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3.#Experiments:#
!  Datasets&
-  Stanford-Cars-Dataset[2]:-14-classes;-Viewpoints-are-annotated.-
-  INRIA-Vehicles-Dataset[3]:-29-classes;-Viewpoints-are-not-known.-
-  Features:-Fisher-vector-computed-on-dense-SIFT-+-COLOR.-

!  Classifica,on&using&A2ributes&
-  Binary-a"ribute-feature-vectors-and-nearest-neighbor-classifier:-

!  Classifica,on&using&Fisher&Vectors&+&A2ributes&
-

-
!

!
!  Discovered&A2ributes&
!

!

!
#
#

1.#Overview:#
!  Problem:&Fine>grained&vehicle&recogni,on,&to&classify&amongst&different&

makes&and&models&of&car&photos&taken&from&varying&viewpoints.&&
!  Discover&local&a2ributes&(mid>level&features&that&are&discrimina,ve&and&

seman,cally&meaningful)&from&exemplars&with&or&without&viewpoint&labels.&
!  Approach:&Generaliza,on&of&Mul,ple&Instance&SVM&(MI>SVM)&with&

pairwise&constraints&among&posi,ve&examples.&

SVM- MI)SVM- Constrained-MI)SVM-

Fisher-Vectors- Fisher-Vectors-+-A"ributes-

Stanford-Cars# 88.2- 89.7#
INRIA-vehicles# 33.6- 34.5#

(a) head light, fender, red,
red and blue

(b) wheel, silver wheel
cup, black tire

(c) back wheel, tire,
white, right headlight

(d) window, trunk, rear,
black

(e) headlight, front light,
square

(f) side door, silver wheel
cup, black tire

(g) front wheel, black, sil-
ver, right headlight

(h) hood, windshield,
bumper, silver, blue

(i) front wheel, fender,
red, white

(j) rear headlight, back,
black window

Figure 5: Examples of automatically generated local attributes for the Stanford cars dataset. Each panel represents one
discovered local attribute for a particular viewpoint of the vehicle category, with names coming from Mechanical Turk users.

Figure 6: Examples of vehicle annotation results on new images.

the National Science Foundation (IIS-1253549) and by the
IU Office of the Vice Provost for Research through the Fac-
ulty Research Support Program. The Xerox CVG group is
supported in part by the ANR Fire-ID project. Part of this
work was done while Kun Duan was an intern at XRCE.

References

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector ma-
chines for multiple-instance learning. In NIPS, 2002. 1, 2

[2] T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and
characterization from noisy web data. In ECCV. Springer, 2010. 1

[3] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona,
and S. Belongie. Visual recognition with humans in the loop. In
ECCV. Springer, 2010. 1

[4] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and
fisher vectors for efficient image retrieval. In CVPR, 2011. 2, 5

[5] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering lo-
calized attributes for fine-grained recognition. In CVPR, 2012. 1, 2,
4, 5

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
PAMI, 2010. 4

[7] R. Feris, J. Petterson, B. Siddiquie, L. Brown, and S. Pankanti.
Large-scale vehicle detection in challenging urban surveillance en-
vironments. In WACV, 2011. 1

[8] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 1981. 3

[9] C. Gu and X. Ren. Discriminative mixture-of-templates for view-
point classification. In ECCV, 2010. 2

[10] D. M. Jang and M. Turk. Car-rec: A real time car recognition system.
In WACV, 2011. 1

[11] J. Krapac, F. Perronnin, T. Furon, and H. Jégou. Instance classication
with prototype selection. In ICMR, 2014. 4, 5

[12] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A. C.
Berg, and T. L. Berg. BabyTalk: Understanding and generating sim-
ple image descriptions. PAMI, 2013. 1

[13] C.-H. Kuo and R. Nevatia. Robust multi-view car detection using
unsupervised sub-categorization. In WACV, 2009. 1

[14] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling se-
quence data. In ICML, 2001. 3

[15] C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based clas-
sification for zero-shot learning of object categories. PAMI, 2013.
1

[16] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 2004. 3, 4

[17] S. Maji and G. Shakhnarovich. Part discovery from partial corre-
spondence. In CVPR, 2013. 2, 4

[18] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-
svms for object detection and beyond. In ICCV, 2011. 2

[19] G. Sharma, F. Jurie, and C. Schmid. Expanded parts model for human
attribute and action recognition in still images. In CVPR, 2013. 1, 2

[20] M. Stark, J. Krause, B. Pepik, D. Meger, J. J. Little, B. Schiele, and
D. Koller. Fine-grained categorization for 3d scene understanding.
In BMVC, September 2012. 1, 4

[21] G. Wang and D. Forsyth. Joint learning of visual attributes, object
classes and visual saliency. In ICCV, 2009. 1

[22] B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and
discrimination for fine-grained image categorization. In CVPR, 2011.
2

Sample!!
Region!Candidates!

Select!A3ributes!!
via!Constrained!MI:SVM!

Pick!two!closely!!
related!categories!

A3ribute:based!
!Representa@on!

45 45 45 
90 

0 
45 

45 45 
Viewpoint!Update!
Based!on!Vo@ng!

Human!Feedback!

2.#Approach:-
! Workflow&for&discovering&local&a2ributes&for&vehicles& !  Constrained&Mul,ple&Instance&SVM&framework&

-  Looks-for-regions-that:-(1)-occur#in#posi@ve#images#but#not#in#
nega@ve#images,-learning-an-SVM-classifier-on-visual-features-of-
regions,-while-also-(2)-occur#at#roughly#the#same#posi@on#on#the#
car,-by-adding-pairwise-constraints-to-the-MI)SVM-framework.-

4.#Conclusions:#
!  Explicitly&modeling&viewpoint&during&a2ribute&discovery&

significantly&improves&a2ribute>based&classifica,on.&
!  Discovered&a2ributes&are&both&discrimina,ve&and&seman,cally&

meaningful,&and&increase&classifica,on&performance&when&
combined&with&low>level&features.&

!  Discovered&a2ributes&are&also&useful&for&image&annota,on&tasks.&#
#
#

References:#
[1]-Discovering-localized-a"ributes-for-fine)grained-recogni6on.-Duan-et-al.,-CVPR-2012.-
[2]-Fine)grained-categoriza6on-for-3d-scene-understanding.-Stark-et-al.,-BMVC-2012.--
[3]-Instance-classifica6on-with-prototype-selec6on.-Krapac-et-al.,-ICMR-2014.--
!
This&work&was&supported&in&part&by&an&NSF&CAREER&award&(IIS>1253549),&by&the&Indiana&
University&Office&of&the&Vice&Provost&for&Research&through&the&Faculty&Research&Support&
Program,&and&by&the&ANR&Fire>ID&project.&

where w is a feature weight vector, b is a scalar bias, ⇠
I

is
a slack variable corresponding to training bag x

I

, xi

I

is the
ith training instance of bag x

I

, and Y
I

is the ground truth
label (+1 or -1) of x

I

. Intuitively, this is the classic SVM
max-margin framework with an additional (soft) constraint
that all instances in the negative bags should be classified
as negative, and at least one instance in each positive bag
should be classified as positive.

Our goal is to find local image regions across the training
set that are discriminative — that occur often in one vehi-
cle category but not in another. We can apply the MI-SVM
framework to this problem in the following way. Choose a
pair of vehicle categories, calling one positive and one nega-
tive. We think of each image as a bag with a positive or neg-
ative label depending on its category, and then sample many
patches from each image to produce instances for each bag.
We then solve equation (2), which produces a weight vector
but also implicitly chooses positive instances, and these can
be viewed as the set of discriminative regions that we are
interested in. We can repeat this process for many pairs of
categories to produce a set of candidate attributes.

3.2. MI-SVMs with constraints

A problem with the above approach is that discovered
regions may not correspond to the same part of the vehi-
cle, and thus may not have semantic meaning, and also that
more than one region may be selected in each positive im-
age. To address these problems, we add constraints to en-
courage spatial consistency, requiring regions to occur in
roughly the same position on the vehicle by adding pair-
wise spatial constraints among instances in the positive bag.
But since viewpoints vary across images, we must explicitly
model viewpoint in order to compare spatial positions.

Our model. Let v
I

2 V denote the viewpoint label of im-
age (bag) I , where we assume that V is a small set of possi-
ble discrete viewpoints. For now we assume the viewpoint
labels are given; we discuss how to handle unknown view-
point labels in Section 3.3. We formulate the attribute dis-
covery problem using MI-SVMs, with additional pairwise
spatial constraints among positive instances that encourage
the spatial consistency property, as illustrated in Figure 2.
Suppose that we knew which instance in each positive bag
should be part of the attribute, and denote this region x⇤

I

for
bag I . Then we could solve a separate MI-SVM problem
for each individual viewpoint v 2 V ,

min

{w(v)
, ⇠, b

(v)}

1

2

kw(v)k2 + C(v)
X

I2I(v)

⇠
I

(2)

s.t. 8I 2 I(v), Y
I

· (w(v) · x⇤
I

+ b(v)) � 1� ⇠
I

,

where I(v) is the set of images having viewpoint label v,
i.e. I(v)

= {I|v
I

= v}.

Figure 2: Visualization of SVM models: standard SVM
(left), standard MI-SVM (middle), and our MI-SVM with
constraints (right) between instances in each positive bag.
For recognizing vehicles given their viewpoint angles, we
define the constraints such that two selected region candi-
dates must come from consistent locations on the vehicles.

Now suppose the weight vectors and biases for each
viewpoint were already known, so that we need to estimate
the x⇤

I

for each bag I . We want to do this in a way that
encourages spatial consistency. We pose this problem as in-
ference on a Conditional Random Field (CRF) [14]. Let l

I

be a scalar variable which takes a value from the region in-
dices in image I . We define an energy function to measure
the compatibility of a given assignment of variables to l

I

,

E({l
I

}|{v
I

}) =
X

I

�(l
I

|v
I

) +

X

I,J

�(l
I

, l
J

|v
I

, v
J

), (3)

where the first set of terms in the summation measures how
well the selected regions are modeled by the MI-SVM,

�(l
I

|v
I

) = �(w(vI) · xlI
I

+ b(vI)),

and the pairwise terms encourage positive regions to be at
about the same spatial position on the car. If the viewpoint
labels between two images are the same, then measuring
this distance is a simple matter of comparing image coor-
dinates. If the labels are different, then we need to apply a
transformation so that the two coordinate systems are com-
parable. In particular, our pairwise function is,

�(l
I

, l
J

|v
I

, v
J

) =

(
kµ(l

I

)� µ(l
J

)k2, if v
I

= v
J

kHvJ
vI

µ(l
I

)� µ(l
J

)k2, if v
I

6= v
J

,

where µ(l
I

) denotes the spatial position of region l
I

relative
to the vehicle center, and HvJ

vI
is a homography matrix. We

estimate the homography between two viewpoints by ex-
tracting SIFT features [16] from the training images having
each viewpoint and running RANSAC [8] on feature corre-
spondences. Finally, to estimate the best region x⇤

I

for each
image I , we minimize equation (3) through CRF inference,

{x⇤
I

} = argmin

{lI}
E({l

I

}|{v
I

}). (4)

Of course, in our problem we know neither the SVM
parameters or the region selections. We thus solve these it-
eratively, first finding the weights and biases in equation (2)
by holding the region variables fixed, and then solve for the

Region!Classifier!Score! Spa@al!Constraint!Score!

red!headlight,!red!bumper,!
blackwindshield,!black!back!@re,!

round!wheel!

black!@re,!round!
wheel,!black!window!

red!headlight,!white!
back!

yellow!door,!black!
windshield,!disk!brake!


