
- Plot t-SNE of two 
classes, blue and red.
- Generated images are 

closer to real ones. 
- Reinforced images 

are distinctive from 
others.

Conclusions:

- Code: http://vision.soic.indiana.edu/metairnet/ 
- Base one-shot classifier is Prototypical Networks 

(ProtoNet [3]), backbone is ImageNet-pretrained 
Resnet18 or Conv4.

- Datasets:
- Caltech UCSD Birds (CUB). 

- train:val:test = 5,885 (100 classes):2,950 (50 
classes):2,953 (50 classes)

- North American Birds (NAB). 
- train:val:test = 24,557 (278 classes):11,960 (138 

classes):12,010 (139 classes)

Introduction
Quiz: Hawk or Falcon?

Key Idea 1: Fine-tune BigGAN generator with a single image
- Transfer generative knowledge from one million generic images 

in ImageNet to a domain specific image [2]. 
- Instead of unstable adversarial training, we minimize both the 

noise and the difference between the input and output. 

- To avoid overfitting, we update batch normalization layers only. 

L1 (G(z), Iz) + �pLperc (G(z), Iz) + �zLEM (z, r) , (1)

where z is a noise, G is the generator, Iz is an image, G(z) is a generated image, L1 is L1 loss, Lperc

is perceptual loss, LEM is an earth mover distance between z and random noise r ⇠ N (0, 1) to
regularize z to be sampled from a Gaussian, and �p and �z are coefficients of each term.
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Specifically, only the � and � of each batch normalization layer are updated in each layer,

x̂ =
x� E(x)p
Var(x) + ✏

h = �x̂+ �, (2)

where x is the input feature from the previous layer, and E and Var indicate the mean and variance
functions, respectively. Intuitively and in principle, updating � and � only is equivalent to adjusting
the activation of each neuron in a layer.
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Our Ideas
- Want to use Generative Adversarial Networks (GANs).

- Challenge: GAN training itself needs a lot of data.
- Fine-tune GANs trained on ImageNet.

- Challenge: Generated images decreased accuracy.
- Learn to reinforce generated images with original images. 
- Use meta-learning to learn best mixing strategy.
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Fine-grained visual recognition
- Harder than normal classification.
- Difficult to collect data.
- Need one-shot learning.

Image Fusion Net

Fusing Weight w

 I G(I) wI + (1 − w)G(I)

Key Idea 2: Reinforce generated image with the original.
- Linearly combine with a 3 x 3 block [1].
- Weights are learned by meta-learning.

[1] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, and Martial Hebert. Image deformation meta-networks for one-shot 
learning. In CVPR 2019. 
[2] Atsuhiro Noguchi and Tatsuya Harada. Image generation from small datasets via batch statistics adaptation. In ICCV 2019.  
[3] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.  
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Answer to the quiz: Hawk is left, and Falcon is right.
Table 2: 5-way-1-shot accuracy (%) on CUB/NAB dataset with ImageNet pre-trained ResNet18

Method Data Augmentation CUB Acc. NAB Acc.

Nearest Neighbor - 79.00± 0.62 80.58± 0.59
Logistic Regression - 81.17± 0.60 82.70± 0.57
Softmax Regression - 80.77± 0.60 82.38± 0.57

ProtoNet - 81.73± 0.63 87.91± 0.52
ProtoNet FinetuneGAN 79.40± 0.69 85.40± 0.59
ProtoNet Flip 82.66± 0.61 88.55± 0.50
ProtoNet Gaussian 81.75± 0.63 87.90± 0.52

MetaIRNet (Ours) FinetuneGAN 84.13± 0.58 89.19± 0.51
MetaIRNet (Ours) FinetuneGAN, Flip 84.80± 0.56 89.57± 0.49

Table 3: 5-way-1-shot accuracy (%) on CUB dataset with Conv4 without ImageNet pre-training

MetaIRNet ProtoNet [28] MatchingNet [31] MAML [10] RelationNet [29]

65.86± 0.72 63.50± 0.70 61.16± 0.89 [4] 55.92± 0.95 [4] 62.45± 0.98 [4]

accuracy increase from ProtoNet, which is equivalent to MetaIRNet without the image fusion module.
This indicates that our image fusion module can effectively complement the original images while
removing harmful elements from generated ones.

Interestingly, horizontal flip augmentation yields nearly a 1% accuracy increase for ProtoNet. Because
flipping augmentation cannot be learned directly by our method, we conjectured that our method
could also benefit from it. The final line of the table shows an additional experiment with our
MetaIRNet combined with random flip augmentation, showing an additional accuracy increase from
84.13% to 84.80%. This suggests that our method provides an improvement that is orthogonal to flip
augmentation.

Figure 3: t-SNE plot

Case Studies. We show some sample visualizations in Fig. 4. We ob-
serve that image generation often works well, but sometimes completely
fails. An advantage of our technique is that even in these failure cases,
our fused images often maintain some of the object’s shape, even if the
images themselves do not look realistic. In order to investigate the quality
of generated images in more detail, we randomly pick two classes, sample
100 images for each class, and a show t-SNE visualization of real images
(•), generated images (N), and augmented fused images (+) in Fig. 3,
with classes shown in red and blue. It is reasonable that the generated
images are closer to the real ones, because our loss function (equation 1)
encourages this to be so. Interestingly, perhaps due to artifacts of 3⇥ 3
patches, the fused images are distinctive from the real/generated images,
extending the decision boundary.

Comparing with state-of-the-art meta-learning classifiers. It is a convention in the machine
learning community to compare any new technique with the performance of many state-of-the-art
methods reported in the literature. This is somewhat difficult for us to do fairly, however: we use
ImageNet-pre-trained features as a starting point (which is a natural design decision considering that
our focus is how to use ImageNet pre-trained generators for improving fine-grained one-shot classifi-
cation), but much of the one/few-shot learning literature focuses on algorithmic improvements and
thus trains from scratch (often with non-fine-grained datasets). The Delta Encoder [25], which uses
the idea of learning data augmentation in the feature space, reports 82.2% on one-shot classification
on the CUB dataset with ImageNet-pre-trained features, but this is an average of only 10 episodes.

To provide more stable comparison, we cite a benchmark study [4] reporting accuracy of other
meta-learners [10, 29, 31] on the CUB dataset with 600 episodes. To compare with these scores,
we experimented with our MetaIRNet and the ProtoNet baseline using the same four-layered CNN.
As shown in Table 3, our MetaIRNet performs better than the other methods with more than 2%
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ExperimentsFramework

Some examples:

Visualization:

- Composites of real and synthetic training images 
improve fine-grained one-shot recognition.

- Future work should explore other mixing strategies, 
and theoretical results on why it works.

Results:

We thank Yi Li for helping draw figures and Minjun Li and Atsuhiro Noguchi for helpful discussions. Part of this work was done while Satoshi Tsutsui was an intern at Fudan University. Yanwei Fu was supported in part by the NSFC project (#61572138), and Science and Technology Commission of Shanghai Municipality Project (#19511120700). David Crandall was supported in part by 
the National Science Foundation (CAREER IIS-1253549), and the Indiana University Office of the Vice Provost for Research, the College of Arts and Sciences, and the Luddy School of Informatics, Computing, and Engineering through the Emerging Areas of Research Project “Learning: Brains, Machines, and Children.”


