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Abstract. Our project is at the interface of Big Data and HPC -- High-
Performance Big Data computing and this paper describes a collaboration between 
7 collaborating Universities at Arizona State, Indiana (lead), Kansas, Rutgers, 
Stony Brook, Virginia Tech, and Utah. It addresses the intersection of High-
performance and Big Data computing with several different application areas or 
communities driving the requirements for software systems and algorithms. We 
describe the base architecture, including the HPC-ABDS, High-Performance 
Computing enhanced Apache Big Data Stack, and an application use case study 
identifying key features that determine software and algorithm requirements. We 
summarize middleware including Harp-DAAL collective communication layer, 
Twister2 Big Data toolkit, and pilot jobs. Then we present the SPIDAL Scalable 
Parallel Interoperable Data Analytics Library and our work for it in core machine-
learning, image processing and the application communities, Network science, 
Polar Science, Biomolecular Simulations, Pathology, and Spatial systems. We 
describe basic algorithms and their integration in end-to-end use cases. 
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1. INTRODUCTION AND MOTIVATION 

1.1. Activities 

This work is a collaboration between university teams at Arizona State, Indiana (lead), 
Kansas, Rutgers, Stony Brook, Virginia Tech, and Utah. Our website is [1] describing 
work funded by the US National Science Foundation as NSF 1443054. The project is 

                                                           
1Corresponding Author, Digital Science Center, Indiana University Bloomington, IN, USA. E-mail: 

gcf@iu.edu  

mailto:gcf@iu.edu
mailto:xqiu@iu.edu
mailto:djcran@indiana.edu
mailto:gvonlasz@iu.edu
mailto:obeckste@asu.edu
mailto:paden@ku.edu
mailto:shantenu.jha@rutgers.edu
mailto:fusheng.wang@stonybrook.edu
mailto:tec3@utah.edu
https://paperpile.com/c/yJFQMn/jRFdC


constructing data building blocks to address major cyberinfrastructure challenges in 
several different communities including Biomolecular Simulations, Network, and 
Computational Social Science, Computer Vision, Spatial Geographical Information 
Systems, Remote Sensing for Polar Science, Pathology Informatics as well as core 
machine learning and optimization techniques.  We are now exploring other possible 
communities such as those using streaming data systems where our work could be 
valuable. This paper updates an extensive project report from Fall 2016 [2] and extends 
a recent poster [3]. 

One set of the project building blocks are the components of our Middleware for 
Data-Intensive Analytics and Science (MIDAS) built by Indiana University and 
Rutgers that enables scalable applications with the performance of HPC (High-
Performance Computing) and the rich functionality of the commodity Apache Big Data 
Stack. The other set of building blocks are the currently around 40 parallel high-
performance members (see sections 4.2 and 4.3) of our Scalable Parallel 
Interoperable Data Analytics Library (SPIDAL). Interoperability implies a broad 
target for our software, which generates what we call HPC clouds on XSEDE systems, 
public clouds and petascale to exascale supercomputers. We support Java or 
applications written in more traditional HPC languages like C++. 

The project has designed and is using an overall architecture built around the twin 
concepts of High-Performance Computing enhanced Apache Big Data Stack 
(HPC-ABDS) software and classification of Big data applications – the Ogres – that 
defined the key qualities exhibited by applications and required to be supported in 
software. This key early work is well published and mature enough to guide our 
software architecture and choice of broadly usable building blocks. It has had a 
significant impact on the  NIST Big Data Interoperability Framework [4] and is 
summarized in section 2. We have also proposed a Big Data – Big Simulation and HPC 
convergence based on these ideas, which suggest that our SPIDAL library and MIDAS 
middleware will be important for realizing convergence. We have been working closely 
with the BDEC (Big Data Exascale Computing) initiative on both convergence and 
more broadly use of HPC in Big Data systems [5]. The kickoff BDEC2 meeting was 
hosted by Indiana University in November.  

MIDAS mixes traditional HPC technologies such as MPI, Pilot Jobs, and Slurm 
with Big Data environments such as Hadoop, Spark, Flink, Heron, Storm, Docker, 
Mesos, Kubernetes, and Tensorflow. We have several published studies that look at 
partial integrations such as MPI and Hadoop or Slurm and Heron. However, now we 
have designed a clean HPC-Big Data middleware with 3 key components: Pilot Jobs, 
Harp, and Twister2. Pilot jobs have successfully been extended from simulations to Big 
Data. Harp integrates with Hadoop providing both collective communication and the 
Intel Data Analytics node library DAAL (Data Analytics Acceleration Library). The 
success of the Intel Parallel Computing Center@IU is built around this. Finally, 
Twister2 aims to provide the full functionality of Spark Flink and Heron including 
dataflow communication (where we have released a library Twister: Net), RDD-style 
in-memory databases, SQL modules but with integrated high-performance mechanisms 
and software. 

1.2. Big Data Application Analysis; Big Data Ogres 

A major achievement of the project was the development of the Big Data Ogres 
and their use to describe the integration of HPC, Big Data, and Simulations. In this 
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completed work, the Big Data Ogres built on a collection of 51 big data uses gathered 
by the NIST Public Working Group where 26 properties were gathered for each 
application [4]. This information was combined with other studies including the 
Berkeley dwarfs [6], the NAS parallel benchmarks [7], [8] and the Computational 
Giants of the NRC Massive Data Analysis Report [9]. The Ogre analysis led to a set of 
50 features divided into four views that could be used to categorize and distinguish 
between applications [10]. The four views are Problem Architecture (Macropattern); 
Execution Features (Micropatterns); Data Source and Style; and finally the Processing 
View or runtime features. We generalized [11] this approach to integrate Big Data and 
Simulation applications into a single classification that we called convergence 
diamonds with the total facets growing to 64 in number and split between the same 4 
views and this is shown in fig. 1-1. Further, a mapping of facets into the work of this 
project has been given earlier [10]. 

1.3. Global Artificial Intelligence and Modelling Supercomputer 

Recently Microsoft research described their computing systems work under the 
umbrella term of the Global AI Supercomputer. We can expand this idea to describe 
our converged big data and big simulation approach as a Global Artificial Intelligence 
and Modelling Supercomputer (GAIMS). We add modeling to include simulations and 
to recognize that big data analysis includes both data and model. GAIMS consists of an 
intelligent cloud integrated with an intelligent edge. The intelligent cloud is logically 
centralized but physically distributed consisting by 2021 of over 600 hyperscale data 
centers (roughly over 50,000 servers each). There will be by 2021 around 14 billion 
links to the Intelligent Edge or IoT, which is a distributed Data Grid holding over 80% 
of the digital data created each year [12], [13]. Both the Intelligent Cloud and 
Intelligent Edge form Grids in a parlance that has recently fallen out of favor. 
Compared to previous work on Grids, today’s realization has a much greater emphasis 
on data and as used has a clearer administrative structure. 

Edge devices and local fog computing offer much better latency on limited 
computing tasks with single tenancy but security risks from the nonprotected 
deployment and often immature software systems.  In our project, we are using High 
Performance Computing ideas/technologies to give better functionality and 
performance “cloud” and “edge” systems. The edge for scientific research can involve 
devices from giant accelerators and light sources, remote sensing satellites, gene 
sequences to tiny environmental sensors driving AI First Science and Engineering. 
GAIMS delivers digital twin simulations to industry and computational science 
simulations to academia. It analyses research, government, commercial, and consumer 
data. GAIMS realizes the goals of High-Performance Big-Data Computing (HPBDC), 
Big Data and Extreme-scale Computing (BDEC), and the Common Digital Continuum 
Platform for Big Data and Extreme Scale Computing (BDEC2). Below section 2 
describes the technology to power GAIMS and sections 3 and 4 its applications. In the 
final section 6, we comment that GAIMS both powers AI First activities but is itself 
enhanced by AI configuring and learning its behavior. [14]–[17] 
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Figure 1-1; 64 Convergence Diamonds [11] Building on Big Data Ogres 



2. MIDDLEWARE BUILDING BLOCKS (MIDAS)  

2.1. High-Performance Computing enhanced Apache Big Data Stack 

An important but completed project gathered in Figure 2-1 much existing relevant 
systems software coming from either HPC or commodity Apache or other Big Data 
sources [18]. We stopped collecting software names as although the active field was 
still generating new software names, we felt the message and even software 
architecture was clear, and we did not gain anymore from increasing our collection 
which started in 2013 with just 35 members [19]. 

The software is broken up into 21 layers so software systems are grouped by 
functionality and the layers where there is special attention in this project are colored 
green in Figure 2-1. This software collection is termed HPC-ABDS (High Performance 
Computing enhanced Apache Big Data Stack) as many critical core components of the 
commodity stack (such as Hadoop, Spark, and HBase) come from open source projects 
while HPC is needed to bring performance and other parallel computing capabilities as 
we described in sections 1.3 and 4.1 [20].  

Note that Apache is the largest but not the only source of open source software; we 
believe that the Apache Foundation is a critical leader in the Big Data open source 
software movement and use it to designate the full big data software ecosystem. The 
figure also includes proprietary systems as they illustrate key capabilities and often 
motivate open source equivalents. We built this picture for big data problems, but it 
also applies to big simulation with the caveat that we need to add more high-level 
software at the library level and more high-level tools like Global Arrays.   

One essential idea of our Big Data HPC convergence for software is to make use 
of ABDS software where possible as it offers richness in functionality, a compelling 
open-source community sustainability model and typically attractive user interfaces. 
ABDS has a good reputation for scale but often does not give good performance. Our 
approach augments ABDS with HPC ideas, where we illustrated this with Harp for 
Hadoop [21]–[23], Storm [24], and the basic Java environment [25]. Twister2 [26], 
[27] in section 2.4 builds a toolkit from the best of Spark, Heron (Storm), Kafka, Harp-
DAAL, MPI, Mesos, Slurm and Kubernetes and offers an HPC-ABDS Platform as a 
Service. We suggest that GAIMS can use HPC-ABDS for both big data and big 
simulation applications. 

2.2. Harp-DAAL Computation Model and Collective Communication 

The convergence of high performance computing, big data, and machine learning will 
enable new software capabilities that seamlessly incorporate simulation and data 
analytics. Our research categorizes data-intensive computation for big data, and big 
compute applications into five computation models (or abstractions) that map into five 
distinct system architectures [10]. It starts with Sequential, followed by centralized 
batch architectures corresponding exactly to the three forms of MapReduce: Map-Only, 
MapReduce and Iterative MapReduce. Category five is the classic MPI model. We 
introduced a novel HPC-Cloud convergence framework named Harp-DAAL [28]–[31]. 
Harp-DAAL shows how simulations and Big Data can use common programming 
environments[11] with a runtime based on a rich set of collectives and libraries. 
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Figure 2-1: HPC-ABDS as compiled January 29, 2016, with layers of particular interest in this project shown 
in green [18]. 

Harp is a collective communication library that supports all 5 classes of data-
intensive computation, from pleasingly parallel to machine learning and simulations. 
Harp expanded the applicability of Hadoop (with Harp plugin) for more classes of Big 
Data applications, especially complex data analytics such as machine learning and 
graph. Harp uses Intel® Data Analytics Accelerator Library (DAAL) [32], for its highly 
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optimized kernels on Intel® Xeon and Xeon Phi architectures. This way, the high-level 
API of Big Data tools can be combined with intra-node fine-grained parallelism that is 
optimized for HPC platforms. The current Harp-DAAL repository discussed in sections 
4.2 and 4.3 includes over 40 batch and distributed modes of algorithms in Intel DAAL 
2019 version. Recent work can be found in [33], [34] as well as a thorough report [28] 
and SC2017 tutorial[35]. 

Figure 2-2 Cloud-HPC interoperable software for High Performance Big Data Analytics at Scale 

2.3. RADICAL-Cybertools 

The Pilot abstraction [36] has been used in HPC environments for supporting a diverse 
set of task-based workloads. A Pilot-job is a placeholder job which is submitted to the 
resource manager of an HPC and acquires a set of resources where an arbitrary number 
of compute tasks can be executed. This functionality allows all the computational tasks 
to be executed directly on the resources, without being queued again. The pilot 
abstraction thus supports the requirements of task-level parallelism and high 
throughput as needed by science drivers, without affecting or circumventing the queue 
policies of HPC resources. 

RADICAL-Pilot (RP) [37] is an implementation of the pilot abstraction, 
engineered to support scalable and efficient execution of heterogeneous tasks across 
different platforms. Workloads and pilots are described via the Pilot API and passed to 
RP’s runtime system. The PilotManager submits pilots as jobs (or virtual machines or 
containers) to one or more Cyber-Infrastructures (CIs) via the SAGA API. The SAGA 
API implements an adapter for each supported type of CI, exposing uniform methods 
for job and data management. Once a pilot becomes active on a CI, it bootstraps the 
Agent module. The UnitManager schedules each task to an Agent via a queue on a 
MongoDB instance. Each Agent pulls its tasks from the DB module scheduling them 
on the Executor. The Executor sets up the task’s execution environment and then 
spawns the task for execution. When required, the input data of a task are either pushed 
to the Agent or pulled from the Agent, depending on data locality and sharing 
requirements. Similarly, the output data of the task are staged out by the Agent and 
UnitManager to a specified destination, e.g., a filesystem accessible by the Agent or the 
user workstation. Both input and output staging are optional, depending on the 
requirements of the tasks. The actual file transfers are enacted via SAGA, and currently 

https://paperpile.com/c/yJFQMn/Z3ykz+fCh8A
https://paperpile.com/c/yJFQMn/xYSIt
https://paperpile.com/c/yJFQMn/tRUMz
https://paperpile.com/c/yJFQMn/vBqoQ
https://paperpile.com/c/yJFQMn/1LreN


support (gsi)-scp, (gsi)-sftp, Globus Online, and local and shared file system operations 
via cp. Consequently, the size of the data along with network bandwidth and latency or 
filesystem performance determine the data staging durations. 

Figure 2-3: RADICAL-Pilot and Pilot-Hadoop integration 

RADICAL-Pilot has been extended to support big  data processing and streaming  
jobs by utilizing Hadoop Spark and Kafka. Pilot-Hadoop [38] (Fig 2-3) enables the 
dynamic, ad-hoc creation of Hadoop or Spark clusters on HPC infrastructures. It allows 
users to execute scalable analytics, such as iterative machine learning, without the need 
to manage a Hadoop or Spark cluster on HPC. Pilot-Hadoop can be used via the same 
API as RADICAL-Pilot. As a result, a common API is provided for executing different 
types of workloads, e.g., MPI, YARN, or Spark.  Pilot-Streaming [39], is a framework 
for supporting streaming frameworks, applications, and their resource management 
needs on HPC infrastructures. Pilot-Streaming is based on the Pilot-Job concept and 
enables developers to manage distributed computing and data resources for complex 
streaming applications. It enables applications to dynamically respond to resource 
requirements by adding/removing resources at runtime. This capability is critical for 
balancing complex streaming pipelines 

2.4. Twister2 

Twister2 provides a hosting environment for high performance data analytics by 
offering capabilities to connect applications to data platforms such as Kubernetes and 
Mesos, along with data processing capabilities, including batch and streaming analytics. 
Twister2 models a complex data application as a dataflow graph. One can configure the 
different parts of the dataflow graph at different granularities, making it suitable to 
execute end to end applications in a single dataflow. For example, part of a dataflow 
graph can be executing a SPIDAL algorithm written according to MPI specification, 
and another part can be doing streaming analytics.  

  In previous work, many [40]–[42] have shown that current big data systems do 
not achieve the performance of HPC frameworks. The (generalized) Bulk Synchronous 
Processing (BSP) computing model offered by MPI specification is well suited for high 
performance applications, including Machine Learning. This has been demonstrated by 
SPIDAL algorithms written both according to MPI specification and Harp. Mostly due 
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to design and software engineering aspects of MPI implementations, it is difficult to 
integrate MPI environments with Big data environments.  

Figure 2-4: Architecture of Twister2. [26], [27] 

Fig 2-5: Left: K-means job execution time on 16 nodes with varying centers, 2 million points with 320-way 
parallelism. Right:  K-Means with 4,8 and 16 nodes where each node has 20 tasks. 2 million points with 
16000 centers used. 

The main design goal of Twister2 is to build a component-based architecture for 
composing data applications that can work both in HPC and cloud environments. Fig. 
2-4 shows the complete architecture for integrating machine learning with data 
analytics using Twister2. At the base, it has abstractions to access different data sources, 
including file systems, databases, and message brokers. Next, a resource scheduler 
provides the functionality to allocate cluster resources using different resource 
managers both in cloud and HPC environments. On top of these layers, it provides 
communication operations between parallel workers. These communications include 
both dataflow communications for data pipelines and streaming as well as BSP style 
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for fine-grained parallel applications. Both task-based and distributed data set based 
API’s are offered to create dataflows that include streaming, batch, and machine 
learning components. In addition to that, Twister2 will provide fault tolerance at the 
dataflow node level for both streaming and batch applications.  

An optimized dataflow communication has been developed as an independent 
framework to support both streaming and batch data processing [27] operations. 
Dataflow communication is used for data processing operations such as shuffle, join 
unions, and key-based operations and for integrating with other frameworks. This 
library can work using an MPI implementation or using plain sockets, making it 
suitable for HPC and clouds. Figure 2-5 shows the performance of K-Means on Spark 
and Twister2 with varying number of clusters and nodes where it performs 
considerably well compared to the big data framework. We are taking an incremental 
approach for developing Twister2 as an open source community driven project. The 
initial release of Twister2 provides the ability to run both batch and streaming analytics 
for large datasets. Further, we will enhance the capabilities to provide richer dataflows 
that include applications written in MPI. The first publicly available Twister2 release 
was at the end of September 2018 [43] and we expect a near-final version a year later.  

3. APPLICATION COMMUNITY ACTIVITIES 

3.1. Network Science Activities 

3.1.1. Network Generation Systems 

Motivation. A number of network science applications involve constructing an 
ensemble of networks with properties close to a given real network. Such ensembles 
are useful for sensitivity analysis, significance testing, and scaling studies. There are 
two broad approaches for generating such random networks. The first involves using a 
random graph model, e.g., the Erdos-Renyi (ER), Chung Lu (CL), Preferential 
Attachment model, Stochastic block model (SBM), BTER, etc. There are a large 
number of such models, and they seek to generate instances, which preserve the degree 
sequence, and other properties, such as the community structure and clustering. Most of 
these models are very simple and end up specifying a probability for each pair of nodes 
to be connected. However, a naïve method of generating instances from such a model 
would take quadratic time, even if the final graph is sparse. We have developed some 
of the best scaling algorithms for generating instances from many random graph 
models in parallel. The second approach involves performing random edge switches, 
starting at a given graph. This is known to converge to a stationary distribution on the 
space of graphs with the same degree sequence. However, this is an inherently 
sequential process, and we have developed parallel algorithms for this problem. 

Our Results. In [44], we develop an approach, referred to as the Degree Grouping 
(DG) technique, which enables us to generate very large instances from the ER, CL, 
SBM and BTER models. The first three models specify a probability for connecting 
each pair of nodes, and all edges are generated independently. The BTER model 
involves additional steps to account for clustering constraints. Our approach gives high 
space and time efficiency. Both, our sequential and parallel algorithms, only require 
O(D) space, compared to O(n) space required by the previous algorithms, where D is 
the number of distinct degrees in the given sequence. The running time of our parallel 
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algorithm is O(m/P + D + P), where m is the expected number of edges, and P is the 
number of processors. In contrast to earlier algorithms, the associated constants and 
overheads are significantly smaller for our algorithms. Experimental results show that 
our algorithms are about 3–4 times faster than the previous algorithms (Fig 3-1). 
Moreover, our parallel algorithm achieves an almost optimal load balancing using an 
efficient load balancing technique and scales very well to a large number of processors. 
Our parallel algorithm can generate a network with 250 billion edges in just 12 seconds 
using 1024 processors.  

 
 

Fig 3-1 Performance of our network generation algorithm (DG) [40], compared with a prior method 
(denoted by AK): (a) strong scaling, (b) load balancing across processors. 

In [45], we develop highly scalable algorithms for edge switching under a variety 
of constraints. The basic edge switch operation involves picking two random edges (a, 
b) and (c, d), and replacing them with edges (a, d) and (c, b) respectively, i.e., the end 
vertices of the selected edges are swapped with each other. This operation is repeated 
either a given number of times or until a specified criterion is satisfied. It is easy to see 
that an edge switch operation preserves the degree of each vertex. We present 
distributed memory parallel algorithms for switching edges in massive graphs with the 
constraint that the graph remains simple. The dependencies among successive edge 
switch operations and the requirement of keeping the graph simple lead to significant 
challenges in designing a parallel algorithm. Dealing with these requires complex 
synchronization and communication among the processors, which in turn makes it 
challenging to gain any speedup by parallelization. The performance of the algorithms 
also depends on the partitioning of the graph. We study several partitioning schemes in 
conjunction with the algorithms and present their respective trade-offs. A harmonic 
mean speedup (compared to the sequential algorithm runtime) of 73.25 is achieved on 
eight different networks with 1024 processors. The algorithms require generating 
multinomial random variables in parallel, which is also a non-trivial problem. To the 
best of our knowledge, there is no existing parallel algorithm for the problem, and we 
present here a novel parallel algorithm for generating multinomial random variables, 
which achieves a speedup of 925 using 1024 processors. 

3.1.2. Subgraph detection and analysis problems  

Motivation. A common subroutine in network science involves detecting and counting 
the number of embeddings of a given (small) subgraph H (e.g., a path or a tree) in a 
(large) network G. This and other variants are fundamental problems in Network 
Science and have a wide range of applications in areas such as bioinformatics, social 
networks, semantic web, transportation and public health. A related problem in 
network data, arising in anomaly detection using the approach of scan statistics, 
involves finding connected subgraphs, which maximize different kinds of anomaly 
score functions. These problems are all computationally challenging to solve exactly 

https://paperpile.com/c/yJFQMn/FPG8C


(e.g., the counting problems are #P-hard). Prior methods for counting paths and trees 
only handled trees of size up to 10 in networks with 2 billion edges. 

Our Results. We have developed new parallel algorithms that can handle larger 
subgraphs. In [34], we develop an improved parallelization of a technique known as 
color-coding, which has been the primary approach for obtaining rigorous 
approximation bounds for subgraph counting. Our algorithm, HARPSAHAD+, adapts 
a prior Hadoop based algorithm to HARP, and yields two orders of magnitude 
improvement in performance, as a result of its flexibility in task scheduling, data flow 
control and in-memory cache. We are therefore able to scale to networks with up to 
billions of edges and obtain a comparable performance when compared to a state-of-
the-art MPI/C++ implementation. 

For subgraphs of size k, the running time and space complexity of the color-coding 
technique scale as O((2e)k f(n)) and O(2kg(n)), respectively, where f( ) and g( ) are 
polynomial in the total number of nodes and edges. Therefore, the color-coding 
technique has not been able to scale beyond subgraphs of size 12. In [46], we consider 
a different approach for subgraph detection, based on an algebraic technique called 
multilinear detection. This technique involves representing subgraphs as multivariate 
polynomials. The subgraph detection problem is reduced to determining whether the 
resulting polynomial has a square-free (i.e., multilinear) term. We develop the first MPI 
based parallel adaptation of this technique, and this gives a significant improvement in 
both running time and space, which scale as 2k and k, respectively. This has allowed us 
to consider subgraphs of size up to 18. 

3.2. Biomolecular Simulation Activities 

About one-quarter of the computing power provided by XSEDE between 2011 and 
2017 was used to perform biomolecular simulations (Figure 3-2). In the biomolecular 
simulation community analysis of the output from simulations is increasingly 
becoming a bottleneck compared to the generation of the data [47], [48]. In order to 
address this challenge, we investigated and developed applications of high-
performance data analytics to processing and analyzing biomolecular simulations, 
in particular widely used classical molecular dynamics (MD) simulations. 

Biomolecular simulations model the dynamics of biomolecules (proteins, nucleic 
acids, carbohydrates, lipids) in realistic environments such as solvated in water with 
realistic ion concentrations or a membrane protein embedded in a lipid membrane. 
They generate as output time series of particle positions (and sometimes also 
velocities), called trajectories. Data are stored in regular time intervals (time steps) as 
frames of coordinates. Trajectories are typically analyzed on a frame-by-frame basis. 
Using statistical mechanics approaches, the positions (and possibly velocities) are used 
to evaluate the observables of interest [49], [50]. Current simulations typically contain 
104–106 particles (such as atoms in protein and surrounding water) with trajectories 
containing 104–107 frames. Thus typical trajectory sizes can span tens of gigabytes to 
tens of terabytes. Additionally, trajectories are often produced in ensembles of tens to 
hundreds of trajectories, and often these trajectories are produced in a coupled fashion 
(for instance, from replica exchange or free energy perturbation simulations). The large 
amount of data necessitates high-performance data analytics approaches that can use 
existing high-performance computing resources in order to accelerate the time to 
solution for the analysis of the computational experiments.  
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We evaluated a number of data analytics frameworks for their suitability for 
biomolecular simulations (Sec. 4.4.1) and compared them for typical trajectory analysis 
algorithms against each other and an MPI-based implementation. The resulting picture 
is multi-faceted and provides a decision framework for users to choose a suitable data 
analytics framework. As part of this work, we also developed and implemented 
production grade parallel versions of algorithms for which we previously only had 
serial versions (Sec. 4.4.2) and a new library (PMDA, “parallel MDAnalysis”) that 
provides a platform for these algorithms. We also identified a barrier to achieving 
better scaling in parallel trajectory analysis, namely the I/O, and provide proof-of-
concept solutions to overcome this problem (Sec. 4.4.3).  

Figure 3-2. XSEDE SUs by research field for the time interval 2011-07-01 to 2017-09-30 [51] 

3.3. Image Processing: Polar/Remote sensing 

Technology for collecting, transmitting, and storing remote sensing data has rapidly 
improved over the last decade. In the case of polar science, for example, it is now 
possible for aircraft equipped with ground-penetrating radar systems to collect large-
scale data about a vast area of polar ice in the span of a single flight.  But while 
collecting this data has largely been solved, actually analyzing the data to extract useful 
data has remained a challenge. Originally, feature tracking in polar radar echograms 
was a manual process which was occasionally augmented by very simple semi-
automated algorithms that usually considered only a few pixels of the image at a time. 
For 3D imaging, images were truncated to high signal to noise ratio regions with clear 
interfaces so that the simple automated algorithms could simply track a peak from 
column to column in the images. Reliance on human annotators and simple algorithms 
limits the scale and speed at which analysis of remote sensing data can be used. 

We have introduced several complementary algorithms that aim to automatically 
segment polar ice echograms, identifying the regions corresponding to air, ice, and 
bedrock, and the fine-grained layers between them [52]–[55]. All of these techniques 

https://paperpile.com/c/yJFQMn/9c3IQ
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use machine learning and statistical inference algorithms to robustly handle very noisy 
data. Our early work [52], [53] investigated this segmentation problem in 2d, along the 
flight line of the aircraft. Our more recent work [54], [55] has developed new 
techniques to reconstruct the bedrock layer in 3d, by integrating evidence across many 
tomographic slices collected along the flight line.  

In two of the algorithms, the problem is formulated as an inference problem on a 
Markov Random Field 
(MRF), as shown in 
Fig. 3.3. MRF 
inference is NP-hard in 
the general case, so we 
developed two 
approximate inference 
algorithms. The first 
uses the Viterbi 
algorithm [56] to solve 
for individual layers at 
a time in individual 
images, which can be 
done exactly and 
efficiently. This 
corresponds to 
considering a single 
column at a time of the 
3D image MRF shown 
in Fig. 3.3. However, 

although the solutions it finds are exact within single layers, the results are not as good 
on 3D images because the 3D image must be broken into 2D “slices” and the inter-slice 
dependence cannot be adequately captured by the algorithm. To better handle 3D 
images, we introduced an approximate inference technique based on Tree Reweighted 
Message Passing (TRW-S) [54] which can incorporate evidence from multiple slices at 
once and yields significantly better results than Viterbi. An advantage of the statistical 
formulation of these models is that additional weak evidence, e.g., data from hand 
annotators or digital elevation maps, can be incorporated into the inference process. 
Additional pre-processing steps and additional evidence was added to the cost function 
used by the Viterbi and TRW-S algorithms, and the model parameters for each were 
tuned in [57]. 

Inspired by the success of deep machine learning across a wide range of problems, 
we recently [55] introduced a multi-task spatiotemporal neural network (Figure 3.4) 
that combines 3D Convolutional Networks and Recurrent Neural Networks (RNNs) to 
address the 3d layer reconstruction problem. This is a novel approach adapted from 
techniques to analyze video, but there the temporal dimension is treated as equivalent 
to the row dimension in Fig. 3.4. This algorithm solves for multiple layers 
simultaneously (rather than one at a time) and improves results significantly over the 
TRW-S algorithm, even when no extra evidence besides image intensities are available. 
Depending on the number of iterations required by TRW-S to converge, the neural 
network approach can also provide a significant speed up. 

 

Fig. 3.3: MRF energy minimization function and illustration for 3D 
ice bed reconstruction problem. 
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Fig. 3-4: Multi-task spatiotemporal neural network combining 3D Convolutional and Recurrent Neural 
Networks. 

3.4. Scalable Pathology Image Analysis 

3.4.1. Introduction to Pathology Image Analysis 

The rapid advancement in large-throughput tissue scanning technologies has enabled 
the production of pathology imaging big data at cellular and subcellular levels with 
unprecedented rich information. Digital pathology has been used for basic research in a 
wide scope and becomes an emerging technology promising to support computer-aided 
diagnosis, which has been recently approved by the FDA [58]. It will enable 
researchers to better understand the underlying biological mechanisms of pathological 
evolutions and disease progressions through quantitative pathology analysis and spatial 
analytics. Recently, 3D digital pathology is made possible through slicing tissues into 
serial thin sections. The information-lossless 3D tissue space represented by pathology 
image volumes holds significant potential to enhance biomedical studies and diagnosis 
through 3D image and spatial analytics.  Pathology image analysis can identify massive 
spatial objects of interest, such as cells and blood vessels, and segment their boundaries. 
The derived objects and their features are used for complex queries and analytics to 
support biomedical research or diagnosis. 

Major challenges. Digital pathology images are produced at an extremely high 
resolution. A typical 2D pathology image may contain 100,000 x 100,000 pixels, with a 
million micro-anatomic objects. A typical 3D tissue volume may generate hundreds of 
slices, and contain tens of millions of 3D biological objects, and each object could be 
represented with hundreds to thousands of mesh facets. Such a typical study may 
involve hundreds of subjects and tens or hundreds of tissue volumes. This 
unprecedented scale of 2D and 3D data poses significant challenges on data processing 
and image analysis, leading to tremendous I/O, communication, and computational cost. 
Besides the scale, 3D spatial objects can have complex structures. For example, 3D 
blood vessels can have many bifurcations. This poses major challenges to group 
biological meaningful 2D structure cross-sections for complex 3D structure 
reconstruction. As a large number of 3D pathology structures often appear in serial 2D 
image planes, the establishment of 2D cross-section association across serial slides is a 
significant challenge, especially when structures have complex morphology and 
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topology. For spatial queries, while minimal bounding boxes (MBBs) have been 
successfully used in traditional spatial indexing, MBBs are not effective to represent 
such complex 3D objects in distance-based spatial queries, such as nearest neighbor 
search. This demands new indexing approaches. 

Our goal is to create a framework with new systematic methods to support 
effective and scalable 2D and 3D pathology image analysis leveraging big data 
computing platforms and large memory. 

3.4.2. Pathology structure segmentation. 

We created a robust two-step segmentation framework that can recover contours of an 
arbitrary number of histologic objects in occlusion.   

Segmentation Initialization. For small-scale objects, such as cells, we detect cell 
seeds with joint information drawn from spatial connectivity, edge map, and shape 
analysis. For large pathology structures like vessels, we use an adaptive color 
decomposition method that can dynamically optimize the color decomposition matrix 
in a way such that the resulting individual stain image channels have the maximum 
joint entropy. With the derived stain-specific image channel, we create a pathology 
structure probability map with multi-scale steerable filter processing to indicate the 
likelihood of a given 2D pixel (or 3D voxel) belonging to a specific pathology structure.  

Contour Deformation. We develop a variational level set model that incorporates 
image intensity, prior shape, 
and edge information for 
contour deformation. For cells, 
we deform contours by 
minimizing a new energy 
functional that incorporates a 
new shape term in a sparse 
shape prior representation, an 
adaptive contour occlusion 
penalty term, and a boundary 
term encouraging contours to 
converge to strong edges. A 
region-based active contour 
model is developed with a 
level set formulation based on 
Mumford-Shah’s functional. 
We create a sparse shape prior 
library with mode detection 
by non-parametric clustering 
over shape manifolds derived 
from manifold learning. In 
this way, we can effectively 
extract representative shape 
codes from a large number of 
shape annotations without 
blindly specifying prior shape 
number and shape codes in the 

shape library [59]. 

Fig. 3-5. MapReduce based image processing pipeline 

https://paperpile.com/c/yJFQMn/Qa5Vz


3.4.3. Scalable MapReduce based image analysis framework.   

To provide scalable pathology image processing, we have developed a highly scalable 
MapReduce based image analysis framework shown in Fig. 3.5 for whole slide image 
processing, in which segmentation algorithms can be plugged in. The approach is 
through partitioning the image space into overlapping tiles for consideration of 
boundary-crossing object problem, processing titles independently as parallel tasks, and 
merging and normalizing partial objects    from individual tiles. To handle partial 
objects from overlapping regions, we take a spatial index-based approach for removing 
redundant polygons that represent the same object. The framework is implemented for 
both commodity clusters and commercial clouds such as Amazon Web Services (AWS). 
The performance study showed high scalability on large data sets [60], [61].   

3.4.4. 3D pathology image analysis pipeline.  

Fig. 3.6. 3D pathology image analysis pipeline 

We developed methods on three most principal image analysis components: 3D 
pathology image registration, pathology structure segmentation, and 3D reconstruction 
illustrated in Fig. 3.6. 

We provided an on-demand registration method within a dynamic multi-resolution 
transformation mapping and an iterative transformation propagation framework [62], 
which overcomes the problem of memory limitation on registering extreme large 
images. This allows us to efficiently scrutinize volumes of interest on-demand in a 
single 3D space. For segmentation, we develop a scalable segmentation framework for 
a common set of histopathological structures as discovered above. For 3D 
reconstruction, we use a novel cross-section association method that solves a 
geometrical model fitting problem with the statistical multivariate Gaussian distribution 
for cell reconstruction, and an Integer Programming approach with Markov chain based 
posterior probability modeling and a Bayesian Maximum A Posteriori (MAP) 
estimation for 3D vessel reconstruction [63]. 

https://paperpile.com/c/yJFQMn/lvmbq+3T0Ci
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3.5. Spatial Big Data Querying Systems 

3.5.1. Introduction to Spatial Query Systems 

The challenges for spatial big data come not only from the volume but also the 
complexity, such as the multi-dimensional or dynamic nature of the data. Our research 
goal on spatial big data management is to address the research challenges for delivering 
effective, scalable and high performance software systems for managing, querying and 
mining complex big data at multiple dimensions, including 2D and 3D spatial data, and 
spatial-temporal data. This is driven by emerging spatial big data problems from 
geospatial applications, location-based services, and social network applications, and 
rapid improvement of data acquisition technologies such as high-resolution tissue 
scanners for pathology imaging. Managing and analyzing such data poses several 
major challenges, including the explosion of data volume, high complexity of data, 
and/or temporal dynamics. We have created novel open source software systems shown 
in Fig. 3.7 for processing 2D and 3D spatial big data on modern big data platforms to 
support multi-scale applications in various domains, ranging from geospatial data, 
population data, and microscopy imaging data (biological/pathology objects).   

Fig. 3-7. Overview of 3 spatial big data systems described in the text 

3.5.2. Hadoop Based Scalable Spatial Queries (Hadoop-GIS)  

Hadoop-GIS [64] is a framework with systematic methods to support high 
performance spatial queries for spatial big data [65], [66]. It provides spatial data 
processing methods and pipelines with spatial partition level parallelism through 
simple programming model MapReduce, and take multi-level indexing methods to 
accelerate spatial data processing. It provided two critical components to enable data 
parallelism: effective and scalable spatial partitioning in MapReduce (pre-processing), 
and query normalization methods for partition effect. To provide optimized system 
performance, we investigate optimization methods for data processing pipelines, such 
as data skew mitigation, and optimized partitioning methods. The framework is generic, 
and we have applied the system to support our research on geospatial analytics of 
social media, GIS-based public health studies, and pathology imaging. 
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3.5.3. Spark Based Spatial Queries (SparkGIS).  

SparkGIS [67], [68] is a spatial data querying system for high throughput and low 
latency spatial query processing built on Apache Spark. SparkGIS takes advantage of 
the in-memory processing capabilities of Spark by adapting the core querying methods 
of Hadoop-GIS to Spark. SparkGIS addresses the problem of memory constraint as 
querying performance will drop significantly when data does not fit into memory. 
SparkGIS takes a spatial query rewriting approach to break a big query into small ones 
that can fit into memory and be pipelined combining compressed binary data storage in 
memory. SparkGIS supports common spatial queries, including range, spatial join, and 
k-nearest neighbor search and can be extended to other complex query pipelines. On-
demand in-memory indexes allow SparkGIS to prune input data and apply compute-
intensive operations on only a subset of relevant spatial objects and consequently 
achieve higher performance. SparkGIS employs a layered architecture that enables 
system extensibility for seamless integration of auxiliary distributed computation such 
as Jaccard Coefficient as a plugin. SparkGIS could significantly boost spatial query 
performance over base systems. 

3.5.4. Efficient In-Memory Based Spatial Queries for Large-Scale 3D Data with 
Complex Structures (iSPEED).  

3D digital pathology imaging is an emerging field that enables novel ways for 
biomedical research and holds high potential to improve disease diagnosis with an 
examination of high-resolution 3D image volumes of tissue specimens. Quantitative 
analyses of 3D pathology images involve exploring spatial relationships among a 
massive number of biological objects. However, this is challenged by the 
overwhelming data scale, complex biological structures (such as blood vessels), 
multiple levels of detail for representations, and high computational complexity for 
spatial queries and geometric computations. iSPEED [69]–[71] creates effective and 
scalable in-memory 3D spatial data processing methods with 3D data compression, 3D 
indexing methods, and partitioning level parallelism for multiple big data platforms 
including Hadoop and Spark, to support fast discovery of spatial patterns of 3D 
pathology objects. To achieve low latency, iSPEED stores data in memory with 
effective progressive compression for each individual 3D object with successive levels 
of detail, and provides global spatial indexing in memory through effective partitioning. 
An in-memory 3D spatial query engine will be invoked on-demand to run many 
instances in parallel. The query parallelization is implemented with, but not limited to, 
MapReduce and Spark. At run time, iSPEED will dynamically decompress required 3D 
objects only at the specified LOD, and create necessary spatial indexes in-memory to 
accelerate query processing, including object-level indexing (inter-objects) and 
structural indexing (intra-object) on complex structured objects. iSPEED significantly 
improves 3D spatial query performance compared to traditional disk-based Hadoop 
based approach. 
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4. INTEGRATION OF TECHNOLOGY AND APPLICATIONS 

4.1. Approaches to a High performance GAIMS 

Naively a successful GAIMS must use HPC approaches as it needs to simulate large 
systems (models) and analyze large data. However, most ABDS and commercial Big 
Data approaches avoid HPC except for cases like deep learning where HPC is essential 
and used from the start. However, we intend to pursue better functionality and better 
performance by combining HPC (including MPI, Pilot Jobs, Slurm) and Big Data 
(including Hadoop, Spark, Flink, Heron, Docker, Mesos, Kubernetes, and Tensorflow). 
We can identify different approaches 

a) Fix performance issues in Spark, Heron, Hadoop, Flink, etc.  This is messy as 
some features of these big data systems are intrinsically slow while all these 
systems are “monolithic,” and it is difficult to deal with individual  
components. We and others have explored this for Hadoop, Spark, and Storm. 

b) Execute HPBDC from classic big data system with custom communication 
and task generation environment. This is the approach of Harp for the Hadoop 
ABDS environment and for RADICAL-Pilot applied to Spark, Hadoop, and 
Streaming. 

c) Provide a native Mesos/Yarn/Kubernetes/HDFS high performance execution 
environment with the functionalities of Spark, Hadoop, Flink, and Heron. This 
is the goal of our Twister2 approach. 

d) Execute data analytics with MPI in a classic (Slurm, Lustre) HPC environment 
e) Improve the classic HPC environments as Pilot Jobs do for task-based 

execution models. 
f) Add modules to existing frameworks like Scikit-Learn or Tensorflow either as 

new capability or as a higher performance version of existing modules. 
 
We have over the last 8 years explored all these approaches but focus this paper on 

b) c) and e). 

4.2. SPIDAL Parallel Data Analytics Library  

The table below lists 34 Core Machine Learning Algorithms implemented in 
different frameworks with our work in the first two columns. We are packaging these 
as described in the following section 4.3. SPIDAL also includes community-specific 
data analytics. 
 
Table 1: 34 Core Machine Learning Algorithms and status in 11 Libraries 

 SPIDAL Harp-DAAL Intel DAAL Mahout Spark Flink Turi Petuum DMTK H2O ANGEL 

K-means ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

MF-SGD ✓ ✓  ✓    ✓   ✓ 

Implicit-ALS ✓ ✓ ✓ ✓ ✓ ✓ ✓     

Neural Network ✓ ✓ ✓    ✓ ✓  ✓  

PCA ✓ ✓ ✓ ✓ ✓     ✓  

https://dsc-spidal.github.io/harp/docs/harpdaal/harpdaal/
https://github.com/01org/daal
https://mahout.apache.org/users/basics/algorithms.html
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http://pmls.readthedocs.io/en/latest/index.html
https://github.com/Microsoft/DMTK
http://docs.h2o.ai/h2o/latest-stable/index.html
https://github.com/Tencent/angel


SVD ✓ ✓ ✓ ✓ ✓       

QR ✓ ✓ ✓ ✓        

Covariance ✓ ✓ ✓         

Linear regression ✓ ✓ ✓  ✓ ✓ ✓     

Lasso Regression ✓       ✓    

logistic Regression ✓   ✓ ✓  ✓ ✓   ✓ 

Ridge Regression ✓ ✓ ✓         

Moments ✓ ✓ ✓         

Naive Bayes ✓ ✓ ✓ ✓ ✓     ✓  

Association Rules ✓ ✓ ✓  ✓       

Decision Forest ✓  ✓  ✓       

K nearest neighbor ✓ ✓ ✓         

Outlier Detection ✓  ✓         

SVM ✓  ✓  ✓   ✓   ✓ 

Random Forest ✓   ✓ ✓   ✓  ✓  

Distance Metric 
Learning ✓       ✓    

LDA ✓ ✓  ✓ ✓   ✓ ✓  ✓ 

GBM (Generalized 
Linear Modeling) 

✓        ✓ ✓  

Multiverso ✓        ✓   

GLM (Generalized 
Linear Modeling) 

✓         ✓  

GLRM (Generalized 
Low Rank Models) ✓         ✓  

Stacked Ensembles ✓         ✓  

GBDT (Gradient Boost 
Decision Tree) ✓          ✓ 

Multidimensional 
Scaling (MDS) ✓           

DA-MDS 
(Deterministic 

Annealing-MDS) 
✓           

Force-Directed Graph 
Drawing ✓           

Subgraph Mining ✓           



Irregular DAVS 
Clustering ✓           

Determ. Annealing 
Semimetric Cluster ✓           

 

4.3. Image Processing and Optimization Library and Tutorial 

Cheap image sensors, fast networks, and massive storage have made it feasible to 
collect large-scale collections of images of various types, from photographs on social 

media sites to 
remote sensing 
images taken by 
radar and 
satellites, to 
medical images 
from x-ray, 
microscopy, and 
CT. But while 
large image 
datasets can now 
be easily 
collected, 
processing them 
to automatically 
extract useful 
analytics --- 
identifying 
objects in the 
photos, 
reconstructing 
properties of the 
original scenes, 
segmenting 
images into 
different 
semantic 
components --- is 
still a very open 

problem, attracting a large amount of research across a wide range of fields. All of this 
activity is, of course, very good for the development of new techniques, but we have 
observed a large amount of duplication. Scientists and engineers regularly “re-
discover” techniques for solving their problems, not realizing that similar problems 
have already been solved in another community. Not only does this lead to wasted 
effort, but it means that the customized solutions developed for one particular 
application may not take advantage of the most advanced theories and implementations 
from the existing community. 

We have identified and developed a library of optimization and image processing 
techniques that we believe are foundational to a wide range of problems and 

Fig. 4-1: SPIDAL Machine Learning & Image Processing 
Website 



applications. The basic philosophy underlying this approach is that many problems in 
AI-related domains (including machine learning, image understanding, computer vision, 
etc.) can be posed and solved using one of a relatively small number of general 
techniques. Instead of re-inventing algorithms that are customized for a particular 
application, we advocate posing new problems in terms of general and abstract 
techniques. For example, many problems involving analyzing sequences can be posed 
as Hidden Markov Models, whether the sequences are sentences, positions of objects 
across time, audio signals, or protein sequences.     

Fig. 4.2: Snapshot of (Hidden Markov) Models section of SPIDAL Machine Learning & Image Processing  
website showing descriptions and one of the videos. 

This view encourages separating applications, models, algorithms, and 
implementations to maximize generalization and code reuse [72]. An application 
involves solving a particular domain-specific problem. Many such domain-specific 
tasks can be posed in terms of a model that precisely defines a mathematical problem to 
be solved. Different models may make different assumptions, trading off between 
simplicity and faithfulness to the original problem. An algorithm is a particular strategy 
for solving for unknown variables in that model. Different algorithms can be used to 
solve a given model, often with different trade-offs between accuracy and speed. An 
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implementation is one particular set of source codes for executing an algorithm. 
Implementations may use heuristics or simplifications to improve practical results or 
decrease the running time of an algorithm. 

This seemingly obvious decoupling of applications, algorithms, models, and 
implementations can nonetheless be very powerful, because countless applications can 
be posed in terms of existing models, and new models can be solved with existing 
algorithms. The models implemented in the library are very general, including 
sequence model (e.g., Hidden Markov Models), spatial models (Markov Random 
Fields), classification models (e.g., Nearest Neighbor), feature models (e.g., bag of 
words, image interest points), etc. The various algorithms can optimize various of these 
models, each with different trade-offs on the accuracy, running time, and assumptions. 
For example, implementations of several solvers for Markov Random Field (MRF) 
models are available, including Markov Chain Monte Carlo (MCMC) which can 
approximately solve for marginal distributions of MRF variables, Loopy Belief 
Propagation, which can approximately find Maximum A Posteriori (MAP) solutions to 
MRFs, and Tree-Reweighted Message Passing (TRW-S), which is also approximate 
but can offer bounds on accuracy. Other algorithms include the Viterbi algorithm and 
Forward-Backward for optimization on Hidden Markov Models, Deterministic 
Simulated Annealing for continuous optimization problems, K-means, Mean-shift, and 
MultiDimensional Scaling algorithms for clustering and dimensionality reduction, 
Scale Invariant Feature Transforms for image feature extraction, etc. 

Our library tries to remove two major barriers for domain scientists to apply these 
models and algorithms to their problems. First, we provide implementations of these 
algorithms so that domain scientists can reuse or modify our implementations instead 
of starting from scratch. Second, and perhaps even more importantly, we try to help 
domain scientists pose novel problems in terms of these existing algorithms and models. 
To do this, we have developed a documentation and tutorial website [73] (see Fig. 4.1) 
that provides practical information about how the models and algorithms work, which 
types of problems to apply them on, and which assumptions they make, and so on. We 
believe this conceptual information may be just as important as documentation about 
the library routines themselves: the major barrier to applying known models and 
algorithms is simply not knowing that they exist. The tutorials include slides, videos, 
links to other references, and source code hosted in GitHub (Fig. 4.2). The tutorial can 
be used in different ways, including browsing a collection of exemplar applications to 
see how various routines are combined and applied to particular problems, browsing 
the selection of Models, browsing the selection of Algorithms, and exploring based on 
problem type. 

4.4. End-to-End Examples of Community Applications with SPIDAL Technologies  

4.4.1. Evaluation of task-parallel frameworks for Biomolecular Simulations 

Different parallel frameworks for implementing data analysis applications have been 
proposed by the HPC and Big Data communities. However, it is not clear which ones 
are suitable for biomolecular simulations. We investigated three task-parallel 
frameworks, namely Spark [74], Dask [75] and RADICAL-Pilot [37] shown in Figure 
4-3, with respect to their ability to support data analytics on HPC resources and 
compared them to MPI [76].  
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Figure 4-3. The architecture of the Task-parallel data analytics frameworks RADICAL-Pilot, Spark, and 
Dask, which were evaluated for their suitability for supporting analysis of biomolecular simulations.  
 

Figure 4-4 Path similarity analysis with the Hausdorff distance δH(P,Q) between trajectories P and Q, 
consisting of coordinate frames p and q. Strong scaling was studied for 4 different frameworks on SDSC 
XSEDE facility Comet for N=128 trajectories resulting in 8128 Hausdorff distance calculations.[76] 
 

We studied two algorithms used for the analysis of biomolecular simulations, 
specifically path similarity analysis (PSA) [77], which quantifies the similarity between 
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two trajectories, and leaflet identification (LeafletFinder) [78], which is used to identify 
which lipids belong to one of two layers (leaflets) of a lipid bilayer membrane. Both 
algorithms are part of the MDAnalysis library [78], [79], which abstracts access to all 
common trajectory formats inside a Python interface and includes many commonly 
used analysis algorithms. They exemplify different types of algorithms that are typical 
in this field. PSA is embarrassingly parallel, whereas LeafletFinder consists of multiple 
stages that involve distance search for a nearest neighbor graph construction and 
computation of the connected components of the graph. For the embarrassingly parallel 
PSA problem, the three task parallel frameworks perform equally well and very similar 
to an MPI-based solution (implemented with MPI4py), with an example shown in Fig. 
4-4.  

Figure 4-5 Image A from [78] illustrates the LeafletFinder algorithm with B from [78]  giving result for 
curved bilayers. Image C from [76] gives the runtime of 4 parallel implementations on SDSC Comet up to 
256 cores (8 full nodes). Spark is top row; Dask the middle and MPI in the bottom. See [76] for RADICAL-
Pilot runtime data.  Each graph shows different system sizes from 131K to 4M lipids, color-coded as given at 
the bottom of C. In figs. 4.5A, part 1 shows individual atoms, 2 the graph from their nearest neighbors in a 
particular cutoff and 3 gives connected components representing two leaflets. 
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Both the absolute runtime and the strong scaling behavior up to 256 cores are very 
similar across different machines and data sets of different sizes. For the leaflet 
identification, four novel different parallel algorithms were implemented [76] and 
tested (Fig. 4-5). On balance, a map-reduce algorithm with 2D partitioning of the data 
with a tree-search for the edge discovery combined with partial calculation of 
connected components performed best across the tested frameworks. The MPI 
implementation performed best with close to ideal scaling on up to 256 cores (see [76] 
for the data). Spark was also able to handle large amounts of data well, whereas Dask 
performed better than Spark for intermediate problem sizes. 

Spark, Dask, and RADICAL-Pilot are all suitable for the implementation of these 
algorithms. For embarrassingly parallel applications, the choice of the framework does 
not strongly affect the performance. For applications with fine-grained data parallelism, 
a BigData framework such as Spark and Dask outperforms RADICAL-pilot because of 
their focus on supporting many short-running tasks. With increasing task 
communication requirements, using Spark becomes advantageous, and gets close to the 
performance of MPI. Although the MPI-based implementation always outperformed 
the task-parallel frameworks, the task-parallel frameworks performed well with good 
scaling capabilities and in particular, provided a high-level API that makes the 
implementation of scalable solutions for complex algorithms straightforward. Thus 
users might nevertheless consider the task-parallel frameworks for their ease of use 
(especially Dask), provision of high-level abstractions (Spark and Dask), or ease of 
interoperability with native code (RADICAL-pilot and Dask with Python, Spark with 
Java). 

4.4.2. New algorithms and production-grade implementations for Biomolecular 
Simulations 

Figure 4-6 Path Similarity Analysis [76] with Hausdorff distance implemented in cpptraj [80]. The algorithm 
was benchmarked with an ensemble of 128 trajectories for different compilers and ran on up to 240 cores 
with MPI. 
As part of the framework evaluation [76], parallel versions of Path Similarity Analysis 
with the Hausdorff distance and of the LeafletFinder algorithm were developed. The 
parallel Hausdorff distance calculation was implemented in the popular cpptraj 
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package [80], [81], which is written in C++ and uses OpenMP and MPI parallelism. As 
shown in Fig. 4-6, the performance is excellent [76]. The Hausdorff distance 
implementation is built on the “2D RMSD” code in cpptraj and only required small 
additional code changes to make PSA available to the wider cpptraj user community. 

The lessons learned during the framework evaluation and our earlier work on 
parallel trajectory analysis with Dask [82] motivated us to create a new Python-based 
library for parallel trajectory analysis, named PMDA [83]. PMDA provides a simple 
API to write parallel trajectory analysis with MDAnalysis by using simple decorators 
and base classes to leverage existing code in MDAnalysis. The library is still young but 
important functions such as root mean square distance after optimum structural 
superposition (RMSD), contact analysis, and radial distribution function are already 
implemented; the new parallel Hausdorff distance and the tree-based parallel 
LeafletFinder algorithms from [76] were also implemented in PMDA and are thus are 
made available to a broad audience. 

4.4.3. Identifying and overcoming barriers to progress in Biomolecular Simulations: 
I/O in parallel trajectory analysis 

Our earlier work [82] demonstrated that good performance and scaling could be 
obtained with a simple MapReduce approach for parallel trajectory analysis 
(implemented with MPI4py and MDAnalysis) on a single node; however, our approach 
did not scale beyond a single node (e.g., 72 cores (3 nodes) on SDSC Comet, as shown 
in Figure 4-7) because a few MPI ranks took much longer to complete than the 
majority of the ranks (Figure 4-7C).   

Figure 4-7. Performance [82] of parallel trajectory analysis (RMSD calculation) with serial file access 
on SDSC Comet. A) Strong Scaling (the total time to completion as a function of the number of processes 
with one process per core); runs were repeated 5 times, and mean plus standard deviation are shown. 
Speedup of data in A with ideal scaling indicated by the dashed line in B. Image C shows representative 
timings of particular MPI ranks up to 72 cores. 

The time for reading frames from the trajectory on the shared Lustre file system 
into memory (I/O time) and the time for communicating results back to rank 0 with 
MPI.gather() (communication time) fluctuate strongly whereas the time for the actual 
computation is comparatively small and constant across ranks. This suggested that 
accessing a trajectory file, which resides on a shared Lustre file system, from multiple 
ranks might degrade performance. 

This effect is especially pronounced when the trajectory analysis is I/O bound and 
the computational time is comparable to or smaller than the I/O time, as evidenced in 
Figure 4-8, where better scaling is obtained for higher ratios of the compute to the I/O 
time.  
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The trajectory in the XTC 
format (produced by the 
widely used Gromacs package 
[84]) is natively read by 
MDAnalysis [79] using the 
standard C fopen() call to read 
the trajectory file. We tested 
instead parallel MPI-I/O as 
implemented in the parallel 
HDF5 library for the HDF5 
format. For this proof of 
concept, we converted the 
XTC trajectory to HDF5 
because even though HDF5 is 
not widely used in the 
biomolecular simulation field 
is one of the few used formats 
that directly supports 
integration with MPI-I/O. 

Employing MPI-I/O 
resulted in excellent 

performance and near-ideal scaling up to 8 nodes (196 cores; see Figure 4-9. The 
fluctuation in I/O time was minimal, and communication time became negligible 
(Figure 4-9C). Similar results were also obtained when an XTC trajectory was pre-
processed into separate files (“subfiling”), one for each MPI rank, and each MPI rank 
only read its own file. The latter approach is somewhat cumbersome but can be 
mitigated by employing a facility in MDAnalysis to read multiple files as a single 
continuous trajectory. Nevertheless, these initial results indicate that in order to realize 
the advantages of data analytics on HPC for biomolecular simulations, the trajectory 
I/O  has to be handled carefully. 

Fig 4-9 Performance of parallel trajectory analysis (RMSD calculation) with 
parallel HDF5 file access on SDSC Comet. A and B are strong scaling and speedup as 
in fig. 4-7B.  Image C shows representative timings of particular MPI ranks up to 8 
nodes (196 cores). 

 

Figure 4.8. Speedup for the RMSD analysis on SDSC Comet 
for increasing ratio of compute to the I/O time. One MPI 
Rank was associated with one core up to 3 nodes and cores. 
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4.4.4. Polar Science as an Application 

As a specific example, 
the polar remote 
sensing community is 
interested in 2D and 
3D radar echogram 
layer and interface 
tracking of continent-
scale ice sheets. Ice 
sheets are layered 
depositions which 
generally flow 
outward to the 
margins where ice is 
removed through 
calving and melting. 
Because of the 
dielectric contrast at 
the layers and ice 
interfaces, ground 
penetrating radars are 
used to locate the 
interfaces at the top 

and bottom of the ice sheet and to detect the internal layer structure. Tracking the top 
and bottom interfaces of the ice sheet provides essential boundary conditions for 
realistic ice sheet modeling and is used in ice flux calculations for sea level rise 
assessments. Tracking the isochronous internal layers allows inference of other useful 
ice properties (e.g., accumulation rates and basal melting) and can be used to constrain 
or test the models. 

The Viterbi and TRW-S algorithms have been implemented in the open source 
CReSIS [85] software toolbox [86], which also includes the full processing pipeline 
from raw data to data product delivery. The algorithms and parameter tuning operations 
run in parallel and are implemented for several standard computer cluster interfaces 
(e.g., Torque, Slurm, and Matlab). These algorithms are now in use on a routine basis 
for tracking the ice bottom [87], [88][57], [89], [90]. The underlying signal processing 
algorithms have also been improved to produce better image intensity inputs for 
tracking [91], [92][93]. 

The data products using the image tracker on 2D data are available at the National 
Snow, and Ice Data Center [94] for 2016 onwards and the 3D image tracking results 
are available from the CReSIS data distribution site [95]. An example showing digital 
elevation models (DEM) of the ice bottom produced from the layer tracking of 3D 
images is shown in Fig. 4.10 from a mountainous region in the Agassiz Ice Cap. Two 
DEMs from crossing flight lines are shown. The overlapped portion allows us to test 
the self-consistency of the DEM generation and the error map based on the difference 
between the DEMs is shown in the inset.  
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Figure 4.10. Example of two crossing ice bed digital elevation models 
and the difference error map between them. 
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4.4.5. Network Science Applications 

Figure 4-11. A Significant under-immunized cluster found using our network scan statistics approach. The 
cluster covers the rural blocks west of Minneapolis. 
 
We now discuss an application of our subgraph analysis tools for disease surveillance, 
which is an important issue in public health. Clusters of under-vaccinated children are 
emerging in a number of states in the United States due to rising rates of vaccine 
hesitancy and refusal. As recent outbreaks of diseases such as measles have shown, 
such clusters can pose a significant public health risk. Such clusters can be used in the 
epidemiological analysis to determine the risk of outbreaks. 

Spatial scan statistics provides a rigorous method for identifying statistically 
significant clusters. The standard use of this approach (using the SatScan software) 
involves scanning the entire region using a circular shaped window to find a cluster 
that optimizes a maximum likelihood objective; this has been extended to other shapes, 
such as ellipses. However, because of the restriction in shapes, this approach does not 
find high resolution irregularly shaped regions—if “real” clusters do not have the 
prescribed shape, SatScan will miss them or only partially catch them.  

We use the approach of network scan statistics (for which we have developed more 
efficient algorithms in [46]) to find such clusters without any restriction on the shape. 
We run our analysis on the adjacency network G of block groups: the nodes in G are 
block groups in the region, and two block groups are connected by an edge if they 
share a boundary. We run the network scan statistic algorithm for the Kulldorff scan 
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statistic, and find clusters which are more refined, and have a much higher statistical 
significance, compared to those calculated using SatScan. Figure 4-11 shows an 
example of such a cluster we find for Minneapolis. 

 

4.4.6. Analysis of Fungal Data from IUB Biology department 

Figure 4-12. Fungi gene sequence data clustered into 65 clusters visualized in 3D space. This is a 2D 
projection of the 3D dimension reduced visualization. 
 
Identifying structures and patterns in data sets is an important step when analyzing 
biological data, such as gene sequence data. Correctly identifying and specifying 
clusters or groups can provide meaningful insights that are not easily captured through 
the observation of raw data. The difficulty of identifying such clusters increases with 
the dimensionality of the data set. Therefore, analyzing high dimensional data requires 
algorithms that can handle high dimensional data for both dimension reduction, as 
provided through SPIDAL/DA-MDS and clustering as provided through SPIDAL/DA-
PWC.  

DA-PWC and DA-MDS were successfully used to analyze and identify structures 
in a set of fungi gene sequence data [Anna Rosling Private Communication]. The total 
data set, which consisted of roughly 7 million sequences, was pre-processed to identify 



roughly 170k unique sequences which occurred more than once within the dataset. DA-
PWC was applied iteratively to the 170k dataset, at each iteration, the resulting clusters 
were visualized by generating 3D data points using DA-MDS and using WebPlotViz 
[96], [97] to visualize the results.  

Visualized results were used to identify and select cluster groups which were to be 
broken down into sub-clusters in the subsequent iterations. All the visualization steps 
and managing the workflow between iterations were done through an interactive script 
which took user inputs after each iteration. Figure 4-12 shows the resulting clusters, 
visualized in 3D space using WebPlotViz. It is also noteworthy that this method 
produced superior results when compared to USEARCH (8472 clusters detected) and 
SWARM (1454 clusters detected) clustering, both of which produced a large number of 
small insignificant clusters which consisted of just a few (<10) data points.  

Additionally, previous research work in collaboration with the IU Biology 
department and other institutions applied SPIDAL library technologies for various 
biology data analysis tasks.  In [98], [99]  SPIDAL technologies were used to analyze 
rRNA gene sequence structures. In [100] DA-MDS was utilized in order to visualize 
the Protein Sequence Universe 

4.4.7. Pathology and Spatial Analytics for Brain Tumor Microenvironment Studies 

Glioblastoma (GBM; WHO 
grade IV) is the most 
common brain tumor that 
presents an aggressive 
clinical progression to death 
with a more than 90% five-
year mortality. The 
explosive growth properties 
of GBM contrast sharply 
with lower grade gliomas 
(grades II and III). However, 
the underlying reasons 
accountable for this abruptly 
accelerated tumor growth 
phase are poorly understood. 
As a result, GBM therapies 
remain limited in number 
and efficacy, attributing to a 
median survival of 12.6 
months. Well recognized by 
domain experts, no current 
therapy option provides 
ideal treatment effect due in 
large part to the limited 

analysis vehicles to comprehensively and accurately understand GBM histopathology, 
pathophysiology, and heterogeneity in the context of the tumor microenvironment 
(TME). Therefore, a thorough and quantitative characterization of GBM TME 
promoting rapid GBM progression from both histological, and spatially targeted 

Figure 4-13. Spatial reconstruction during GBM 
progression. 
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molecular perspective is the key to create new avenues for novel therapy design and 
better clinical decision support. 

For precise characterizations of genetic, molecular, tissue morphology and clinical 
biomarkers, the morphological, spatial, and pathophysiological features and 
interactions of major components in GBM  tumor microenvironment require accurate 
and quantitative analysis support. Structural and morphological features derived from 
histopathology analysis of the tissue space (in particular, the 3D space) provides rich 
information of microanatomic objects to understand the tumor microenvironment of 
GBM. Our work illustrated in fig 4-13, includes reconstructing pathologic objects 
(vessels and cells) for accurate spatial structure representations, and spatial analytics to 
characterize 3D spatial patterns of diseases and determine clinical prediction values of 
their spatial and morphologic features [101].   

5. COMPARISON WITH RELATED WORK 

5.1. Related work for data analytics and HPC 

HPC systems are not able to sustain high I/O rates, which are important for processing 
the growing datasets. Xuan et al. [102], proposed and developed a new two-level 
storage system which manages to achieve higher aggregated throughput rates compared 
to the state-of-the-art. The researchers integrated Tachyon, an in-memory file system 
with OrangeFS, a parallel file system. The main motivation for using an in-memory file 
system is that HPC systems often have large memories at each node and they   can have 
a storage capacity comparable to local storage-based HDFS. Moreover, the I/O 
throughputs of in-memory file systems are much larger than those of local disk. 
Meanwhile, the parallel file system provides data-fault tolerance and large storage 
capacity. Therefore this framework combines the best of two worlds. A similar 
approach to the two-level storage  has been proposed in [103]. Their goal is to increase 
the I/O Performance of Big Data Analytics on HPC Clusters through RDMA-based 
key-value store. They designed a burst buffer system using RDMA-based Memcached 
and present three schemes to integrate HDFS with Lustre through this buffer layer. 
They manage to achieve higher I/O throughput rates by RDMA-based key-value. The 
reason that they use a key-value store for buffering HDFS I/O on top of the parallel file 
system is that key-value stores provide flexible APIs to store the HDFS data packets 
against corresponding block names. Many efforts have been developed to improve the 
I/O bottleneck of the HPC systems. Researchers have developed  the VSFS system 
[104], which uses a DRAM-based distributed architecture to perform real-time file 
indexing. Moreover, a versatile index scheme is designed to adapt to the various forms 
of HPC datasets. The results of our VSFS prototype evaluation show that VSFS is 
scalable in a typical HPC environment. It achieves significantly better file-indexing and 
file-search performance than the popular SQL/NoSQL solutions, while it only 
introduces negligible I/O overhead and has also been tested in real time scenarios with 
success.  

Another major problem that researchers are trying to tackle is the   transfer of  data 
from edge sensors. In [105] researchers created a system that uses the MQTT protocol 
by utilizing the Mosquitto() framework as the data broker of the system and Apache 
Spark for rapid processing of the data. They found that when the system has many 
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subscribers, the latency of reading/writing data is increasing, and sometimes the 
overhead  makes it pointless to execute the computations on the compute node.  

5.2. Related Work on Communications optimization with HPC and big data 

There are fundamental differences between HPC communication as in MPI and data 
communications required by big data applications. Some of these have been addressed 
in DataMPI [106], which creates a shuffle engine using MPI primitives. Twister2 tries 
to identify some of these differences and creates a library called Twister:Net [27], 
which tries to provide a more generic communication model for data analyses. 
Exploiting high performance interconnects for data analytics have been studied 
extensively with HDFS RDMA [107], Spark RDMA [108], Heron Infiniband [109]. In 
all these instances, existing communication layer of big data tools have been enhanced 
with high performance interconnects. Recently there have been efforts to implement 
data operations such as joins using RDMA [110], [111]. Mpignite [112] is an effort to 
include MPI style communications into the Spark big data framework to improve its 
collective communication capability. 

5.3. Network Science Related Work - Random network generation 

A number of random graph models have been developed in an attempt to model 
different kinds of real-world network data. Efficient parallel generators exist for many 
of them. For instance, the generator in the Graph 500 benchmark [113] can generate 
very large instances of the RMAT model [114]. The RMAT model has a simple 
recursive structure, which makes random generation relatively easy. This is not the case 
for other stochastic models, such as the Chung Lu (CL), Preferential Attachment (PA) 
model [115], Stochastic block model (SBM) and block two–level Erdos–Renyi (BTER) 
models [116]. These models have a more complicated probability structure and a high 
level of heterogeneity in their degree sequences. Parallel algorithms have been 
developed for generating instances from these models in both distributed memory 
systems [44] and MapReduce [116]. The preferential attachment model has a very 
different structure from the other random graph models–––it is an evolutionary model, 
where edges are added incrementally. Our results in [117] provide a distributed 
memory parallel algorithm for this model, by exploiting a different but equivalent 
representation of the PA model. There has been very little work on the second approach 
of random graph generation through edge switching, and the work of [45] is the first 
parallel algorithm for this problem. 

5.4. Network Science Related Work - Subgraph analysis 

There is a vast literature on a variety of subgraph analysis problems, arising out of a 
number of applications, such as bioinformatics, security, social network analysis, 
epidemiology, and finance. Here, we focus on the area of subgraph detection and 
counting, specifically, triangles, paths, and trees, since there has been quite a bit of 
work on parallel algorithms for these problems.  

The triangle counting problem has been studied extensively, because of its 
connection with clustering coefficient, and applications to social networks, and also 
due to its local nature. Algorithms have been developed in a variety of distributed 
computing models, e.g., MapReduce [118], multi-core systems [119], and MPI [120]. 
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These have considered exact counts, as well as deterministic and randomized 
approximation, e.g., using sampling techniques [121]. In [120], we develop an MPI-
based algorithm  for exact counting, in the setting where  the  memory  of  each  
machine is large enough to contain the entire network, by dynamic load balancing and 
tuning task granularity on the fly. 

In contrast, the detection and counting of paths and trees are inherently non-local 
problems. While there are a number of heuristics for these problems, one of the most 
well-studied methods is based on using the color-coding technique for finding tree-like 
subgraphs [122], which guarantees a fully polynomial time approximation to the 
number of embeddings with running time and space, scaling as O((2e)k) and O(2k), 
respectively (with additional terms which are polynomial in the input size). This has 
been parallelized using MapReduce [123] and OpenMP [124], enabling subgraph 
counting in graphs with tens of millions of nodes with rigorous guarantees. Slota et al. 
use threading and techniques for reducing the memory footprint of the color coding 
dynamic programming tables in order to scale. In [34], [125], we have used the Harp 
framework to significantly improve the performance of color coding. Finally, in  [46], 
we have developed a new parallel approach for subgraph detection using an algebraic 
technique. 

5.5. Molecular Dynamics Trajectory Data Analysis Related work 

Until recently, MD analysis algorithms were executed serially. In the past several years, 
new frameworks emerged, providing parallel algorithms for analyzing MD trajectories. 
HiMach [126], by the D. E. Shaw Research group, extends Google's MapReduce for 
parallel trajectory data analysis. Pteros-2.0 [127] is an open-source library used for 
modeling and analyzing MD trajectories. Pteros 2.0 parallelizes execution via OpenMP 
and multithreading, bounding the execution to a single node. MDTraj [128] is a Python 
package for analyzing MD trajectories, in which parallelization is implemented using 
the parallel package of IPython as a wrapper. nMoldyn-3 [129] parallelizes the 
execution through a Master-Worker architecture. The master defines analysis tasks and 
submits them to a task manager. The task manager distributes tasks to workers. 

In contrast, our approach utilizes more general-purpose frameworks for 
parallelization, such as RADICAL-Pilot, Spark, and Dask. These frameworks provide 
higher level abstractions, so any integration with other data analysis methods can be 
fast and easier. Data parallelization can be done on any level of the execution, not only 
via data-read instructions. In addition, resource acquisition and management are 
performed transparently. Finally, because these frameworks do not require any 
compilation before usage, we avoided any hard dependencies that might exist due to 
the underlying hardware. 

5.6. Polar Science Radar Informatics Related work 

Most glaciology work on radar data has relied on human annotators [130], which has 
significantly limited the speed and scale at which polar data can be analyzed. Early 
automatic annotation techniques for ground-penetrating radar focused on finding 
boundaries between layers in 2-d radar echograms, typically using basic image 
processing techniques like region growing [131], [132], edge detection [133], level sets 
[134], or active contours [135]. Other papers have proposed techniques based on 
graphical model inference, which can be less sensitive to noise by explicitly modeling 
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uncertainty and combining weak sources of evidence [52]–[54], [136]. These 
techniques can also incorporate additional external sources of evidence, such as sparse 
human annotations or information from digital elevation maps. More recently, deep 
machine learning has produced significantly better results due to deep neural networks’ 
ability to learn optimal low-level image features from large-scale training data  [55], 
[137],  

5.7. Pathology Image Analysis Related work 

Radiology image registration is a matured research field with methods broadly 
categorized into point-, landmark-, surface-, rigid model- Deformable model-, 
statistical moment-, and image correlation-based registration [138]–[141]. Also, the 
multi-resolution and multi-scale approaches are developed [142]–[145]. However, 
these methods can not be directly applied to pathology image registration. Pathology 
image registration presents its unique challenges due to the overwhelmingly large data 
scale, a massive number of objects, and large tissue variations. Most prevalent 
pathology image processing approaches are bounded by 2D phenotypic structure 
analysis, with limited capacity for processing 3D pathologic objects in imaging 
volumes. Although some methods have been developed to process 3D pathology 
imaging data, they only focus on one processing step with no complete 3D analysis 
pipeline presented [146]–[156]. In spite of the availability of some commercial 
software for 3D pathology imaging analysis [157]–[160], they are still in immature 
stages.  

5.8. Spatial Data Management and Queries Related work 

Spatial Database Management Systems (SDBMSs) have been developed for managing 
and querying 3D spatial data in industrial applications, such as OracleSpatial [161], 
MapInfo Discover 3D [162], and ESRI 3D GIS [163]. However, they have limited 
scalability as they are built on top of ORDBMS, and come with limited 3D geometry 
support. Data loading is also a major bottleneck for SDBMS based solutions, especially 
for large-scale datasets. Recently, several systems have been proposed to support large-
scale spatial queries with distributed computing resources using MapReduce [164]–
[168]. These systems come with their limitations, for example, Spark based spatial 
querying systems will suffer the out-of-memory problem,  and none of them support 
3D data types.  

6. CONCLUSION AND FUTURES 

When this project started the importance of high-performance big data analytics 
was still not recognized, but nowadays it is clearly a very “hot” area with substantial 
industry, government, and academic activities. The continued BDEC [169] initiative 
[170]–[173] is an illustration of this with the first meeting on their “digital continuum 
platform” held at Indiana University [174], [175]. In the last stages of our project, we 
will be focussing on taking our work and making it easier for users to take advantage of 
this. We have started this with the core machine learning and image processing 
community with the new resource [73] that gives access to software, tutorials, and 
documentation with a discussion of examples, models, and algorithms. We intend to 
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follow this approach with the other community products and recently delivered a major 
tutorial on Twister2 [176]. We are also studying new ideas such as the “Function-as-a-
Service” [177] and Tensorflow [178] to make our software available with Python front 
ends and backend HPC cloud deployments. We need to add standard software 
engineering practices in the testing arena. 

We are also addressing sustainability with different ideas: 1) an  NSF IUCRC in 
high-performance big data computing; 2) the NSF I-Corps program and 3) The Apache 
Foundation. We are exploring either adding our software to existing Apache projects or 
setting up a new Apache High Performance Computing project. 

We will combine this packaging of our existing work with outreach to new users 
and new communities in the use of existing building blocks and adding their new 
building blocks. 

We have recently studied [14], [15], [179] several important distinctly different 
links between machine learning (ML) and HPC. We defined two broad categories: 
HPCforML and MLforHPC: 

● HPCforML: Using HPC to execute and enhance ML performance, or using 
HPC simulations to train ML algorithms (theory guided machine learning), 
which are then used to understand experimental data or simulations. 

● MLforHPC: Using ML to enhance HPC applications and systems 
This categorization is related to Jeff Dean's "Machine Learning for Systems and 

Systems for Machine Learning" [16] and Satoshi Matsuoka's convergence of AI and 
HPC [17]. HPCforML includes a major focus of our current project HPCrunsML or 
using HPC to execute ML with high performance. MLforHPC has 4 subcategories, 
including MLafterHPC, which includes our current study of data analysis for 
biomolecular simulations introduced in section 3.2. We have separately started to 
consider other subcategories MLaroundHPC where one learns results of large scale 
computations [180] and achieves much higher performance by using learned surrogates 
and MLAutotuning where machine learning optimizes system configurations [181]. 
These MLforHPC capabilities are relevant for many of our SPIDAL communities and 
can be supported by our MIDAS software. This is an exciting vision for the next steps 
in our project. 
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