Egocentric Vision: Potential Applications for Very Early Intervention in Autism

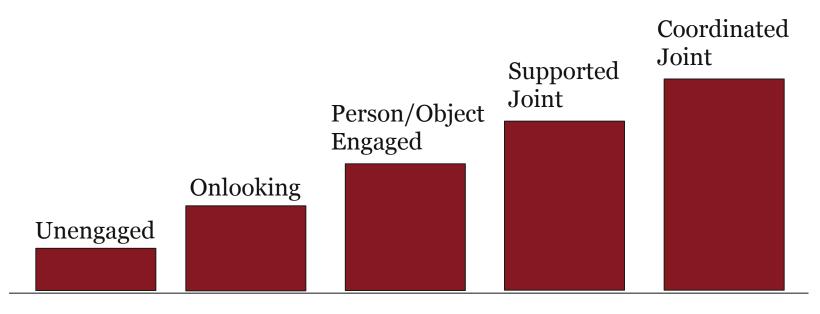
Michael S. Gaffrey, Ph.D.

Early Preventive Intervention Clinic William Greenleaf Eliot Division of Child Psychiatry

Overview

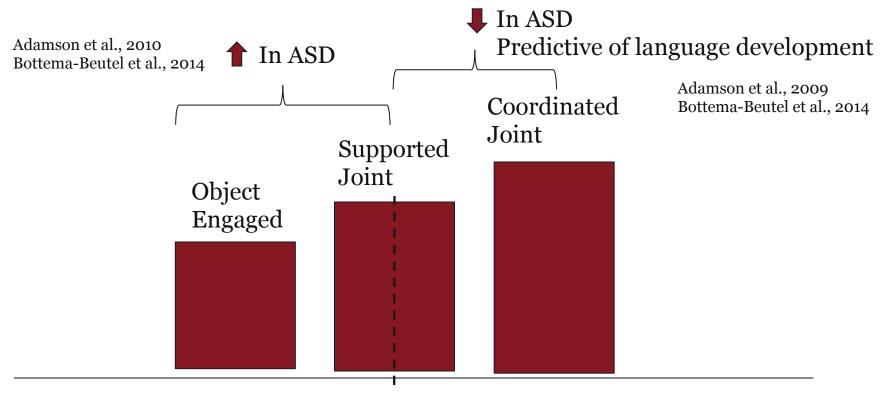
- Joint engagement and development
- ASD and joint engagement
- Parent-mediated intervention for ASD
 - Joint engagement as a primary target
- Dyadic head mounted eye tracking as a tool
- Future directions

Joint Engagement is Critical for Development

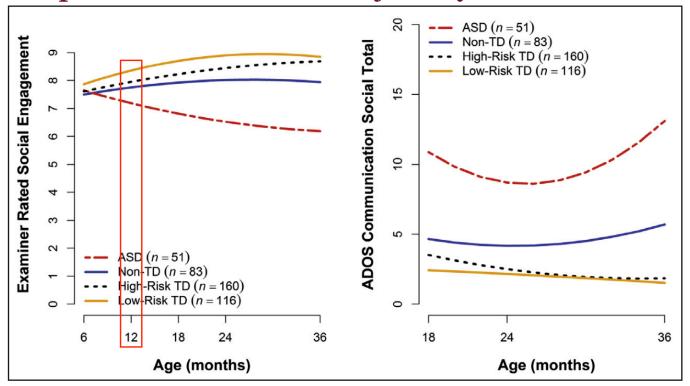


Brain development

Communication development


Play development

Joint Engagement is Critical for Development


Levels of Joint Engagement (Adamson et al. 2004) Can move through multiple engagement states during interaction

Joint Engagement is Critical for Development

Levels of Joint Engagement (Adamson et al. 2004) Can move through multiple engagement states during interaction

Autism Spectrum Disorder: Trajectory Towards ASD

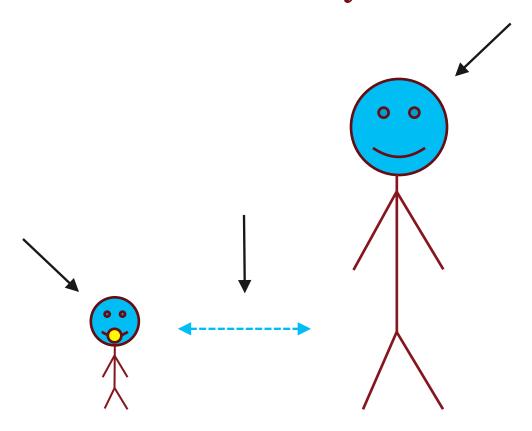
Ozonoff et al., JAACAP, 2014

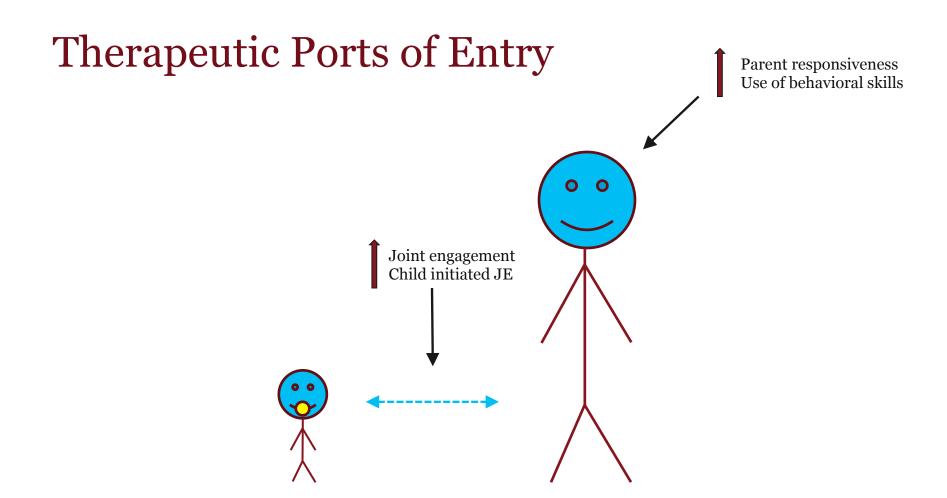
Autism Spectrum Disorder: Early Diagnostic Stability

Table 1 Previously published stability studies of children diagnosed with autism spectrum disorder (ASD) before age 3

	ASD n	Not ASD n	Time 1 age	Time 2 age	True positives	False positives	False negatives	True negatives	Sensitivity (%)	Specificity (%)	Positive predictive value (Stability) (%)	Negative predictive value (%)
All ASD, no non-spe	ctrum											
Stone 1999	37	0	31 m	43 m	31	6					84	
Takeda 2005	57	0	31 m	67 m	57	0					100	
Turner 2007	48	0	2 y	4 y	30	18					63	
Paul 2008	37	0	22 m	37 m	37	0					100	
Itzchak 2009	68	0	25 m	37 m	66	2					97	
Both ASD & non-spe	ectrum – cl	linically ascert	ained									
Eaves 2004	43	6	33 m	57 m	40	3	0	6	100	67	93	100
Lord 2006	130	42	2 y	9 y	124	6	11	31	92	84	95	74
Chawarska 2007	27	4	14-25 m	_	27	0	1	3	96	100	100	75
Sutera 2007	73	17	16-30 m	-	60	13	0	17	100	57	82	100
Kleinman 2008	61	16	27 m	53 m	46	15	0	16	100	52	75	100
Chawarska 2009	61	28	22 m	47 m	61	0	3	25	95	100	100	89
Worley 2011	53	61	23 m	31 m	38	15	12	49	76	77	72	80
Corsello 2013	26	6	30 m	3–8 y	20	5	2	4	91	44	80	67
Both ASD & non-spe	ectrum – c	ommunity asc	ertained									
Cox 1999	12	38	20 m	42 m	12	0	9	29	57	100	100	76
Ventola 2007	46	17	27 m	-	38	8	0	17	100	68	83	100
van Daalen 2009	53	78	26 m	45 m	46	7	2	76	96	92	87	97
Guthrie 2013	56	26	19 m	37 m	56	0	3	23	95	100	100	88

Note: m, months; y, years; -, age not reported; TN, true negatives; TP, true positives; FN, false negatives; FP, false positives. Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Positive predictive value = TP/(TP + FP); Negative predictive value = TN/(TN + FN).


Ozonoff et al., JCPP, 2015


Table 4 Patterns of Clinical Best Estimate outcome classifications across visits

Clinical Best Estimate Outcome			Total	ASD at 36 months	Not ASD at 36 months		
18 months	24 months	36 months	(n = 418)	(n=110)	(n = 308)	Classification	
A	A	A	38	35%	_	True positives	
A	Α	N	2	_	0.7%	False positives	
A	N	N	1	-	0.3%	False positives	
N	A	N	12	_	4%	False positives	
A	N	A	3	3%	_	False negatives	
N	A	A	27	25%	_	False negatives	
N	N	Α	42	38%	_	False negatives	
N	N	N	293	_	95%	True negatives	

ASD, autism spectrum disorder; A, ASD; N, Not ASD.

Therapeutic Ports of Entry

Shire, Gulsrud, & Kasari, 2016

ASD Intervention: Common Principles

ORIGINAL PAPER

Naturalistic Developmental Behavioral Interventions: Empirically Validated Treatments for Autism Spectrum Disorder

Laura Schreibman · Geraldine Dawson · Aubyn C. Stahmer · Rebecca Landa · Sally J. Rogers · Gail G. McGee · Connie Kasari · Brooke Ingersoll · Ann P. Kaiser · Yvonne Bruinsma · Erin McNerney · Amy Wetherby · Alycia Halladay

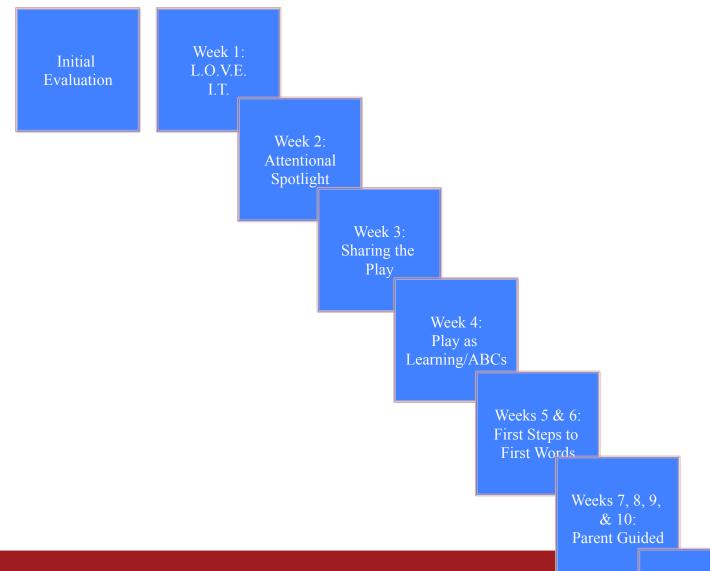
Koegel Autism: Pivotal Response Treatment (PRT)® Training and Services

JA Joint Attention SP

E

R

tention Symbolic Play

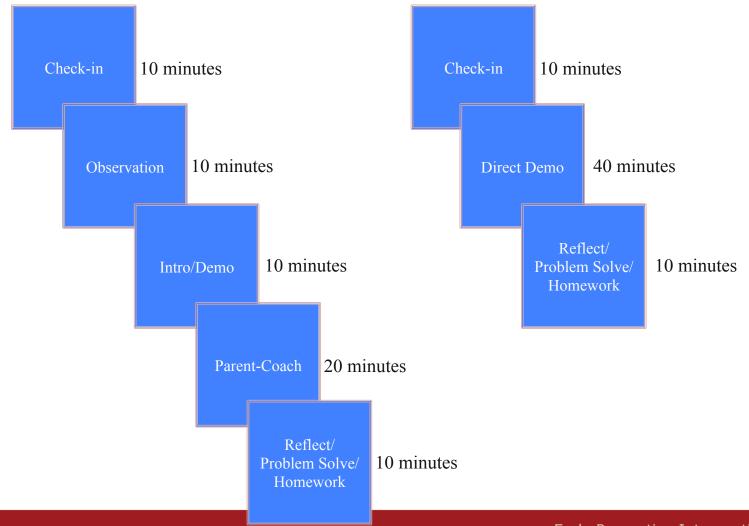

Engagement

Regulation

NDBI: Core Components

- Focus on socio-communicative learning via interactions with others
 - Joint engagement
- Learning is enhanced when embedded in activities that contain emotionally meaningful social interactions
 - Transforming common daily activities into motivating 'play' routines
- Begin as very simple action sequences
 - As duration and quality of interaction increases 'teachable moments' are identified and used to expand child's skills using well validated behavioral techniques
 - Joint attention, imitation, language

Schreibman et al., JADD, 2015

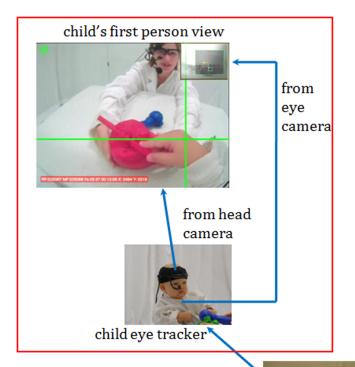


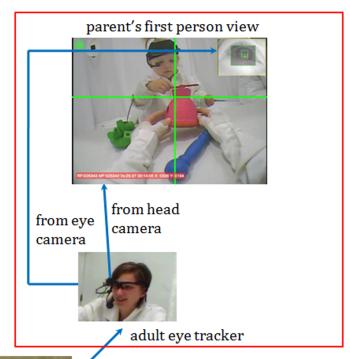
Weeks 11 & 12: G.E.T. I.T. Booster Sessions

Post Evaluation/ Next Steps

Session Outline

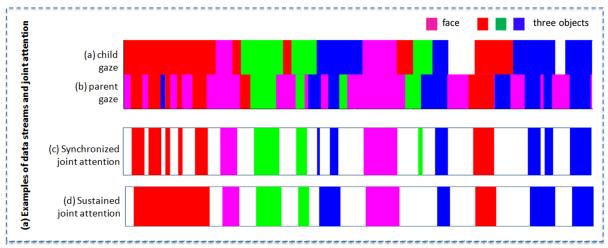
NDBI: Increasing Join Engagement

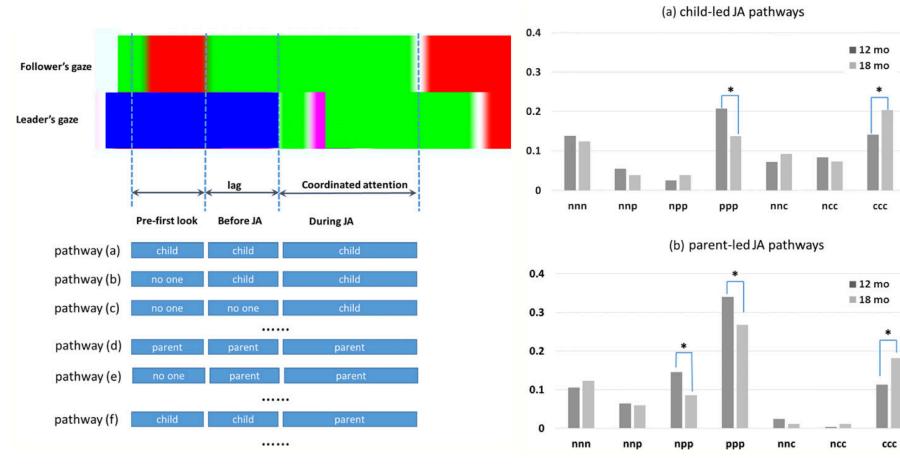

Object engaged

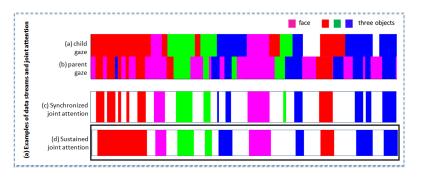

Coordinated Joint

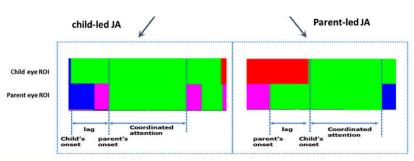
Facilitating Joint Engagement: A Therapeutic Port of Entry for ASD

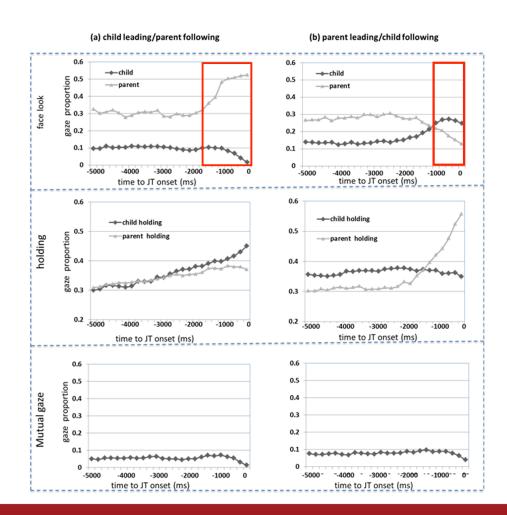
Infants who are able to incorporate a partner into their play experience are effectively engaging in rudimentary social exchanges through objects. By increasing the amount of time an infant with ASD spends in joint engagement with others, we create increased access to play situations where social communication is relevant and opportunities for facilitating development and learning can be capitalized upon.

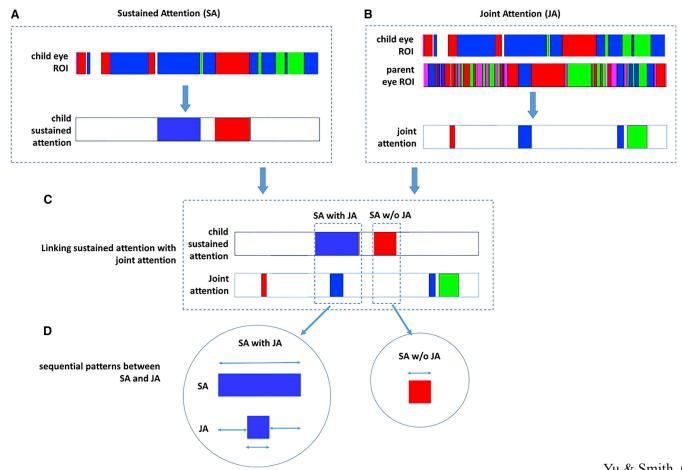

However, the mechanisms of change underlying the positive effects of NDBI remain largely unknown

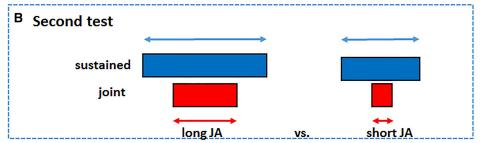


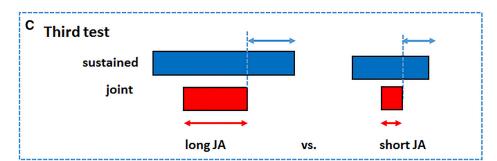


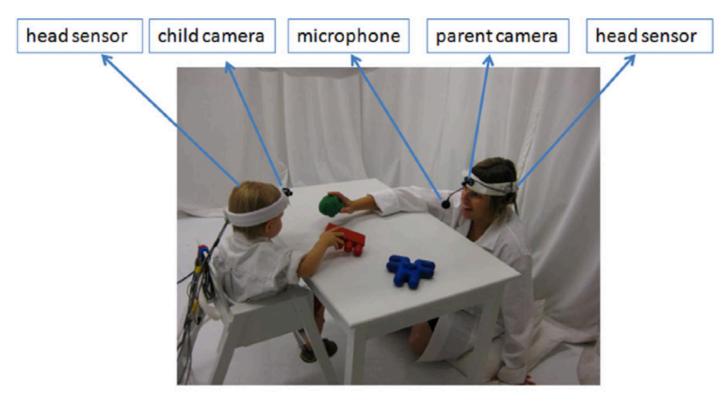

Yu & Smith, PLoS ONE, 2013

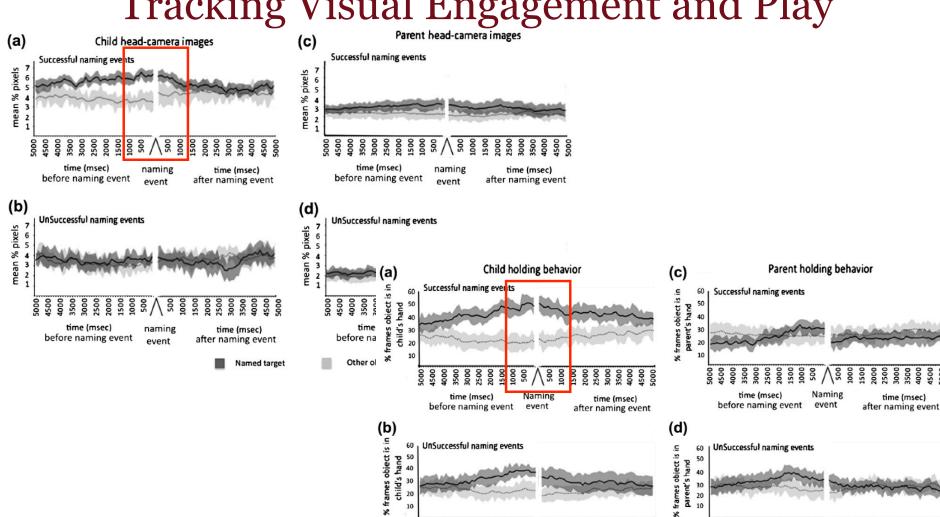



		synchronized attention	sustained coordinated attention
Proportion (% of time)	Overall	42.56 (11.35)	51.35(5.41)
	mutual gaze	9.76 (5.85)	9.45(3.23)
	Object	32.80 (7.63)	41.55(6.46)
Frequency (rate/min)	overall	22.58(5.06)	9.29(1.63)
	mutual gaze	4.85(2.37)	2.24(1.38)
	object	17.73(4.19)	7.05(1.63)
mean duration (in second)	overall	0.85 (0.30)	2.45(0.95)
	mutual gaze	0.86(0.28)	1.85(0.41)
	object	0.82(0.31)	2.53(1.02)






 $M_{long-lag} = 5,231 \text{ ms}; M_{short-lag} = 4,876 \text{ ms}$ b = 0.07, SE = 0.17, not significant


 $M_{long-JA} = 6,540 \text{ ms}; M_{short-JA} = 4,293 \text{ ms}$ b = 0.87, SE = 0.17, p < 0.001

 $M_{long-JA} = 2,146 \text{ ms}; M_{short-JA} = 959 \text{ ms}$ b = 0.82, SE = 0.09, p < 0.001

N=6; ~18.5 months old

before naming event

event

time (msec)

Named target

after naming event

time (msec)

after naming event

before naming event

Other objects

event

Summary

- ASD interferes with joint engagement
- NDBI current best practice for infant ASD
- Egocentric vision techniques would likely provide new insights into therapeutic targets and mechanisms of change in NDBI
 - Inform treatment strategies
 - Inform treatment progress and outcome
 - Inform how paths toward engagement could be used synergistically
 - Scaffolding
 - Alternative

Future Directions

- Currently using DHMET to investigate visual joint engagement and play in 12-24 month olds with and without ASD
- Planning launch of pilot RCT of NDBI using DHMET and data from other related eye-tracking techniques as measures of outcome and to predict treatment response
- Intriguing potential for synergy with other approaches
 - Neuroimaging

Michael S. Gaffrey, Ph.D.
Assistant Professor
Department of Psychiatry (Child)
Washington University SOM
Campus Box 8514
4444 Forest Park Avenue
St. Louis, MO 63108
(314) 273-8009

gaffreym@wustl.edu