Introduction

Quiz: Hawk or Falcon?
N, Fine-grained visual recognition
- Harder than normal classification.
- Difficult to collect data.
- Need one-shot learning.

Our Ideas
- Want to use Generative Adversarial Networks (GANS).
- Challenge: GAN training itself needs a lot of data.
- Fine-tune GANSs trained on ImageNet.
- Challenge: Generated images decreased accuracy.
- Learn to reinforce generated images with original images.
- Use meta-learning to learn best mixing strategy.

Answer to the quiz: Hawk is left, and Falcon is right.

Key Idea 1: Fine-tune BigGAN generator with a single image

- Transfer generative knowledge from one million generic images
iIn ImageNet to a domain specific image [2].

- Instead of unstable adversarial training, we minimize both the
noise and the difference between the input and output.
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where z is a noise, G is the generator, I, is an image, G(z) is a generated image, £, is L1 loss, Loere
is perceptual loss, Lg s is an earth mover distance between z and random noise » ~ N (0, 1) to
regularize z to be sampled from a Gaussian, and A, and A, are coetficients of each term.

- To avoid overfitting, we update batch normalization layers only.

Specifically, only the v and 3 of each batch normalization layer are updated in each layer,
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where x 1s the input feature from the previous layer, and [£ and Var indicate the mean and variance

functions, respectively. Intuitively and in principle, updating v and 3 only is equivalent to adjusting
the activation of each neuron 1n a layer.
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Framework

Augmented Support Set = {(Original Images), (Fused Images) }
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Key Idea 2: Reinforce generated image with the original.
- Linearly combine with a 3 x 3 block [1].
- Weights are learned by meta-learning.
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Experiments

- Code: http://vision.soic.indiana.edu/metairnet/

- Base one-shot classifier is Prototypical Networks
(ProtoNet [3]), backbone is ImageNet-pretrained
Resnet18 or Conv4.

- Datasets:
- Caltech UCSD Birds (CUB).

- train:val:test = 5,885 (100 classes):2,950 (50
classes):2,953 (50 classes)

- North American Birds (NAB).

- train:val:test = 24,557 (278 classes):11,960 (138
classes):12,010 (139 classes)

Results:

Table 2: 5-way-1-shot accuracy (%) on CUB/NAB dataset with ImageNet pre-trained ResNetl8

Method Data Augmentation CUB Acc. NAB Acc.

79.00 = 0.62  80.58 = 0.99
81.17+0.60  82.70 = 0.97
80.77 = 0.60  82.38 == 0.97

Nearest Neighbor
Logistic Regression
Softmax Regression

ProtoNet - 81.73 £0.63 87.91 4+ 0.52
ProtoNet FinetuneGAN 79.40 £+ 0.69 85.40 £+ 0.59
ProtoNet Flip 82.66 = 0.61 88.55 + 0.50
ProtoNet Gaussian 81.75 £ 0.63 87.90 £ 0.52

MetalRNet (Ours) FinetuneGAN 84.13 £ 0.58 89.19 £ 0.51
MetalRNet (Ours) FinetuneGAN, Flip 84.80+£0.56 89.57 +0.49

Table 3: 5-way-1-shot accuracy (%) on CUB dataset with Conv4 without ImageNet pre-training

MetalRNet ProtoNet [28] MatchingNet [31] MAML [10] RelationNet [29]
65.86 £0.72 63.50x+0.70 061.16 =0.89[4] 55.92+0.95[4] 62.45+0.98 [4]

Visualization:

- Plot t-SNE of two
classes, blue and red.
- Generated images are
closer to real ones.
- Reinforced images
are distinctive from

others. e Original
A Generated
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Conclusions:

- Composites of real and synthetic training images
improve fine-grained one-shot recognition.

- Future work should explore other mixing strategies,
and theoretical results on why it works.
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