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Fig. 2. A first-person camera is a wearable camera for which we care about the 

identity of the camera wearer, while a third-person camera is either a static or 

wearable camera for which we are not interested in determining the wearer.

q Third-first problem: Given one or more synchronized third-

person videos of a scene as well as a video from a wearable 

camera, identify and segment the person who was wearing 
the camera in the third-person videos.

q Third-third problem: Given one or more synchronized third-

person videos of a scene, segment all visible people and 

identify corresponding people across different videos.
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Fig. 3. Our two-stream FCN network.
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Fig. 4. Our third-third network.
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Fig. 5. Our third-first network.

Fig. 6. Sample results. Colors of segmentation and camera views indicate 

estimated correspondences across different cameras.
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Table 1. Experimental results of our models on IU ShareView dataset.

5. Conclusion
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q Proposed two novel (semi-)Siamese FCNs for joint person 

segmentation and identification, and evaluated on a new, 

challenging dataset with pixel-level ground truth and 

correspondences across first- and third-person cameras.

2. Problems

Fig. 1. In a scene captured by cameras of different types, both static and 

wearable, we want to identify corresponding people and camera wearers.

q Motivation: Scenes are often captured by cameras of different 

types, including fixed, hand-held, and wearable.

qTwo-stream Fully Convolutional Network (FCN)

qThird-third Network segments and identifies the people in 

common across different videos.

qThird-first Network segments and identifies the first-person 

camera wearer in third-person videos.

§ Produces a segmentation mask for the person of interest.

§ Downsamples the extracted features of the softmax layer by 

16, and tiles the background and foreground channels by 512.

q Goal: Segment, and identify correspondences between, people 

in the videos and people holding or wearing the cameras.

q Results show that jointly inferring segmentation and people 

correspondences helps perform each task more accurately.

q IU ShareView dataset consists of 9 sets of pairs of 5-10 minute 

synced first-person videos in six indoor environments, with a 

total of 1,277 pixel-level ground truth segmentation maps of 

2,654 annotated person instances.


