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Abstract— Recognizing abnormal events such as traffic vio-
lations and accidents in natural driving scenes is essential for
successful autonomous driving and advanced driver assistance
systems. However, most work on video anomaly detection
suffers from two crucial drawbacks. First, they assume cameras
are fixed and videos have static backgrounds, which is reason-
able for surveillance applications but not for vehicle-mounted
cameras. Second, they pose the problem as one-class classifica-
tion, relying on arduously hand-labeled training datasets that
limit recognition to anomaly categories that have been explicitly
trained. This paper proposes an unsupervised approach for
traffic accident detection in first-person (dashboard-mounted
camera) videos. Our major novelty is to detect anomalies by
predicting the future locations of traffic participants and then
monitoring the prediction accuracy and consistency metrics
with three different strategies. We evaluate our approach using
a new dataset of diverse traffic accidents, AnAn Accident
Detection (A3D), as well as another publicly-available dataset.
Experimental results show that our approach outperforms the
state-of-the-art. Code and the dataset developed in this work are
available at: https://github.com/MoonBlvd/tad-IROS2019

I. INTRODUCTION

Autonomous driving has the potential to transform the
world as we know it, revolutionizing transportation by
making it faster, safer, cheaper, and less labor intensive.
A key challenge is building autonomous systems that can
accurately perceive and safely react to the huge diversity
in situations that are encountered on real-world roadways.
Driving situations obey a long-tailed distribution, such that
a very small number of common situations makes up the
vast majority of what a driver encounters, and a virtually
infinite number of rare scenarios — animals running into the
roadway, cars driving on the wrong side of the street, etc. —
makes up the rest. While each of these individual scenarios
is rare, they can and do happen. In fact, the chances that one
of them will occur on any given day are actually quite high.

Existing work in computer vision has applied deep
learning-based visual classification to detect action starts
and their associated categories [1] in the video collected by
dashboard-mounted cameras [2]. The long-tailed distribution
of driving events means that unusual events may occur so
infrequently that it may be impossible to collect training data
for them, or to even anticipate that they might occur [3]. In
fact, some studies indicate that driverless cars would need to
be tested for billions of miles before enough of these rare
situations occur to even accurately measure system safety [4],
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Fig. 1: Overview of our proposed approach. For each time
t, we monitor the accuracy and consistency of all traffic
participants’ predicted bounding boxes from previous frames
and calculate the scene’s anomaly score.

much less to collect sufficient training data to make them
work well.

An alternative approach is to avoid modeling all possible
driving scenarios, but instead to train models that recog-
nize “normal,” safe roadway conditions, and then signal an
anomaly when events that do not fit the model are observed.
Unlike the fully-supervised classification-based work, this
unsupervised approach would not be able to identify ex-
actly which anomaly has occurred, but it may still provide
sufficient information for the driving system to recognize
an unsafe situation and take evasive action. This paper
proposes a novel approach that learns a deep neural network
model to predict the future locations of objects such as cars,
bikes, pedestrians, etc., in the field of view of a dashboard-
mounted camera on a moving ego-vehicle. These models
can be easily learned from massive collections of dashboard-
mounted video of normal driving, and no manual labeling is
required. We then compare predicted object locations to the
actual locations observed in the next few video frames. We
hypothesize that anomalous roadway events can be detected
by looking for major deviations between the predicted and
actual locations, because unexpected roadway events (such
as cars striking other objects) result in sudden unexpected
changes in an object’s speed or position.

Perhaps the closest related work to ours is Liu et al. [3],
who also detect anomalous events in video. Their technique
tries to predict entire future RGB frames and then looks
for deviations between those and observed RGB frames.
But while their approach can work well for static cameras,
accurately predicting whole frames is extremely difficult
when cameras are rapidly moving, as in the driving scenario.
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We side-step this difficult problem by detecting objects and
predicting their trajectories, as opposed to trying to predict
whole frames. To model the moving camera, we explicitly
predict the future odometry of the ego-vehicle; this also
allows us to detect significant deviations of the predicted
and real ego-motion, which can be used to classify if the
ego-vehicle is involved in the accident or is just an observer.
We evaluate our technique in extensive experiments on three
datasets, including a new labeled dataset of some 1,500 video
traffic accidents from dashboard cameras that we collected
from YouTube. We find that our method significantly outper-
forms a number of baselines, including the published state-
of-the-art in anomaly detection.

II. RELATED WORK

Trajectory Prediction. Extensive research has investigated
trajectory prediction, often posed as a sequence-to-sequence
generation problem. Alahi et al. [5] introduce a Social-
LSTM for pedestrian trajectories and their interactions. The
proposed social pooling method is further improved by
Gupta et al. [6] to capture global context in a Generative
Adversarial Network (GAN). Social pooling is also applied
to vehicle trajectory prediction in Deo et al. [7] with multi-
modal maneuver conditions. Other work [8], [9] captures
scene context information using attention mechanisms to
assist trajectory prediction. Lee et al. [10] incorporate Recur-
rent Neural Networks (RNNs) with conditional variational
autoencoders (CVAEs) to generate multimodal predictions
and choose the best by ranking scores.

While the above methods are designed for third-person
views from static cameras, recent work has considered vision
in first-person (egocentric) videos that capture the natural
field of view of the person or agent (e.g., vehicle) wearing
the camera to study the camera wearer’s actions [11], [12],
trajectories [13], interactions [14], [15], etc. Bhattacharyya et
al. [16] predict future locations of pedestrians from vehicle-
mounted cameras, modeling observation uncertainties with
a Bayesian LSTM network. Yagi et al. [17] incorporate
different kinds of cues into a convolution-deconvolution
(Conv1D) network to predict pedestrians’ future locations.
Yao et al. [18] extend this work to autonomous driving sce-
narios by proposing a multi-stream RNN Encoder-Decoder
(RNN-ED) architecture with both past vehicle locations and
image features as inputs for anticipating vehicle locations.

Video Anomaly Detection. Video anomaly detection has
received considerable attention in computer vision and
robotics [19]. Previous work mainly focuses on video surveil-
lance scenarios typically using an unsupervised learning
method on the reconstruction of normal training data. For
example, Hasan et al. [20] propose a 3D convolutional
Auto-Encoder (Conv-AE) to model non-anomalous frames.
To take advantage of temporal information, [21], [22] use
a Convolutional LSTM Auto-Encoder (ConvLSTM-AE) to
capture regular visual and motion patterns simultaneously.
Luo et al. [23] propose a special framework of sRNN,
called temporally-coherent sparse coding (TSC), to preserve

the similarities between frames within normal and abnor-
mal events. Liu et al. [3] detect anomalies by looking for
differences between a predicted future frame and the actual
frame. However, in dynamic autonomous driving scenarios, it
is hard to reconstruct either the current or future RGB frames
due to the ego-car’s intense motion. It is even harder to detect
abnormal events. This paper proposes detecting accidents on
roads by using the difference between predicted and actual
trajectories of other vehicles. Our method not only eliminates
the computational cost of reconstructing full RGB frames,
but also localizes potential anomaly participants.

Prior work has also detected anomalies such as moving
violations and car collisions on roads. Chan et al. [2]
introduce a dataset of crowd-sourced dashcam videos and a
dynamic-spatial-attention RNN model for accident detection.
Herzig et al. [24] propose a Spatio-Temporal Action Graph
(STAG) network to model the latent graph structure of spatial
and temporal relations between objects. These methods are
based on supervised learning that requires arduous human
annotations and makes the unrealistic assumption that all
abnormal patterns have been observed in the training data.
This paper considers the challenging but practical problem
of predicting accidents with unsupervised learning. To eval-
uate our approach, we introduce a new dataset with traffic
accidents involving objects such as cars and pedestrians.

III. UNSUPERVISED TRAFFIC ACCIDENT DETECTION
IN FIRST-PERSON VIDEOS

Autonomous vehicles must monitor the roadway ahead
for signs of unexpected activity that may require evasive
action. A natural way to detect these anomalies is to look for
unexpected or rare movements in the first-person perspective
of a front-facing, dashboard-mounted camera on a moving
ego-vehicle. Prior work [3] proposes monitoring for unex-
pected scenarios by using past video frames to predict the
current video frame, and then comparing it to the observed
frame and looking for major differences. However, this does
not work well for moving cameras on vehicles, where the
perceived optical motion in the frame is induced by both
moving objects and camera ego-motion. More importantly,
anomaly detection systems do not need to accurately predict
all information in the frame, since anomalies are unlikely to
involve peripheral objects such as houses or billboards by
the roadside. This paper thus assumes that an anomaly may
exist if an object’s real-world observed trajectory deviates
from the predicted trajectory. For example, when a vehicle
should move through an intersection but instead suddenly
stops, a collision may have occurred.

Following Liu et al. [3], our model is trained with a large-
scale dataset of normal, non-anomalous driving videos. This
allows the model to learn normal patterns of object and
ego motions, then recognize deviations without the need to
explicitly train the model with examples of every possible
anomaly. This video data is easy to obtain and does not
require hand labeling. Considering the influence of ego-
motion on perceived object location, we incorporate a future
ego-motion prediction module [18] as an additional input. At



Fig. 2: Overview of the future object localization model.

test time, we use the model to predict the current locations of
objects based on the last few frames of data and determine
if an abnormal event has happened based on three different
anomaly detection strategies, as described in Section III-B.

A. Future Object Localization (FOL)

1) Bounding Box Prediction: Following [18], we denote
an observed object’s bounding box Xt = [cxt , c

y
t , wt, ht] at

time t, where (cxt , cyt ) is the location of the center of the box
and wt and ht are its width and height in pixels, respectively.
We denote the object’s future bounding box trajectory for the
δ frames after time t to be Yt = {Yt+1, Yt+2, · · · , Yt+δ},
where each Yt is a bounding box parameterized by center,
width, and height. Given the image evidence Ot observed at
time t, a visible object’s location Xt, and its corresponding
historical information Ht−1, our future object localization
model predicts Yt. This model is inspired by the multi-
stream RNN encoder-decoder framework of Yao et al. [18],
but with completely different network structure [25]. For
each frame, [18] receives and re-processes the previous
10 frames before making a decision, whereas our model
only needs to process the current information, making it
much faster at inference time. Our model is shown in
Figure 2. Two encoders (Enc) based on gated recurrent
units (GRUs) receive an object’s current bounding box and
pixel-level spatiotemporal features as inputs, respectively,
and update the object’s hidden states. In particular, the
spatiotemporal features are extracted by a region-of-interest
pooling (RoIPool) operation using bilinear interpolation from
precomputed optical flow fields. The updated hidden states
are used by a location decoder (Dec) to recurrently predict
the bounding boxes of the immediate future.

2) Ego-Motion Cue: Ego-motion information of the mov-
ing camera has been shown to be necessary for accurate
future object localization [16], [18]. Let Et be the ego-
vehicle’s pose at time t; Et = {φt, xt, zt} where φt is the
yaw angle and xt and zt are the positions along the ground
plane with respect to the vehicle’s starting position in the
first video frame. We predict the ego-vehicle’s odometry by
using another RNN encoder-decoder module to encode ego-
position change vector Et − Et−1 and decode future ego-
position changes E = {Êt+1−Et, Êt+2−Et, ..., Êt+δ−Et}.

We use the change in ego-position to eliminate accumulated
odometry errors. The output E is then combined with the
hidden state of the future object localization decoder to form
the input into the next time step.

3) Missed Objects: We build a list of trackers Trks
per [26] to record the current bounding box Trks[i].Xt,
the predicted future boxes Trks[i].Ŷt, and the tracker age
Trks[i].age of each object. We denote all maintained track
IDs as D (both observed and missed), all currently observed
track IDs as C, and the missed object IDs as D − C. At
each time step, we update the observed trackers and initialize
a new tracker when a new object is detected. For objects
that are temporarily missed (i.e., occluded), we use their
previously predicted bounding boxes as their estimated cur-
rent location and run future object localization with RoIPool
features from those predicted boxes per Algorithm 1. This
missed object mechanism is essential in our prediction-based
anomaly detection method to eliminate the impact of failed
object detection or tracking in any given frame. For example,
if an object with a normal motion pattern is missed for
several frames, the FOL is still expected to give reasonable
predictions except for some accumulated deviations. On
the other hand, if an anomalous object is missed during
tracking [26], FOL-Track will make a prediction using its
previously predicted bounding box whose region can be
totally displaced and can result in inaccurate predictions.
In this case, some false alarms and false negatives can be
eliminated by using the metrics presented in Section III-B.3.

Algorithm 1: FOL-Track Algorithm

Input : Observed bounding boxes {X(i)
t } where

i ∈ C, observed image evidence Ot, trackers
of all objects Trks with track IDs D

Output: Updated trackers Trks
1 A is the maximum age of a tracker
2 for i ∈ C do // update observed trackers
3 if i /∈ D then
4 initialize Trks[i]
5 else
6 Trks[i].Xt = X

(i)
t

7 Trks[i].Ŷt = FOL(X
(i)
t , Ot)

8 end
9 end

10 for j ∈ D − C do // update missed trackers
11 if Trks[j].age > A then
12 remove Trks[j] from Trks
13 else
14 Trks[j].Xt = Trks[j].Ŷt−1
15 Trks[j].Ŷt = FOL(Trks[j].Xt, Ot)
16 end
17 end

B. Traffic Accident Detection
In this section, we propose three different strategies for

traffic accident detection by monitoring the prediction ac-



Fig. 3: Overview of our unsupervised traffic accident detection methods. The three brackets correspond to: (1) Predicted
bounding box accuracy method (pink); (2) Predicted box mask accuracy method (green); (3) Predicted bounding box
consistency method (purple). All methods use multiple previous FOL outputs to compute anomaly scores.

curacy and consistency of objects’ future locations. The key
idea is that object trajectories and locations in non-anomalous
events can be precisely predicted, while deviations from
predicted behaviors suggest an anomaly.

1) Predicted Bounding Boxes - Accuracy: One simple
method for recognizing abnormal events is to directly mea-
sure the similarity between predicted object bounding boxes
and their corresponding observations. The FOL model pre-
dicts bounding boxes of the next δ future frames, i.e., at each
time t each object has δ bounding boxes predicted from time
t− δ to t− 1, respectively. We first average the positions of
the δ bounding boxes, then compute intersection over union
(IoU) between the averaged bounding box and the observed
box location, where higher IoU means greater agreement
between the two boxes. We average computed IoU values
over all observed objects and then compute an aggregate
anomaly score Lbbox ∈ [0, 1],

Lbbox = 1− 1

N

N∑
i=1

IoU
((1

δ

δ∑
j=1

Ŷ it,t−j

)
, Y it0

)
, (1)

where N is the total number of observed objects, and Ŷ it,t−j
is the predicted bounding box from time t− j of object i at
time t. This method relies upon accurate object tracking to
match the predicted and observed bounding boxes.

2) Predicted Box Mask - Accuracy: Although tracking
algorithms such as Deep-SORT [26] offer reasonable ac-
curacy, it is still possible to lose or mis-track objects.
We found that inaccurate tracking particularly happens in
severe traffic accidents because of the twist and distortion
of object appearances. Moreover, severe ego-motion also
results in inaccurate tracking due to sudden changes in object
locations. This increases the number of false negatives of
the metric proposed above, which simply ignores objects
that are not successfully tracked in a given frame. To solve
this problem, we first convert all areas within the predicted
bounding boxes to binary masks, with areas inside the boxes
having value 1 and backgrounds having 0, and do the same

with the observed boxes. We then calculate an anomaly score
as the IoU between these two binary masks,

I(u,v) =

{
1, if pixel (u, v) within box Xi, ∀i,
0, otherwise,

(2)

Lmask = 1− IoU
(
Ît,t−1, It

)
, (3)

where I(u,v) is pixel (u, v) on mask I , Xi is the i-th
bounding box, Ît,t−1 is the predicted mask from time t− 1,
and It is the observed mask at t. In other words, while
the metric in the last section compares bounding boxes on
an object-by-object basis, this metric simply compares the
bounding boxes of all objects simultaneously. The main idea
is that accurate prediction results will still have a relatively
large IoU compared to the ground truth observation.

3) Predicted Bounding Boxes - Consistency: The above
methods rely on accurate detection of objects in consecutive
frames to compute anomaly scores. However, the detection of
anomaly participants is not always accurate due to changes
in appearance and mutual occlusions. We hypothesize that
visual and motion features about an anomaly do not only
appear once it happens, but usually are accompanied by
a salient pre-event. We thus propose another strategy to
detect anomalies by computing consistency of future object
localization outputs from several previous frames while elim-
inating the effect of inaccurate detection and tracking.

As discussed in Section III-B.1, our model has δ predicted
bounding boxes for each object in video frame t. We com-
pute the standard deviation (STD) between all δ predicted
bounding boxes to measure their similarity,

Lpred =
1

N

N∑
i=1

max
{cx,cy,w,h}

STD(Ŷt,t−j). (4)

We compute the maximum STD over the four components
of the bounding boxes since different anomalies may be
indicated by different effects on the bounding box, e.g.,
suddenly stopped cross traffic may only have large STD



TABLE I: Comparison of publicly available datasets for video anomaly detection. ∗Surveillance videos. ∗∗Egocentric videos
(training frames are all normal videos, while some test frame videos contain anomalies.)

Dataset # videos # training frames # testing frames # anomaly events typical participants

UCSD Ped1/Ped2∗ [27] 98 9,350 9,210 77 bike, pedestrian, cart, skateboard
CUHK Avenue∗ [28] 37 15,328 15,324 47 bike, pedestrian
UCF-Crime∗ [29] 1,900 1,610 videos 290 videos 1,900 car, pedestrian, animal
ShanghaiTech∗ [23] 437 274,515 42,883 130 bike, pedestrian
Street Accidents (SA)∗∗ [2] 994 82,900 16,500 165 car, truck, bike
A3D∗∗ 1,500 79,991 (HEV-I) 128,175 1,500 car, truck, bike, pedestrian, animal

along the horizontal axis. A low STD suggests the object is
following normal movement patterns and thus the predictions
are stable, while a high standard deviation suggests abnormal
motion. For all three methods, we follow [3] to normalize
computed anomaly scores for evaluation.

IV. EXPERIMENTS

To evaluate our method on realistic traffic scenarios, we
introduce a new dataset, AnAn Accident Detection (A3D),
of on-road abnormal event videos compiled as 1500 video
clips from a YouTube channel [30] of dashboard cameras
from different cars in East Asia. Each video contains an
abnormal traffic event at different temporal locations. We
labeled each video with anomaly start and end times under
the consensus of three human annotators. The annotators
were instructed to label the anomalies based on common
sense, with the start time defined to be the point when the
accident is inevitable and the end time the point when all
participants recover a normal moving condition or fully stop.

We compare our A3D dataset with existing video anomaly
detection datasets in Table I. A3D includes a total of 128,175
frames (ranging from 23 to 208 frames) at 10 frames per
second and is clustered into 18 types of traffic accidents
each labeled with a brief description. A3D includes driving
scenarios with different weather conditions (e.g., sunny,
rainy, snowy, etc.), places (e.g., urban, countryside, etc.),
and participant types (e.g., cars, motorcycles, pedestrians,
animals, etc.). In addition to start and end times, each traffic
anomaly is labeled with a binary value indicating whether the
ego-vehicle is involved, to provide a better understanding of
the event. Note that this could especially benefit the first-
person vision community. For example, rear-end collisions
are the most difficult to detect from traditional anomaly
detection methods. About 60% of accidents in the dataset
involve the ego-vehicle, and others are observed by moving
cars from a third-person perspective.

Since A3D does not contain nominal videos, we use
the publicly available Honda Egocentric View Intersection
(HEV-I) [18] dataset to train our model. HEV-I was designed
for future object localization and consists of 230 on-road
videos at intersections in the San Francisco Bay Area. Each
video is 10-60 seconds in length. Since HEV-I and A3D were
collected in different places with different kinds of cameras,
there is no overlap between the training and testing datasets.
Following prior work [18], we produce object bounding

boxes using Mask-RCNN [31] pre-trained on the COCO
dataset and find tracking IDs using Deep-SORT [26].

A. Implementation Details
We implemented our model in PyTorch [32] and per-

formed experiments on a system with an Nvidia Titan Xp
Pascal GPU. We use ORB-SLAM 2.0 [33] for ego odometry
calculation and compute optical flow using FlowNet 2.0 [34].
In our training data (HEV-I), we used the provided camera
intrinsic matrix. We used the same matrix for A3D and SA
since these videos are collected from different dash cameras
and the parameters are unavailable. We also set the feature
count to 12000 to have a better performance. We use a
5×5 RoIPool operator to produce the final flattened feature
vector Ot ∈ R50. The gated recurrent unit (GRU) [35] is our
basic RNN cell. GRU hidden state sizes for future object
localization and the ego-motion prediction model were set
to 512 and 128, respectively. To learn network parameters,
we use the RMSprop [36] optimizer with default parameters,
learning rate 10−4, and no weight decay. Our models were
optimized in an end-to-end manner, and the training process
was terminated after 100 epochs using a batch size of 32.
The best model was selected according to its performance in
future object localization.

B. Evaluation Metrics
For accident detection evaluation, we follow the literature

of video anomaly detection [27] and compute frame-level
Receiver Operation Characteristic (ROC) curves and Area
Under the Curve (AUC). A higher AUC value indicates better
performance.

C. Video Anomaly Detection Baselines

K-Nearest Neighbor Distance. We segment each video
into a bag of short video chunks of 16 frames. Each chunk
is labeled as either normal or anomalous based on the
annotation of the 8-th frame. We then feed each chunk into
an I3D [37] network pre-trained on Kinetics dataset, and
extract the outputs of the last fully connected layer as its
feature representations. All videos in the HEV-I dataset are
used as normal data. The normalized distance of each test
video chunk to the centroid of its K nearest normal (K-NN)
video chunks is computed as the anomaly score. We show
results of K = 1 and K = 5 in this paper.

Conv-AE [20]. We reimplement the Conv-AE model for
unsupervised video anomaly detection by following [20]. The



TABLE II: Experimental results of FOL (errors are in pixels).

Dataset Prediction Horizon FDE ADE FIOU

HEV-I (test) [18] 0.5 sec 11.0 6.7 0.85
SA (test) [2] 0.5 sec 21.3 13.5 0.64
A3D 0.5 sec 25.6 16.4 0.63

TABLE III: Experimental results on A3D and SA datasets
in terms of AUC.

Methods A3D A3D (w/o Ego) SA [2]

K-NN (K = 1) 48.0 51.3 48.2
K-NN (K = 5) 47.8 51.2 48.1
Conv-AE [20] 49.5 49.9 50.4
State-of-the-art [3] 46.1 50.7 50.4

FOL-AvgIoU 49.7 57.0 53.4
FOL-MinIoU 48.4 56.0 52.6
FOL-Mask 54.1 54.9 54.8
FOL-AvgSTD (pred only) 59.3 60.2 55.8
FOL-MaxSTD (pred only) 60.1 59.8 55.6

input images are encoded by 3 convolutional layers and 2
pooling layers, and then decoded by 3 deconvolutional layers
and 2 upsampling layers for reconstruction. Anomaly score
computation is from [20]. The model is trained on a mixture
of the SA (Table I) and the HEV-I dataset for 20 epochs and
the best model is selected.

State-of-the-art [3]. The future frame prediction network
with Generative Adversarial Network (GAN) achieved the
state-of-the-art results for video anomaly detection. This
work detects abnormal events by leveraging the difference
between a predicted future frame and its ground truth. To
fairly compare with our method, we used the publicly avail-
able code by the authors of [3] and finetuned on the same
dataset as Conv-AE. Training is terminated after 100,000
iterations and the best model is selected.

D. FOL Results

We first show the performance of the pretrained FOL
model on HEV-I’s validation set and on the other two
accident datasets (SA and A3D). Similar to [18], the final dis-
placement error (FDE), average displacement error (ADE),
and final IOU (FIOU) are presented in Table II. The FDEs
and ADEs on A3D and SA are higher and the FIOUs are
lower than HEV-I because these videos were collected from
different dash cameras in different scenarios, while all HEV-I
videos were collected using the same cameras. The accidents
in these videos result in lower FOL prediction accuracy,
which is consistent with the assumption of our proposed
approach. The overall FOL performance on A3D is slightly
worse compare to SA since A3D is a larger dataset with
more diverse accident types.

E. Accident Detection Results on A3D Dataset

Quantitative Results. We evaluated baselines, a state-of-
the-art method, and our proposed method on the A3D dataset.

As shown in the first column of Table III, our method
outperforms the K−NN baseline as well as Conv-AE and
the state-of-the-art. As a comparative study, we evaluate
performance of our future object localization (FOL) methods
with the three metrics presented in Section III-B. FOL-
AvgIoU uses the metrics in Eq. (1), while FOL-MinIoU is a
variation where we evaluate minimum IoU over all observed
objects instead of computing the average, resulting in not
only anomaly detection but also anomalous object local-
ization. However, FOL-MinIoU can perform worse since
it is not robust to outliers such as failed prediction of a
normal object, which is more frequent in videos with a large
number of objects. FOL-Mask uses the metrics in Eq. (3)
and significantly outperforms the above two methods. This
method does not rely on accurate tracking, so it handles cases
including mis-tracked objects. However, it may mis-label a
frame as an anomaly if object detection loses some normal
objects. Our best methods use the prediction-only metric
defined in Eq. (4) which has two variations FOL-AvgSTD
and FOL-MaxSTD. Similar to the IoU based methods, FOL-
MaxSTD finds the most anomalous object in the frame. By
using only prediction, our method is insensitive to unreliable
object detection and tracking when an anomaly happens,
including the false negatives (in IoU based methods) and
the false positives (in Mask based methods) caused by
losing objects. However, this method can fail in cases where
predicting future locations of an object is difficult, e.g., an
object with low resolution, intense ego-motion, or multiple
object occlusions due to heavy traffic.

We also evaluated the methods by removing videos where
ego cars (A3D w/o Ego in Table III) are involved in
anomalies to show how ego motion influences anomaly
detection performance. As shown in the second and the
third columns of Table III, FOL-AvgIoU and FOL-MinIoU
perform better on videos where ego camera is steady while
the other methods are relatively robust to ego-motion. This
further shows that it is necessary to reduce dependency on
accurate object detection and tracking when anomalies occur.

Qualitative Results. Fig. 4 shows two sample results of our
best method and the published state-of-the-art on the A3D
dataset. For example, in the upper one, predictions of all
observed traffic participants are accurate and consistent at
the beginning. The ego car is hit at around the 30-th frame
by the white car on its left, causing inaccurate and unstable
predictions and generating high anomaly scores. After the
crash, the ego car stops and the predictions recover, as
presented in the last two images. Fig. 6 shows a failure case
where our method makes false alarms at the beginning due to
inconsistent prediction of the very left car occluded by trees.
This is because our model takes all objects into consideration
equally rather than focusing on important objects. False
negatives show that our method is not able to detect an
accident if participants are totally occluded (e.g. the bike) or
the motion pattern is accidentally normal from a particular
viewpoint (e.g. the middle car).



Fig. 4: Two examples of our best method and a state-of-the-art method on the A3D dataset.

Fig. 5: An example of our best method and a state-of-the-art method on the SA dataset [2].

Fig. 6: A failure case of our method on the A3D dataset with false alarms and false negatives.



F. Results on the SA Dataset

We also compared the performance of our model and
baselines on the Street Accident (SA) [2] dataset of on-
road accidents in Taiwan. This dataset was collected from
dashboard cameras with 720p resolution from the driver’s
point-of-view. Note that we use SA only for testing, and
still train on the HEV-I dataset. We follow prior work [2]
and report evaluation results with 165 test videos containing
different anomalies. The right-most column in Table III
shows the results of different methods on SA. In general,
our best method outperforms all baselines and the published
state-of-the-art. The SA testing dataset is much smaller than
A3D, and we have informally observed that it is biased
towards anomalies involving bikes. It also contains videos
collected from cyclist head cameras which have irregular
camera angles and large vibrations. Fig. 5 shows an example
of anomaly detection in the SA dataset.

V. CONCLUSION

This paper proposed an unsupervised deep learning frame-
work for traffic accident detection from egocentric videos. A
key challenge is rapid motion of the ego-car, making visual
reconstruction of either current or future RGB frames from
regular training data difficult. We predicted traffic participant
trajectories as well as their future locations, and utilized
anticipation accuracy and consistency as signals that an
anomaly may have occurred. We introduced a new dataset
consisting of a variety of real-world accidents on roads and
also evaluated our method on an existing traffic accident
detection dataset. Experiments showed that our model sig-
nificantly outperforms published baselines.
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