—	75.3	49.2	39.5	25.2	11.2	47.5	37.3
Yang2011	82.9	69.0	63.9	55.1	35.4	77.6	60.7	85.3	61.3	55.5	49.7	35.5	73.5	56.3
Ours (26+10)	82.0	72.4	67 .8	55.6	36.6	79.0	62.6	85.4	61.6	57 .9	49.1	34.8	72.9	56.4
Ours (26+1)	85.6	71.7	65.6	57 .1	36.6	80.4	62.8	86.0	62 .2	57.5	51 .0	36.3	73.7	57.3
Ours (26+10+1)	81.0	71.7	67.6	55.9	36.3	79.5	62.3	86.2	61.2	55.7	49.9	35.9	73.8	56.5
Pishchulin2012*	88.8	77.3	67.1	53.7	36.1	73.7	63.1	_	_				_	_
Johnson2011*	87.6	74.7	67.1	67.3	45.8	76.8	67.4	_		_			_	_

*Pishchulin2012 and Johnson2011 are not directly comparable due to the use of more annotations.

Our composite models outperform state-of-the-art

(b) Table 2: Effect of PCP 1A, 1B, 2B on Parse.

part-type co-occurrence terms

Inference

► We adopt *Dual Decomposition* for efficient inference, which naturally decomposes the original graphical structure into *multiple trees*.



	PCP (variant 1A)								PCP 1B	PCP 2B
Threshold	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.5	0.5
Yang2011	33.4	47.2	56.0	60.7	64.4	67.2	69.7	71.5	56.0	74.9
Ours (26+10)	34.5	49.2	57 .6	62.6	65.9	68.7	71.3	73.0	58.5	75.0
Ours (26+1)	34.5	48.3	56.5	62.8	66.9	70.0	72.0	73.6	59.3	75.8
Ours (26+10+1)	34.3	48.9	57.3	62.3	65.7	68.6	70.9	72.7	59.5	75 .9

Evaluation metrics **significantly** affect the final PCP scores

Qualitative results.

Figure 2: Sample results. *Left*: Examples in which [2] failed (top), but our 3-level model estimated poses correctly (bottom). Right: Some failure cases of our model.

6. Conclusions

Check agreement; Update dual variables

 $\lambda_k^{(t+1)} \leftarrow \lambda_k^{(t)} - \alpha^{(t)}(y^k\left(\lambda_k^{(t)}\right) - x^k(\lambda_k^{(t)}))$

- ► A general framework for combining different pose estimation models.
- Our model outperforms state-of-the-art methods on challenging datasets.

Acknowledgements: We thank Devi Parikh for helpful comments and discussions. This work was supported in part by the Lilly Endowment and the Indiana University Data-to-Insight Center.

References:

[1] Y. Wang, D. Tran, Z. Liao, Learning hierarchical poselets for human parsing, CVPR 2011 [2] Y. Yang, D. Ramanan, Articulated pose estimation with flexible mixtures-of-parts, CVPR 2011

http://vision.soic.indiana.edu/poserecognition